AMath 574 Homework 3 Due by 11:00pm on February 12, 2015

For submission instructions, see:

http://faculty.washington.edu/rjl/classes/am574w2015/homework3.html

Problem #11.2 in the book

Problem #11.3 in the book

Problem #11.8 in the book

Problem #13.1 in the book

Problem #13.7 in the book, only parts (a)–(c) and case (i) from (d)

Programming problem

(This Clawpack code will be discussed in more detail in lab on Feb. 6.)

Copy the the Clawpack code M574/labs/lab5/burgers to your repository as a directory am574-studentN/hw3/expflux and modify the code so that it solves the problem from #11.8(c) with the exponential flux function $f(q) = \exp(q)$.

Make the following changes:

- Rename the Riemann solver rp1_expflux.f90 and modify it appropriately. Note:
 - You do not need an "entropy fix" for this problem since f'(q) > 0 for all q.
 - When computing the speed s, make sure you don't divide by 0. When $q_{\ell} \approx q_r$, use $f'(q_{\ell})$ in place of the Rankine-Hugoniot wave speed.
- Modify the Makefile so that it uses the new Riemann solver.
- Modify the initial conditions in qinit.f appropriately.
- Adjust setrun.py so that:
 - -100 grid cells are used on the interval $-1 \le x \le 4$.
 - The MC limiter is used with the high-resolution method.
 - -20 output frames are produced, equally spaced up to time t = 1.

The plots produced by running this code should be similar to what's seen at http://faculty.washington.edu/rjl/misc/expflux/_PlotIndex.html.

Optional: Add code to **setplot.py** to also plot the true solution at each time.

Make sure you have committed any files to your repository that are needed to run your code and produce the plots.