
AMath 570
Autumn Quarter, 2015
R. J. LeVeque

Fourier Transforms

This is a summary of some key facts about Fourier integrals, series, sums, and transforms, and the manner
in which these concepts relate to one another. Many different notations are used in the literature and in
software for Fourier transforms, so it is important to make sure you understand the notation and scaling used
in the paper/book/software you are using.

In the “physical domain” I will use u(x) to denote a function of x defined for some interval of x values
(possibly all real x) and uj to denote a discrete set of values over some set (finite or infinite) of integer
indices j.

In the “Fourier domain” I will use û(ξ) to denote a function of ξ defined for some interval of wave number
values (possibly all real ξ) and ûk to denote a discrete set of wave number values over some set (finite or
infinite) of integer indices k.

There are four cases to consider:

Case 1. The data is an L2 function u(x) defined for all real x.

Case 2. The data is a function u(x) defined on a finite interval 0 < x < 2π or −π < x < π (or a periodic
function defined on one period).

Case 3. The data is a discrete grid function uj on an infinite grid, at points xj = jh for j = 0, ±1, ±2, . . .
and some h > 0.

Case 4. The data is a discrete grid function uj on a grid with N = 2π/h points in the interval [−π, π] (or
a periodic grid function defined on one period).

The Fourier transform û has a different form in each case, as listed below for each of case. Note the
duality: the data in Case 2 has the same form as the transform in Case 3 and vice versa. Cases 1 and 4 are
self-dual; the data and transform have the same general form.

Case 1. The Fourier transform û(ξ) is an L2 function defined for all real ξ.

Case 2. The Fourier transform ûk is a set of discrete values defined on an infinite grid, for wave numbers
ξk = k = 0, ± 1, ± 2,

Case 3. The Fourier transform û(ξ) is a function defined on a finite interval [−π/h, π/h].

Case 4. The Fourier transform ûk is a set of N discrete values for wave numbers
ξk = k = −N/2 + 1, . . . , N/2. This grid covers the interval [−π/h, π/h].

The formulas in each case are given on the next page. One particular normalization has been chosen, more
about this below.

1

Fourier transform and inverse transform formulas:

Case 1. The data is an L2 function u(x) defined for all real x. The Fourier transform û(ξ) is an L2 function
defined for all real ξ.

Forward Transform:

û(ξ) =

∫ ∞
−∞

e−iξx u(x) dx for −∞ < ξ <∞. (1a)

Inverse transform:

u(x) =
1

2π

∫ ∞
−∞

eiξx û(ξ) dξ for −∞ < x <∞. (1b)

Case 2. The data is a function u(x) defined on a finite interval 0 < x < 2π (or a periodic function defined on
one period). The Fourier transform ûk is a set of discrete values defined on an infinite grid, for wave numbers
ξk = k = 0, ± 1, ± 2, This grid covers the interval [−π/h, π/h].

Forward Transform:

ûk =

∫ 2π

0
e−ikx u(x) dx for k = 0, ± 1, ± 2, (2a)

Inverse transform:

u(x) =
1

2π

∞∑
k=−∞

eikx ûk for 0 < x < 2π. (2b)

Case 3. The data is a discrete grid function uj on an infinite grid, at points xj = jh for j = 0, ±1, ±2, . . .
and some h > 0. The Fourier transform û(ξ) is a function defined on a finite interval [−π/h, π/h].

Forward Transform:

û(ξ) =
∞∑

j=−∞
e−iξxj uj for − π

h
< ξ <

π

h
. (3a)

Inverse transform:

uj =
1

2π

∫ π/h

−π/h
eiξxj û(ξ) dξ for j = 0, ± 1, ± 2, (3b)

Case 4. The data is a discrete grid function uj on a grid with N = 2π/h points in the interval [0, 2π] (or a
periodic grid function defined on one period). The grid points are xj = jh for j = 1, 2, . . . , N , where h =
2π/N . The Fourier transform ûk is a set of N discrete values for wave numbers ξk = k = −N/2+1, . . . , N/2.
The formulas are written here for the case where N is even.

Forward Transform:

ûk = h

N∑
j=1

e−ikxj uj for k = −N
2

+ 1, . . . ,
N

2
. (4a)

Inverse transform:

uj =
1

2π

N
2∑

k=−N
2
+1

eikxj ûk for j = 1, 2, . . . , N. (4b)

2

Some things to note and help motivate the different forms:

• If the data is a function u(x), then this data may contain arbitrarily high wave number oscillations, and
so the transform û may be nonzero for arbitrarily large values of |ξ| (in Case 1) or |k| (in Case 2).

• If the data consists of discrete values then there is a limit to how high a wave number can be represented
on the grid, and so in Cases 3 and 4 the Fourier transform is “band limited” and the wave number does
not exceed π/h in magnitude.

• If the data u(x) or uj is given only on a finite interval (which is viewed as one period of periodic data),
as in Cases 2 and 4, then the Fourier transform ûk takes discrete values since eiξx satisfies the periodicity
requirement only for integer wave numbers ξk = k.

• If the data u(x) or uj is given over an infinite interval (non-periodic), as in Cases 1 and 3, then there is
no periodicity requirement constraining ξ to integers and the Fourier transform û(ξ) is defined over an
interval of ξ values.

Normalization.

In each case you can modify the definition of û by multiplying by a constant C and then the formula for
u(x) must be multiplied by 1/C to cancel this factor out. In particular, if the formulas above for the Fourier
transform û are multiplied by 1

2π , then the inverse transform formulas for u will be multiplied by 2π, with the
result that the factor 1

2π will appear in the formulas for for u rather than û. This alternative is often seen in
the literature.

Another possibility is to use the factor C = 1/
√

2π, with the result that both the formulas for u and the
formulas for û will contain a factor 1/

√
2π. This is sometimes used, particularly in Case 1, since it gives a

more symmetric and self-dual formula. However, it also leads to constantly writing 1/
√

2π in every formula.

Discrete Fourier transforms.

Case 4 is often used computationally: a finite set of N data values uj is transformed into a finite set of N
values ûk. This is often called the discrete Fourier transform (DFT). The formulas for the DFT and inverse
DFT (IDFT) each involve finite sums and can be evaluated directly (unlike the other cases, which involve
integrals that one may not be able to evaluate exactly).

The formula for each ûk is a sum of N terms, so computing this value for one k requires O(N) floating
point operations. Hence it appears that computing all N components of the vector û will require N times
as much work, or O(N2) operations. Note that the process of going from a vector u of N data values to the
vector û of N transform values can be interpreted as simply multiplying by an N ×N matrix R with (k, j)
element equal to he−ikjh. Since this is a dense matrix, this product computed in the standard way requires
O(N2) operations.

However, this matrix has a very special structure that can be exploited to compute this particular matrix-
vector product in far fewer operations. This works best if N is a power of 2, or more generally of small primes.
The fast algorithm can be derived in various ways. The main idea is that if N = 2s then the matrix R can be
written as the product of s = log2N other matrices, each of which is very sparse: R = RsRs−1 · · ·R1. We can
compute the product Ru by first multiplying u by R1, then multiplying the resulting vector by R2, etc. Each
of these matrix-vector products only requires O(N) operations, because of the sparsity, and so computing Ru
in this way only requires O(N logN) operations. This algorithm is called the Fast Fourier Transform (FFT).

For some applications, very large values of N are used and use of the FFT results in huge savings (by
nearly a factor N over the naive algorithm). For spectral methods this is usually not such an issue since
relatively small values of N are often used, but it still makes sense to use FFT software rather than using the
slow algorithm. Not only is it faster, it is also often more stable numerically.

3

For the DFT (including FFT software) somewhat different forms of Case 4 above are often seen. In
particular, redefining ûk by multiplying the formula (4a) by 1/h and the formula (4b) for uj by h gives the
alternative formulation

Case 4 (Alternative scaling).

Forward Transform:

ûk =

N∑
j=1

e−ikxj uj for k = −N
2

+ 1, . . . ,
N

2
. (5a)

Inverse transform:

uj =
1

N

N
2∑

k=−N
2
+1

eikxj ûk for j = 1, 2, . . . , N. (5b)

where we have used h/2π = 1/N to simplify the factor in the transform (5a).

Another form often used is a variant of this:

Case 4 (Alternative indexing of wave numbers).

Forward Transform:

ûk =
N−1∑
j=0

e−ikxj uj for k = 0, 1, . . . , N − 1. (6a)

Inverse transform:

uj =
1

N

N−1∑
k=0

eikxj ûk. for j = 0, 1, . . . , N − 1. (6b)

This form has the virtue of maximum simplicity, and is used in the Matlab fft or Python numpy.fft routines,
for example. Recall that in these formulas

xj = jh =
2πj

N
.

Note that essentially the same formula as in (5a) is used for the transform, but for a different set of k values.
By the assumed periodicity, u0 = uN and the change in the limits of summation in (6a) is made just to be
consistent with (6b). The change of indices from (5b) to (6b) appears more substantial, but in fact û−k = ûN−k
so this is just a relabelling. This relation follows from

û−k =
∑
j

exp(−i(−k)2πj/N)uj

=
∑
j

exp(−i(N − k)2πj/N) exp(iN2πj/N)uj

=
∑
j

exp(−i(N − k)2πj/N)uj

= ûN−k

since exp(iN2πj/N) = (e2πi)j = 1. So the following two vectors of transforms are equivalent:

û0, û1, . . . , ûN/2, ûN/2+1, . . . , ûN−1

û0, û1, . . . , ûN/2, û−N/2+1, . . . , û−1.

The FFTW package (often used in Fortran, C, Python, etc.) computes unnormalized versions of (6), with
no factor of 1/N in either term. So applying the FFT and then IFFT with this software gives the original
sequence multiplied by a factor N .

4

