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Abstract— This work addresses the problem of inverse re-
inforcement learning in Markov decision processes where the
decision-making agent is risk-sensitive. In particular, a risk-
sensitive reinforcement learning algorithm with convergence guar-
antees that makes use of coherent risk metrics and models of
human decision-making which have their origins in behavioral
psychology and economics is presented. The risk-sensitive rein-
forcement learning algorithm provides the theoretical underpin-
ning for a gradient-based inverse reinforcement learning algorithm
that seeks to minimize a loss function defined on the observed
behavior. It is shown that the gradient of the loss function with re-
spect to the model parameters is well-defined and computable via
a contraction map argument. Evaluation of the proposed technique
is performed on a Grid World example, a canonical benchmark
problem.

I. INTRODUCTION

Complex risk-sensitive behavior arising from human interaction
with automation has attracted research efforts from a variety of com-
munities including psychology, economics, engineering and computer
science. The adoption of diverse behavioral models in engineering—
in particular, in learning and control—is growing due to the fact that
humans are increasingly playing an integral role in automation both at
the individual and societal scale. Learning accurate models of human
decision-making is important for both prediction and description. For
instance, control/incentive schemes need to predict human behavior as
a function of external stimuli including not only potential disturbances
but also the control/incentive mechanism itself. On the other hand,
policy makers are interested in interpreting and describing human
reactions to implemented regulations and policies.

There are many challenges to capturing representative, salient
features of human decision-making, not the least of which is the fact
that humans are known to behave in ways that are not completely
rational. For instance, there is mounting evidence to support the fact
that humans often use reference points—e.g., the status quo, former
experiences, or recent expectations about the future that are otherwise
perceived to be related to the decision the human is making [1],
[2]. Empirical evidence also suggests that human decision-making is
impacted by perceptions of the external world (exogenous factors)
and their present state of mind (endogenous factors) as well as how
the decision is framed or presented [3]. Furthermore, humans are
risk sensitive: they are risk-averse when close to a desired state and
risk-seeking otherwise.

Approaches for integrating risk-sensitivity into algorithms for
control synthesis and reinforcement learning via behavioral models
have recently emerged [4]–[7]. These approaches largely assume a
risk-sensitive Markov decision process (MDP) formulated based on
a model that captures behavioral aspects of the human’s decision-
making process. We refer the problem of learning the optimal policy
in this setting as the forward problem. Our primary interest is the so-
called inverse problem which seeks to estimate the decision-making
process given a set of demonstrations. Inverse reinforcement learning
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in the context of recovering policies directly (or indirectly via first
learning a representation for the reward) has long been studied in
the context expected utility maximization and MDPs [8], [9]. There
are typically two approaches: (i) producing the value and reward
functions (or at least, characterizing the space of these functions)
that mimic behaviors matching that which is observed; (ii) directly
extracting the optimal policy from a set of demonstrations. In order
to do so, a well formulated forward problem with convergence
guarantees is required.

We model human decision-makers as risk-sensitive Q-learning
agents. To capture both risk-sensitivity as well as other empirically
observed behavioral decision-making traits such as loss aversion
and reference point dependence, within a reinforcement learning
framework, we combine behavioral psychology models of decision-
making such as those from prospect theory [10] with appropriate—
and computationally tractable—risk metrics that take into account
such models. We construct a forward reinforcement learning frame-
work for which we provide convergence guarantees in support of
the development of an inverse reinforcement learning algorithm. We
leverage the developed forward algorithm in to derive an inverse risk-
sensitive reinforcement learning algorithm with theoretical guaran-
tees. We show that the gradient of the loss function with respect to the
model parameters is well-defined and computable via a contraction
map argument. We demonstrate the efficacy of the learning scheme
on the canonical Grid World example.

The remainder of this paper is organized as follows. In Sec. II, we
detail our contributions and contrast them with existing work in this
area. In Sec. III, we overview the model we assume for risk-sensitive
agents, show that it is amenable to integration with the behavioral
models, and present a risk-sensitive Q-learning convergence result. In
Sec. IV, we formulate the inverse reinforcement learning problem and
propose a gradient–based algorithm to solve it. Illustrative examples
are presented in Sec. V, and we conclude in Sec. VI.

II. CONTRIBUTIONS AND RELATED WORK

The goal of this work is to provide a theoretical and algorithmic
framework for recovering interpretable behavioral models of human
decision-makers. Towards this end, the main contribution of this
work is the development of a gradient-based inverse risk-sensitive
reinforcement learning algorithm that enables recovery of prospect
theoretic value functions and parameters of the class of coherent risk
metrics—utility-based shortfall—that we consider.

The forward risk-sensitive reinforcement learning framework we
adopt was first introduced in [11] and later refined in [5], [6],
[12]. In preliminary work [12], we examined a similar risk-sensntive
reinforcement learning framework to [5] and leveraged it to develop
a gradient-based inverse reinforcement learning algorithm. Building
on these works, we construct a new value function—`–prospect value
function—which is Lipschitz on the domain of interest and retains
the convex-concave shape of a prospect theoretic value function.
Similar to [5], we provide a convergence theorem, though with
high probability due to the fact that the `-prospect function leads
to a reinforcement learning scheme that is a contraction on a finite
radius ball. We show that the `–prospect value function—along with
other value functions considered in [5]—satisfies the assumptions.
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The assumptions of the theorem are also stated explicitly in terms
of MDP parameters. Given the forward risk-sensitive reinforcement
learning algorithm, we propose a gradient-based inverse risk-sensitive
reinforcement learning algorithm for inferring the decision-making
model parameters from demonstrations. We show that the gradient
of the loss function with respect to the model parameters is well-
defined and computable via a contraction map argument.

The primary motivation for most other work on inverse risk-
sensitive reinforcement learning is to recover a prescriptive model
or algorithm for humans amidst autonomy so that the human can
be accounted for in the design of control policies. For example,
in [5] in order to learn the decision-making model the approach is
to parameterize unknown quantities of interest, sample the parameter
space, and use a model selection criteria (specifically, the Bayesian
information criteria) to select parameters that best fit the observed
behavior. We, on the other hand, derive a well-formulated gradient-
based procedure for finding the value function and policy best
matching the observed behavior.

In other promising work [7], the authors leverage a more expansive
set of coherent risk metrics to capture risk sensitivity, yet without
the focus on prospect theoretic value functions. In comparison, our
approach focuses on estimating the agent’s behavior and the value
function which also induces the risk metric via an acceptance level
set. In addition, the parameters of the value function are interpretable
in terms of the degree of risk sensitivity and loss aversion. Thus,
our technique supports prescriptive and descriptive analysis, both
of which are important for the design of incentives and policies
that takes into consideration the nuances of human decision-making
behavior.

III. RISK-SENSITIVE REINFORCEMENT LEARNING

Consider a class of finite MDPs consisting of a state space X ,
an admissible action space U(x) ⊂ U for each x ∈ X , a transition
kernel P (x′|x, u) that denotes the probability of moving from state
x to x′ given action u, and a reward function r : X ×U ×W → R
where W is the space of bounded disturbances and has distribution
Pr(·|x, u). Including disturbances allows us to model random re-
wards; we use the notation R(x′, u) to denote the random reward
having distribution Pr(·|x, u).

In the classical expected utility maximization framework, the agent
seeks to maximize the sum of their expected discounted reward over
time by selecting a Markov policy π which is a distribution across
actions for each state x ∈ X—i.e. π(x) ∈ ∆(U). For instance,
given an infinite horizon MDP, the optimal policy is obtained by
maximizing

J(x0, π) = E
[∑∞

t=1 γ
tR(xt, ut)

]
(1)

with respect to π where x0 is the initial state and γ ∈ (0, 1) is the
discount factor.

The risk-sensitive reinforcement learning problem transforms the
above problem to account for salient features of the human decision-
making process such as loss aversion, reference point dependence,
and risk-sensitivity. In this work, like others [5], [6], we introduce
prospect theoretic value functions [10] and coherent risk metrics [13]
to capture such features. Specifically, we introduce two key com-
ponents, value functions and valuation functions, that capture these
features. The former captures risk-sensitivity, loss-aversion, and ref-
erence point dependence in its transformation of outcome values to
their value as perceived by the agent and the latter generalizes the
expectation operator to more general measures of risk.

A. Value Functions

Much like the standard expected utility framework, an agent makes
choices based on the value of outcomes as defined by a value
function v : R → R. There are a number of existing approaches to
defining value functions that capture risk-sensitivity and loss aversion.
These approaches derive from a variety of fields including behavioral
psychology/economics, mathematical finance, and even neuroscience.
One of the principal features of human decision-making is that losses
are perceived more significant than a gain of equal true value—
i.e. losses loom larger than gains. Empirically validated models that
capture this affect are convex and concave in different regions of the
outcome space. Prospect theory [10] is built on one such model. The
prospect theoretic value function is given by

v(y) =

ß
k+(y − y0)ζ+ , y > y0

−k−(y0 − y)ζ− , y ≤ y0
(2)

where y0 is the reference point that the decision-maker compares
outcomes against in determining if the decision is a loss or gain. The
parameters (k+, k−, ζ+, ζ−) control the degree of loss-aversion and
risk-sensitivity; e.g., the following are risk preferences for different
parameter values: (a) 0 < ζ+, ζ− < 1 correspond to risk-averse
preferences on gains and risk-seeking preferences on losses (concave
in gains, convex in losses); (b) ζ+ = ζ− = 1 correspond to
risk-neutral preferences; (c) ζ+, ζ− > 1 correspond to risk-averse
preferences on losses and risk-seeking preferences on gains (convex
in gains, concave in losses). Experimental results for a series of one-
off decisions show that typically both ζ+ and ζ− are less than one
thereby indicating that humans are risk-averse on gains and risk-
seeking on losses—that is, v is concave for y > y0 and convex
otherwise [10], [14].

In addition to the non-linear transformation of outcome values,
the effect of under/over-weighting the likelihood of events that has
been commonly observed in human behavior is modeled via warping
of event probabilities [15], [16]. Other concepts such as framing
effects, reference dependence, and loss aversion—captured, e.g., in
the (k+, k−) parameters in (2)—have also been widely observed in
experimental studies on human decision-making (see, e.g., [17]–[19]).

Motivated by the empirical evidence supporting the prospect
theoretic value function and numerical considerations, which are
discussed in greater detail in subsequent sections, we introduce a new
value function that retains the shape of the prospect theory value
function over the whole domain—i.e. convex–concave structure—
while improving the performance (in terms of convergence speed)
of the gradient-based inverse reinforcement learning algorithm we
propose in Section IV. In particular, we define the locally Lipschitz-
prospect (`-prospect) value function given by

v(y) =

ß
k+(y − y0 + ε)ζ+ − k+ε

ζ+ , y > y0

−k−(y0 − y + ε)ζ− + k−ε
ζ− , y ≤ y0

(3)

with k+, k−, ζ+, ζ− > 0 and ε > 0, a small constant. This value
function is Lipschitz continuous on a bounded domain. Moreover,
the derivative of the `-prospect function is bounded away from zero
at the reference point. Hence, in practice it has better numerical
properties. Moreover, for given parameters (k+, k−, ζ+, ζ−), the `-
prospect function has the same risk-sensitivity as the prospect value
function with those same parameters; as ε→ 0 the `-prospect value
function approaches the prospect value function.

There are, of course, other behaviorally motivated value functions
that appear in the literature beyond those from prospect theory. For
example, in [6] a piecewise linear value function is considered in
a risk-sensitive reinforcement learning context, and another very
common example is the entropic map—i.e. v(y) = exp(λy).
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The fact that each of these value functions is defined by a
small number of parameters that are highly interpretable in terms
of risk-sensitivity and loss-aversion is one of the motivating factors
for integrating them into a reinforcement learning framework. It is
our aim to design learning algorithms that will ultimately provide
the theoretical underpinnings for designing incentives and control
policies taking into consideration salient features of human decision-
making behavior.

B. Valuation Functions
Given environment and reward uncertainties, we model the out-

come of each action as a real-valued random variable Y (i) ∈ R,
i ∈ I where I denotes a finite event space and Y is the outcome
of i–th event with probability µ(i) where µ ∈ ∆(I), the space of
probability distributions on I .

Definition 1 (Valuation Function): A mapping V : R|I|×∆(I)→
R is called a valuation function if for each µ ∈ ∆(I), (i) V(Y, µ) ≤
V(Z, µ) whenever Y ≤ Z (monotonic) and (ii) V(Y + y1, µ) =
V(Y, µ) + y for any y ∈ R (translation invariant).
Typically the valuation function used in MDPs is defined in terms
of the expectation operation. For each state–action pair, we define
V(Y |x, a) : R|I| × X × A → R a valuation map such that
Vx,a ≡ V(·|x, a) is a valuation function where we drop the
dependence on µ for simplicity of notation. If we let Vπx(Y ) =∑
a∈A(x) π(a|x)Vx,a(Y ), (1) generalizes to

J̃T (π, x0) =V
π0
x0

î
R(x0, u0) + γV

π1
x1

[
R(x1, u1)

+ · · ·+ γV
πT
xT [R(xT , uT )]

]ó
where we define J̃(π, x0) = limT→∞ J̃T (π, x0).

Given that we intend to integrate empirically validated value
functions that capture decision-making features of humans, the most
appropriate class of coherent risk metrics are those induced by an
acceptance level set defined in terms of a value function. Hence, we
focus our attention on this particular class, members of which are
often referred to as utility-based shortfall risk metrics. We are not
the first to leverage this class of risk metrics in a similar framework;
the authors of [5] take a similar approach.

To define this class of metrics, we first recall the following
definition. A monetary measure of risk [13] is a functional ρ : X→
R ∪ {+∞} on the space X of measurable functions defined on
a probability space (Ω,F, P ) such that ρ(0) is finite, and for all
X,X ′ ∈ X, ρ satisfies the following:

(i) (monotone) X ≤ X ′ =⇒ ρ(X ′) ≤ ρ(X), and
(ii) (translation invariant) m ∈ R =⇒ ρ(X +m) = ρ(X)−m.

If ρ additionally satisfies

ρ(λX + (1− λ)X ′) ≤ λρ(X) + (1− λ)ρ(X ′),

for λ ∈ [0, 1], then it is a convex risk measure. A monetary measure
of risk ρ induces an acceptance level set Aρ = {X ∈ X| ρ(X) ≤
0} [13, Prop. 4.6] and, conversely, an acceptance level set A induces
a monetary measure of risk ρA(X) = inf{m ∈ R| X+m ∈ A} [13,
Prop. 4.7].

Utility-based shortfall risk is defined with respect to an acceptance
level set. The acceptance level set A = {X ∈ X| Eµ[v(X)] ≥ v0}
defined in terms of a utility or value function v where v0 is the
acceptance level induces ρ(X) = inf{m ∈ R| Eµ[v(X + m)] ≥
v0}. Given a value function v and acceptance level v0, we use the
utility-based shortfall risk metric to induce a state-action valuation
function given by Vx,u(Y ) = sup{z ∈ R| E[v(Y −z)] ≥ v0} where
the expectation is taken with respect to µ = P (x′|x, u)Pr(w|x, u);
Vx,u(Y ) has the properties outlined in Definition 1.

C. Risk-Sensitive Q-Learning Convergence
In the classical reinforcement learning framework, the Bellman

equation is used to derive a Q-learning procedure. Generalizations
of the Bellman equation for risk-sensitive reinforcement learning—
derived, e.g., in [5], [6], [20]—have been used to formulate Q-
learning procedures for the risk-sensitive reinforcement learning
problem. In particular, as shown in [20], if V ∗ satisfies

V ∗(x0) = maxu∈U(x) Vx,u(R(x, u) + γV ∗), (4)

then V ∗ = maxπ J̃(π, x0) holds for all x0 ∈ X; moreover, a
deterministic policy is optimal if π∗(x) = arg maxu∈U(x) Vx,u(R+
γV ∗) [20, Thm. 5.5]. Defining Q∗(x, u) = Vx,u(R + γV ∗)
for each (x, u) ∈ X × U , (4) becomes Q∗(x, u) =
Vx,u

(
R+ γmaxu∈U(x′)Q

∗(x′, u)
)

. As shown in [5, Prop. 3.1],
by letting Y = R + γV ∗ and directly applying Proposition 4.104
of [13] with z∗ ≡ Q∗, we have that

E[v(r(x, u, w) + γmaxu′∈U(x′)Q
∗(x′, u′)−Q∗(x, u))] = v0

where the expectation is with respect to µ = P (x′|x, u)Pr(w|x, u).
This leads naturally the Q-learning procedure

Q(xt, ut)←Q(xt, ut) + αt(xt, ut)[v(yt)− v0], (5)

where the non-linear transformation v is applied to the temporal
difference yt = rt + γmaxuQ(xt+1, u)−Q(xt, ut). Transforming
temporal differences avoids certain pitfalls of the reward transforma-
tion approach such as poor convergence performance.

It has been shown that under some assumptions on v and the
sequence αt, that the above Q-learning procedure converges with
probability one [5, Thm. 3.2]. Indeed, suppose that (i) v is strictly
increasing in y, (ii) there exists constants ε, L > 0 such that
ε ≤ v(y)−v(y′)

y−y′ ≤ L for all y 6= y′, and (iii) there exists a ȳ such
that v(ȳ) = v0. Then, if the non-negative learning rates αt(x, u)
are such that

∑∞
t=0 αt(x, u) = ∞ and

∑∞
t=0 α

2
t (x, u) < ∞,

∀(x, u) ∈ X × U , then the procedure in (5) converges to Q∗(x, u)
for all (x, u) ∈ X × U with probability one.

The assumptions on αt are fairly standard and the core of the
convergence proof is based on the Robbins–Siegmund Theorem ap-
pearing in the seminal work [21]. On the other hand, the assumptions
on the value function v are fairly restrictive, excluding many of
the value functions presented in Sec. III-A; e.g., value functions of
the form ex and xζ do not satisfy the global Lipschitz condition.
To address this, the Lipschitz assumption can be relaxed to a local
condition assuming the rewards are bounded [5, Thm. A.1]. However
the result still requires the derivative to be bounded away from zero.
We provide a slightly modified result that introduces conditions on
v—in terms the bound on the rewards and the size of the ball on
which v is Lipschitz—under which the derivative is bounded away
from zero and show that the functions considered in [5] as well as the
`-prospect function we introduce satisfy these conditions. In addition,
we provide a more streamlined proof technique that leverages a well-
known fixed point theorem.

Assumption 1: The value function v ∈ C1(Y,R) satisfies the
following: (i) it is strictly increasing in y and there exists a ȳ such
that v(ȳ) = v0 and, (ii) it is Lipschitz on any ball of finite radius
centered at the origin.

Let X be a complete metric space endowed with the L∞ norm and
let Q ⊂ X be the space of maps Q : X × U → R. Further, define
ṽ ≡ v − v0. We then re-write the Q–update equation in the form

Qt+1(x, u) =
(
1− αt

α

)
Qt(x, u) + αt

α

(
α(v(yt)− v0) +Qt(x, u)

)
where α ∈ (0,min{L−1, 1}] and we have suppressed the depen-
dence of αt on (x, u). This is a standard update equation form in,
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e.g., the stochastic approximation algorithm literature [22], [23]. In
addition, we define the map

(TQ)(x, u) =αEx′,w[ṽ(r(x, u, w) + γmaxu′∈U(x′)Q(x′, u′)

−Q(x, u))] +Q(x, u). (6)

For any given K > 0 and M > 0, we use the notation IK for the
interval [−M −2K,M + 2K]. Moreover, for any given K such that
0 < K < ∞, let α ∈ (0,min{1, L−1}] where L is the Lipschitz
constant of v on IK .

Theorem 1: Suppose v satisfies Assumption 1 and for each
(x, u) ∈ X×U the reward r(x, u, w) is bounded almost surely—that
is, there exists 0 < M <∞ such that |r| < M almost surely.
(a) Consider any given K ∈ (0,∞) and let BK(0) ⊂ Q be a ball

of radius K centered at zero. Then, T : Q→ X is a contraction
on BK(0).

(b) Suppose K̄ is chosen such that
max{|ṽ(M)|,|ṽ(−M)|}

(1−γ)
< K̄ miny∈IK̄ Dṽ(y). (7)

Then, T has a unique fixed point in BK(0) for any K ∈ [K̄,∞).
The proof is provided in Appendix A.

The following proposition shows that the `-prospect as well as the
class of functions considered in [5] satisfy (7). Moreover, it shows
that the value functions which satisfy Assumption 1 also satisfy (7).

Proposition 1: Suppose r : X × U ×W → R is bounded almost
surely by M and γ ∈ (0, 1). Consider the condition

max{|ṽ(M)|,|ṽ(−M)|}
(1−γ)

< K miny∈IK Dṽ(y). (8)

(a) Suppose v satisfies Assumption 1 and that for some ε > 0,
ε <

v(y)−v(y′)
y−y′ for all y 6= y′. Then (8) holds.

(b) Suppose v is an `-prospect value function with arbitrary pa-
rameters (k−, k+, ζ−, ζ+) satisfying Assumption 1. Then there
exists a K such that the `-prospect value function satisfies (8).

With Theorem 1 and Proposition 1, we can prove convergence of
Q-learning for risk-sensitive reinforcement learning.

Theorem 2 (Q-learning Convergence on BK(0)): Suppose that v
satisfies Assumption 1 and that for each (x, u) ∈ X ×U the reward
r(x, u, w) is bounded almost surely—that is, there exists 0 < M <
∞ such that |r| < M almost surely. Moreover, suppose the ball
BK(0) is chosen such that (7) holds and Q0 ∈ BK(0). If the non-
negative learning rates αt(x, u) are such that

∑∞
t=0 αt(x, u) = ∞

and
∑∞
t=0 α

2
t (x, u) < ∞, ∀(x, u) ∈ X × U . Let ε > 0. Then, if

T ≥ g1(ε) and 1/γk ≥ g2(ε) for all k ≥ 0 and for some functions
g1(ε) = O(log(1/ε)) and g2(ε) = O(1/ε), then the procedure in
(5) converges to Q∗ ∈ BK(0) with high probability—i.e. Pr(‖Qt −
Q∗‖ ≤ ε, ∀t ≥ T + 1) ≥ 1− δ(ε) for some constant δ(ε).
The proof of the above theorem is provided in Appendix B. It
replies on a standard argument which combines the fixed point result
of Theorem 1 with and the ODE method for analyzing stochastic
approximation algorithms [24, Chap. 1–4] [25]. Since Theorem 1
holds on any BK(0) with K̄ < K <∞, so does Theorem 2.

IV. INVERSE RISK-SENSITIVE REINFORCEMENT
LEARNING

Given a set of demonstrations D = {(xk, uk)}Nk=1, our goal is to
recover an estimate of the policy and value function used to generate
the demonstrations. Let Π = {πθ}θ be a class of parameterized
policies and F be a class of parameterized value functions where
θ ∈ Θ ⊂ Rd and v ∈ F is such that v : Y ×Θ → R : (y(θ), θ) 7→
v(y(θ), θ). We use the notation vθ where convenient. We also indicate
the dependence of Q on θ using the notation Q(x, u, θ). We seek to
minimize some loss `(πθ) which is a function of the parameterized

policy πθ . By an abuse of notation, we introduce the shorthand
`(θ) = `(πθ). The optimization problem is specified by

minθ∈Θ {`(θ)| πθ = Hθ(Q
∗), vθ ∈ F} (9)

where Hθ belongs to a parameterized policy class. There are several
possible loss functions that may be employed.

Since we seek a probability distribution πθ , it is natural to formu-
late the loss in terms of the principle of maximum entropy, a tool for
building probability distributions to match observations. It has been
shown in the classical inverse reinforcement learning approach that
specifying the problem in terms of maximum casual entropy [26]–
[28] avoids certain pitfalls—e.g., non-convexity and learning from
sub-optimal demonstrations. Motivated by this, we consider two
related cost functions: the negative weighted log-likelihood of the
demonstrated behavior and the relative entropy or Kullback-Leibler
(KL) divergence between the empirical distribution of the state-action
trajectories and their distribution under the learned policy. The former
is given by

`(θ) =
∑

(x,u)∈D w(x, u) log(πθ(u|x))

where w(x, u) may, e.g., be the normalized empirical frequency
of observing (x, u) pairs in D—that is, n(x, u)/N with n(x, u)
denoting the frequency of (x, u) and the latter is given by

`(θ) =
∑
x∈Dx

DKL(π̂(·|x)||πθ(·|x))

where DKL(π||π′) =
∑
i π(i) log

(
π(i)/π′(i)

)
is the KL diver-

gence, Dx ⊂ D is the sequence of observed states, and π̂ is the
empirical distribution on the trajectories of D. These losses are
essentially the same under a re-weighting: the weighted log-likelihood
can be re-written as `(θ) =

∑
x∈Dx

w(x)DKL(π̂n(·|x)||πθ(·|x))
where w(x) is the frequency of state x normalized by |D| = N . This
approach has the added benefit that it is independent of θ and thus,
is not affected by scaling of the value functions.

It is also common to adopt a smooth map H that operates on
the action-value function space for defining the parametric policy
space—e.g., soft-max or Boltzmann policies [27]–[29] of the form

Hθ(Q)(u|x) =
exp(βQ(x,u,θ))∑

u′∈U(x)
exp(βQ(x,u′,θ))

(10)

to the action-value functions Q where β > 0 controls how close
Hθ(Q) is to a greedy policy which we define to be any policy π
such that

∑
u∈U(x) π(u|x)Q(x, u, θ) = maxu∈U(x)Q(x, u, θ) at

all states x ∈ X . This is one class of smooth policies dependent on
θ through Q; we use this class in the examples in Sec. V. We use
value functions such as those described in Sec. III-A; e.g., if v is
the prospect theory value function defined in (2), then the parameter
vector is θ = (k−, k+, ζ−, ζ+, β).

A. Gradient–Based Approach
In this subsection, we show (Theorem 3) that gradient descent is

well-defined in the sense that a) the derivative is computable via a
contraction map and b) the update step is in the direction of steepest
descent. This result requires computing the derivative of Q∗(x, u, θ)
with respect to θ. In particular, our result applies to any smooth policy
class Π dependent on θ through Q. For instance, given policies of the
form (10), the derivative with respect to an element θj of θ of the loss
` depends on the policy πθ which, in turn, depends on Q∗(·, ·, θ).
Further, considering the log-based loss functions described above,
log(πθ(u|x)) = β(Q∗(x, u, θ) −

∑
u′∈U(x)Q

∗(x, u′, θ)) so that
we simply need to show that DθjQ

∗ can be computed. We do this
by showing it can be calculated almost everywhere on Θ by solving
fixed-point equations similar to the Bellman-optimality equations. We
require some assumptions on the value function v.
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Assumption 2: The value function v ∈ C1(Y ×Θ,R) satisfies the
following conditions: (i) v is strictly increasing in y and for each
θ ∈ Θ, there exists a ȳ such that v(ȳ, θ) = v0; (ii) for each θ ∈ Θ,
on any ball centered around the origin of finite radius, v is locally
Lipschitz in y with constant Ly(θ) and Lipschitz in θ on Θ with
constant Lθ .

Define Ly = maxθ Ly(θ) and L = maxθ{Ly(θ), Lθ}. As before,
let ṽ ≡ v − v0. The Q–update equation can be re-written as

Qt+1(xt, ut, θ) =
(
1− αt

α

)
Qt(xt, ut, θ)

+ αt
α (α(v(yt(θ), θ)− v0) +Qt(xt, ut, θ)) (11)

where

yt(θ) = rt + γmaxuQt(xt+1, u, θ)−Qt(xt, ut, θ)

is the temporal difference, α ∈ (0,min{L−1, 1}] and we have
suppressed the dependence of αt on (xt, ut). In addition, define the
map T such that

(TQ)(x, u, θ) = αEx′,w ṽ(y(θ), θ) +Q(x, u, θ)

where

y(θ) = r(x, u, w) + γmaxu′∈U(x′)Q(x′, u′, θ)−Q(x, u, θ).

By the results of the proceeding section, this map is a contraction in
Q for each fixed θ. Let Diṽ(·, ·) be the derivative of ṽ with respect
to the i–th argument where i = 1, 2.

Algorithm 1 Gradient-Based IRSRL

1: procedure IRSRL(D)
2: Initialize: θ ← θ0
3: while k < MAXITER & ‖`(θ)− `(θ−)‖ ≥ δ do
4: θ− ← θ
5: ηk ← LINESEARCH(`(θ−), Dθ`(θ−))
6: θ ← θ− − ηkDθ`(θ−)T

7: k ← k + 1

8: return θ

Theorem 3: Assume that v ∈ C1(Y × Θ,R) satisfies Assump-
tion 2 and that the reward r : X × U ×W → R is bounded almost
surely—i.e. |r| < M for M > 0. Let BK(0) be any ball with radius
K satisfying

max{|ṽ(M,θ)|,|ṽ(−M,θ)|}
1−γ < K min(θ,y(θ))∈Θ×IK D1ṽ(y(θ), θ).

(12)
Then the following statements hold:
(a) Q∗ is locally Lipschitz-continuous on BK(0) as a function of

θ—that is, for any (x, u) ∈ X × U , θ, θ′ ∈ Θ, |Q∗(x, u, θ) −
Q∗(x, u, θ′)| ≤ C‖θ − θ′‖ for some C > 0.

(b) Except on a set of measure zero, the gradient DθQ
∗(x, u, θ) ∈

BK(0) is given by the solution of the fixed–point equation

φθ(x, u) =αEx′,w[D2ṽ(y(θ), θ) +D1ṽ(y(θ), θ)

· (γφθ(x′, u∗x′)− φθ(x, u))] + φθ(x, u) (13)

where φθ : X × U → Rd and u∗x′ is an action that maximizes
Q(x′, u, θ).

The proof is provided in Appendix D. Theorem 3 gives us a
procedure—namely, a fixed–point equation which is a contraction—
to compute the derivative DθjQ

∗ so that, in turn, we can com-
pute the derivative of `(θ) with respect to θ. Hence, the gradient
method provided in Algorithm 1 for solving the inverse risk-sensitive
reinforcement learning problem is well formulated. Note that for
each fixed θ, condition (12) is the same as condition (7). Moreover,

Proposition 1 shows that for the `-prospect value functions and
functions v such that ε < v(y)−v(y′)

y−y′ , such a K must exist for any
choice of parameters and, hence, the result of Theorem 3 holds for
these functions.

Given that the gradient of Q∗ with respect to θ is computable,
the gradient-based approach in Algorithm 1 simply implements an
update scheme of the form θk+1 = θk − ηkgk where −gk(θk) =
−Dθ`(θk)T points in the direction of steepest descent. We also note
that, following [30] this method is amenable to letting gk be the
natural gradient. Indeed, let h(θ) = Hθ(Q) be a mapping from
the parameter space to the policy space. Then, gk = G†θDθ`(θk)T

be the natural gradient where Gθ = Dh(θ)Dh(θ)T is a pseudo-
Riemannian metric at θ induced by (d,Π, h) with d a metric on
Π [31, Thm. 1]. Since our intention is to find the best policy πθ
matching the empirical policy, this approach is beneficial as it allows
us to update θ by taking a step in the direction of steepest ascent on
the surface (π, `(π)).

V. EXAMPLES

We demonstrate the proposed approach on Grid World. While
the formulation of inverse risk-sensitive reinforcement learning is
amenable to learning β, we assume it is known for the purpose
of explicitly exploring the effects of changing the value function
parameters on the resulting policy. In all experiments, γ = 0.95,
β = 4, the objective is the negative log-likelihood of the data, and
the valuation function is induced by an acceptance level set defined
by a parameterized value function and acceptance level of zero. For
the prospect and `-prospect value functions, the reference point is
zero. These choices are aimed at further deconflating observations
of behavior—in terms of risk-sensitivity and loss-aversion—that
result from different choices of the value function parameters from
characteristics of the MDP or learning algorithm.

The Grid World instance is shown in Fig. 1a. The agent starts in
the blue box and aims to maximize their reward via the risk-sensitive
reinforcement learning procedure described in Sec. III over an infinite
time horizon. Every square in the grid represents a state, and the
action space is U = {N,NE,E, SE, S, SW,W,NW}. Each action
corresponds to a movement in the specified direction. The black and
green states are absorbing. In all the other states, the agent moves in
the direction specified by their action with probability 0.93 and in
any of the other seven directions with probability 0.01. To make the
grid finite, any action taking the agent out of the grid has probability
zero, and the other actions are re-weighted accordingly. Rewards in
the black and green states are −1 and +1, respectively. In the darker
gray states, the agent gets a reward of −0.1. In all other states, the
agent gets a reward of +0.1.

We conduct two types of experiments: A) learning the value
function of an agent with the correct model for the value function
(e.g., learning a prospect value function when the agent also has a
prospect value function); B) learning the value function of an agent
with the wrong model for the value function (e.g., learning an `–
prospect value function when the agent has a prospect value function).
Performance is measured via the total variation (TV) distance.

In Experiment A, we trained agents with various parameter combi-
nations of the prospect and `-prospect value functions. The resulting
policies of these agents are classified into five behavior profiles via
their maximum likelihood path: (Behavior 1) profile that is risk-
seeking on gains, (Behavior 2) profile that is risk neutral on gains
and losses (this is also the behavior corresponding to the non-
risk-sensitive reinforcement learning approach), and (Behaviors 3-5)
profiles that are increasingly risk averse on losses and increasingly
weigh losses more than gains. The parameters are given in Fig. 1b.
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(a) (b)

Fig. 1: (a) Grid World layout. (b) The maximum likelihood paths cor-
responding to the five behavior profiles of risk-sensitive policies with
various parameter combinations ({k−, k+, ζ−, ζ+}) for the prospect
and `-prospect value functions: Behavior 1: {0.1, 1.0, 0.5, 1.5}; Be-
havior 2: {1.0, 1.0, 1.0, 1.0}; Behavior 3: {1.0, 1.0, 1.1, 0.9}; Behav-
ior 4: {5.0, 1.0, 1.1, 0.8}; Behavior 5: {5.0, 1.0, 1.5, 0.7}.

Value Function Prospect `-prospect
Behavior Mean Variance Mean Variance

Behavior 1 1.9e-2 6.3e-4 1.3e-2 2.3e-4
Behavior 2 1.5e-2 2.0e-4 1.0e-2 9.6e-5
Behavior 3 2.0e-2 3.6e-4 1.1e-2 1.3e-4
Behavior 4 1.6e-2 2.0e-4 1.2e-2 1.4e-4
Behavior 5 4.7e-2 3.0e-3 1.0e-2 3.4e-4

(a) Experiment A: Learning with the correct model

Value Function Mean Variance
Prospect 1.5e-2 1.6e-4
`-prospect 1.5e-2 1.6e-4

(b) Experiment B: Learning with an incorrect model

TABLE I: The mean and variance of the TV distance between the
true policy and the policy under the learned value function.

We sampled 1,000 trajectories from the policies of these agents and
used the data in the inverse risk-sensitive reinforcement learning
framework. The learned value function is of the same type as that of
the agent. Due to the non-convexity of the loss, we use five randomly
generated initial parameter choices.

The results we report are associated with the value function that
achieves the minimum value of the objective. In Tab. Ia, we report the
mean and variance of the TV distance between the two policies across
all states. In all the cases the learned value functions produce policies
that correctly match the maximum likelihood path of the true agent.
The performance for learning a prospect value function is consistently
worse than learning an `-prospect function and requires significantly
more computation time. This is most likely due to the fact that the
prospect value function is not Lipschitz around the reference point.
Thus, we have no guarantees of differentiability of Q∗ with respect
to θ for the prospect value function.

Experiment B consists of learning different types of value functions
from the same dataset. The motivation for this experiment is to ensure
that the results and risk-profiles learned were consistent across the
choice of model. We generated a data set with 10,000 samples from
an agent with a prospect value function, and used it to learn prospect
and `-prospect value functions. The mean TV distance between the
policy of the true agent and the policies under the learned value
functions are shown in Tab. Ib. The true agent’s value function has
parameters {k−, k+, ζ−, ζ+} = {2.0, 1.0, 0.9, 0.7}—i.e., it is risk-
seeking in losses, risk-averse in gains, and loss averse. Again, the
learned value functions all have policies that replicated the maximum

likelihood behavior of the true agent. We note that the `-prospect and
prospect functions perform as well as each other on this data (likely
due to the fact that they have the same underlying shape), but the
`-prospect function showed none of the numerical issues that we
encountered with the prospect function. Further, learning with the `-
prospect function is markedly faster than with the prospect function.
Again, this is most likely due to the fact that the prospect function
is not locally Lipschitz continuous around the reference point.

VI. DISCUSSION

We present a gradient-based technique for learning risk-sensitive
decision-making models of agents operating in uncertain environ-
ments. Moreover, we introduce a Lipschitz variation of the prospect
value function, which retains the convex-concave structure of the
prospect theory value function while satisfying the assumptions of
the theorems we present on a bounded domain and possessing better
numerical properties. We demonstrate the algorithm’s performance
for agents based on several types of behavioral models on the Grid
World benchmark problem. Looking forward, there are a number
of interesting open questions regarding convergence of the gradient-
based procedure (perhaps using a multi-timescale stochastic approx-
imation technique), expanding the theory to handle multiple value
functions to tradeoff between different outcomes, and estimating the
reference point and acceptance level.

APPENDIX

A. Proof of Theorem 1
The proof of Theorem 1 relies on a fixed point theorem.
Theorem 4 ( [32, Thm. 2.2]): Let (X, d) be a complete metric

space and Br(y) = {x ∈ X| d(x, y) < r} be a ball of radius
r > 0 centered at y ∈ X . Let f : Br(y)→ X be a contraction map
with contraction constant h < 1. Further, assume that d(y, f(y)) <
r(1− h). Then, f has a unique fixed point in Br(y).

Proof: [Proof of Theorem 1.a.] The map T , defined by
(TQ)(x, u) = αEx′,w[ṽ(y(Q(x, u), x′))]+Q(x, u), is a contraction
with constant ᾱK = 1−α(1−γ)εK where εK = min{Dṽ(y)| y ∈
IK}, IK = [−M − 2K,M + 2K] and α ∈ (0,min{1, L−1}] with
L the Lipschitz constant of v on IK . Indeed, let y(Q(x, u), x′) =
r(x, u, w) + γmaxu′ Q(x′, u′) − Q(x, u) and define g(x′) =
maxu′ Q(x′, u′). For any Q ∈ BK(0) we note that the temporal
differences are bounded—in fact, y(Q(x, u), x′) ∈ IK = [−M −
2K,M + 2K]. For any y′, y ∈ IK , ṽ(y) − ṽ(y′) = ξ(y − y′) for
some ξ ∈ [εK , L] by the monotonicity assumption on v. Then, for
any Q1, Q2 ∈ BK(0),

(TQ1 − TQ2)(x, u)

= αEx′,w[ṽ(y(Q1(x, u), x′))− ṽ(y(Q2(x, u), x′))] +Q1(x, u)

−Q2(x, u)

= αEx′,w[ξx′,w(γg1(x′)− γg2(x′)−Q1(x, u) +Q2(x, u))]

+Q1(x, u)−Q2(x, u)

= αγEx′,w[ξx′,w(g1(x′)−g2(x′))] + (1− αEx′,w[ξx′,w])

· (Q1(x, u)−Q2(x, u)).

so that |(TQ1−TQ2)(x, u)| ≤ (1−α(1−γ)εK)‖Q1−Q2‖∞. We
claim that the constant ᾱK = 1 − α(1 − γ)εK < 1. Indeed, recall
that 0 < α ≤ min{1, L−1} so that if α = L−1, then ᾱK < 1 since
L = maxy∈IK Dṽ(y) and εK = miny∈IK Dṽ(y). On the other
hand, if α = 1, then 1 ≤ L−1 ≤ (εK)−1 so that εK ≤ 1 which, in
turn, implies that ᾱK < 1. If 0 < α < min{1, L−1}, then ᾱK < 1
follows trivially from the implications in the above two cases. Thus,
T is a contraction on BK(0).
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Proof: [Proof of Theorem 1.b.] Let K be chosen such that
max{|ṽ(M)|,|ṽ(−M)|}

1−γ < K miny∈IK Dṽ(y). (14)

The map T applied to the zero map, 0 ∈ BK(0), is strictly less
than K(1− ᾱK). Indeed, for any α ∈ (0,min{1, L−1}], ‖T (0)‖ ≤
αmax{|ṽ(M)|, |ṽ(−M)|} < (1−γ)KεKα since ṽ is increasing by
assumption. Since T is a contraction, combining the above with the
fact that (1−γ)KεKα = K(1−ᾱK), the assumptions of Theorem 4
hold and, hence there is a unique fixed point Q∗ ∈ BK(0).

B. Proof of Theorem 2
Proof: Following [33], let (i, a) index the state-action pairs in

X × U . Consider

Qt+1(i, a) = (1− αt(i,a)
α )Qt(i, a) +

αt(i,a)
α (TQt(i, a) + dt(i, a))

where dt(i, a) = α(ṽ(yt(i, a))−Ex′,w ṽ(yt(i, a))) is a random noise
term and αt is the learning rate such that αt(i, a) = 0 if Qt(i, a) is
not updated—i.e. αt(i, a) = 0 if 1{xt = i, ut = a} = 0. Let Ft =
{(Qk(i, a), αk(i, a))tk=0, (d`(i, a))t−1

`=0, (i, a) ∈ X × U}. Since we
have already shown the map T is a contraction, following [25], we
simply need to show that Ex′,w[dt|Ft] = 0 and Ex′,w[d2

t |Fk] ≤ A+
B‖Qt‖∞ for some constants A and B. Clearly, Ex′,w[dt(i)] = 0.
It is also the case that

Ex′,w[d2
t |Ft] ≤ α2Ex′,w[ṽ(yt)

2|Ft]− α2(Ex′,w[ṽ(yt)|Ft])2

≤ α2Ex′,w[ṽ(yt)
2|Ft].

Since the rewards are bounded by M , |yt| ≤ M + 2‖Qt‖∞.
Moreover, ṽ is Lipschitz on IK so that |ṽ(yt)| ≤ |ṽ(0)| + L(M +
2‖Qt‖∞). Applying the triangle inequality, we get that (|ṽ(0)| +
L(M + 2‖Qt‖∞))2 ≤ 2(|ṽ(0)|+ LM)2 + 8L2‖Qt‖2∞ so that

α2Ex′,w[ṽ(yt)
2|Ft] ≤ 2α2(|ṽ(0)|+ 2M)2 + 8α2L2‖Qt‖∞.

Note this is stronger than [25, Assum. A.3]. Since T is a contrac-
tion, we can construct a local Lyapunov function: V (Qt(x, u)) =
1
2‖Qt(x, u)−Q∗(x, u)‖22 with

V̇ (Qt(x, u)) = 2(Qt(x, u)−Q∗(x, u))(TQt(x, u)− TQ∗(x, u))

− 2‖Qt(x, u)−Q∗(x, u)‖2

< 2(α− 1)‖Qt(x, u)−Q∗(x, u)‖2 < 0.

Hence, applying [25, Cor. 1.1], we get convergence with high
probability given some ε > 0—i.e. suppressing the dependence on
(i, a) ∈ X × U , there exists constants λ,C1, C2 > 0 such that

Pr(‖Qt −Q∗‖ ≤ ε, ∀t ≥ T + 1) ≥ 1− δ(ε)

where, by letting βn = max0≤k≤n−1{exp(−λ
∑n−1
i=k+1 αi)αk},

δ(ε) =

® ∑∞
n=0 C1e

−C2
√
ε/
√
α −

∑∞
n=0 C1e

−C2ε
2/βn , ε ≤ 1∑∞

n=0 C1e
−C2

√
ε/
√
αt −

∑∞
n=0 C1e

−C2ε/βn , ε > 1

We refer the reader to [25, Cor. 1.1] for a more explicit characteri-
zation of the constants.

C. Proof of Proposition 1
Proof: [Proof of Proposition 1.a] Suppose v satisfies Assumption

1 and that for some ε > 0, ε < v(y)−v(y′)
y−y′ for all y 6= y′. Then there

exists a value of K, say K̄, such that (8) holds for all K > K̄. Indeed
since minK>0 εK > ε, for all K satisfying max{|ṽ(M)|,|ṽ(−M)|}

ε(1−γ)
<

K, (8) must hold.
Proof: [Proof of Proposition 1.b] For ζ+, ζ− ≥ 1 and

any choice of k−, k+, minK>0 εK > ε > 0 where ε =

min{limy↑0Dṽ(y), limy↓0Dṽ(y)}. Therefore, with ζ+, ζ− ≥ 1,
for any K such that max{|ṽ(M)|,|ṽ(−M)|}

ε(1−γ)
< K, (8) must hold. For

the case when either ζ+ < 1 or ζ− < 1 or both, we note that
miny∈IK Dṽ(y) = min{miny∈IK Dṽ(y), ε}. so that we need only
show that for ζ+ < 1, there exists a K such that

max{|ṽ(M)|,|ṽ(−M)|}
1−γ < KDṽ(2K +M) (15)

and, similarly for ζ− < 1, there exists a K such that the left-hand
side of (15) is less than KDṽ(−2K−M). Without loss of generality,
we show (15) must hold for ζ+ < 1 and reference point y0 = 0 (the
proof for ζ− < 1 follows an exactly analogous argument). Plugging
Dṽ(2K+M) = k+ζ+(2K+M −y0 + ε)ζ+−1 in and rearranging,
we simply need to show that there exists a K such that

max{|ṽ(M)|,|ṽ(−M)|}
(1−γ)ξ+k+

< K(2K +M − y0 + ε)ξ+−1

Since the right-hand side is a function of K that is zero at K = 0
and approaches infinity as K →∞, and the left-hand side is a finite
constant, there is some K̄ such that for all K > K̄, the above holds.
Thus, for the `-prospect value function, our assumptions are satisfied
and there always exists a value of K to choose in Theorem 1.b.

D. Proof of Theorem 3

Let U be a Banach space and U∗ its dual. The Fréchet subdifferen-
tial of f : U → R at u ∈ U , denoted by ∂f(u) is the set of u∗ ∈ U∗
such that limh→0 infh6=0 ‖h‖−1 (f(u+ h)− f(u)− 〈u∗, u〉) ≥ 0.

Proposition 2 ( [31], [34]): For a finite family (fi)i∈I of real-
valued functions (where I is a finite index set) defined on U , let
f(u) = maxi∈I fi(u). If u∗ ∈ ∂fi(u) and fi(u) = f(u), then
u∗ ∈ ∂f(u).

Proposition 3 ( [31], [35]): Consider (fn)n∈N, a pointwise con-
vergent sequence to f such that fn : U → R. Let u ∈ U ,
u∗n ∈ ∂fn(u) ⊂ U∗. Suppose that (u∗n)n∈N is weak∗–convergent to
u∗ and is bounded, and that at u, for any ε > 0, ∃N > 0, δ > 0
such that for any n ≥ N , h ∈ Bδ(0), a δ–ball around 0 ∈ U ,
fn(u+ h) ≥ fn(u) + 〈u∗n, h〉 − ε‖h‖. Then u∗ ∈ ∂f(u).

Proof: [Proof of Theorem 3.a.] Let Q0(x, u, θ) ≡ 0. Then it is
trivial that Q0(x, u, θ) is locally Lipschitz in θ on Θ. Supposing that
Qt(x, u, θ) is Lt–locally Lipschitz in θ, then we need to show that
TQt(x, u, θ) is locally Lipschitz. Since ṽ ≡ v − v0, it also satisfies
Assumption 2. Let Ly = max{Ly(θ)|θ ∈ Θ} and define gt(x, θ) =
maxu′ Qt(x, u

′, θ). Since Qt is assumed Lipschitz with constant Lt,
so is gt. Let ∆TQt(θ, θ

′) = TQt(θ)− TQt(θ′) and ∆Qt(θ, θ
′) =

Qt(θ)−Qt(θ′). Suppressing the dependence on (x, u),

∆TQt(θ, θ
′) = αEx′,w[ṽ(y(θ), θ)− ṽ(y(θ′), θ) + ṽ(y(θ′), θ)

− ṽ(y(θ′), θ′)] + ∆Qt(θ, θ
′).

Let ε̃K = min(θ,y(θ))∈Θ×IK D1ṽ(y(θ), θ). Due to the monotonic-
ity of ṽ in y, we know that for all y1, y2 there exists ξ ∈ [ε̃K , Ly]
such that ṽ(y1, θ)− ṽ(y2, θ) = ξ(y1 − y2). Hence,

∆TQt(θ, θ
′)

= αEx′,w
[
ξx′,w(y(θ)− y(θ′)) + ṽ(y(θ′), θ)− ṽ(y(θ′), θ′)

]
+ ∆Qt(θ, θ

′)

= αγEx′,w[ξx′,w(gt(x
′, θ)− gt(x′, θ′))]− αEx′,w[ξx′,w]

·∆Qt(θ, θ′) + αEx′,w[ṽ(y(θ′), θ)− ṽ(y(θ′), θ′)] + ∆Qt(θ, θ
′)

= (1− αEx′,w[ξx′,w])∆Qt(θ, θ
′) + αγEx′,w[ξx′,w(gt(x

′, θ)

− gt(x′, θ′))] + αEx′,w[ṽ(y(θ′), θ)− ṽ(y(θ′), θ′)]
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so that

‖∆TQt(θ, θ′)‖ ≤ ((1− α(1− γ)Ex′,w[ξx′,w])Lt + αLθ)‖θ − θ′‖
≤ ((1− α(1− γ)ε̃K)Lt + αLθ)‖θ − θ′‖.

Since ᾱK = 1−α(1−γ)ε̃K , TQt(·, ·, θ) is Lt+1–locally Lipschitz
with Lt+1 = ᾱLt + αLθ . With L0 = 0, by iterating, we get that
Lt+1 = (ᾱt + · · · + ᾱ + 1)αLθ . As stated in Sec. IV-A, T is a
contraction so that TnQ0 → Q∗θ = Q∗(·, ·, θ) as n → ∞. Hence,
by the above, Q∗θ is αLθ/(1− ᾱK)–Lipschitz continuous.

Proof: [Proof of Theorem 3.b.] Consider a fixed θ ∈ Θ ⊂
Rd. Since by part (a), Q∗θ is locally Lipschitz in θ, Rademacher’s
Theorem (see, e.g., [36, Thm. 3.1]) tells us it is differentiable almost
everywhere (except a set of Lebesgue measure zero). We now show
that the operator S acting on the space of functions φθ : X×U → Rd
and defined by (Sφθ)(x, u) = αEx′,w[D2ṽ(y(θ), θ)+D1ṽ(y(θ), θ)

· (γφθ(x′, u∗x′)− φθ(x, u))] + φθ(x, u) where u∗x′ is an action that
maximizes Q(x′, u, θ) is a contraction since, by Proposition 2, a
subdifferential of the pointwise maximum of functions is equal to
the subdifferential of one of the one that achieves the maximum.
Indeed,

(Sφθ−Sφ′θ)(x, u)

= αEx′,w[D1ṽ(y(θ), θ)
(
γ(φθ(x

′, u∗x′)− φ
′
θ(x
′, u∗x′))

− (φθ(x, u)− φ′θ(x, u))
)
] + φθ(x, u)− φ′θ(x, u)

≤ (1− α(1− γ)Ex′,w[D1ṽ(y(θ), θ)])‖φθ − φ′θ‖∞.

Since we have fixed θ, let ε̃K,θ = miny∈IK D1ṽ(y, θ). Then, by As-
sumption 1, ‖(Sφθ−Sφ′θ)(x, u)‖ ≤ (1−α(1−γ)ε̃K,θ)‖φθ−φ′θ‖∞.
Note that ᾱK = 1−α(1−γ)ε̃K,θ < 1 for the same reasons as given
in the proof of Theorem 1 since α ∈ (0,min{1, L−1}]. Note that S
operates on each of the d components of θ separately and hence, it is
a contraction when restricted to each individual component. Then, for
each θ, S has a unique fixed point. In particular, consider the sequence
φθ,k such that φθ,0 = 0 and φθ,k+1 = Sφθ,k. For large enough k,
φθ,k+1 = Sφθ,k. Applying the contraction mapping theorem (see,
e.g., [37, Thm. 3.18]) we get that limk→∞ Skφ0 converges to a
unique fixed point.

Applying Proposition 2 by induction, φθ,k(x, u) ∈ ∂θQk(x, u, θ).
Indeed, it is obvious for k = 0. Suppose it holds for
k—i.e. φθ,k(x, u) ∈ ∂θQk(x, u, θ). Then, φθ,k+1(x, u) =
Sφθ,k(x, u) ∈ S(∂θQk(x, u, θ)) and S(∂θQk(x, u, θ)) ⊂
∂θ(TQk) = ∂θQk+1(x, u, θ) by the definition of the maps and
subdifferentiation. Hence, φθ,k+1(x, u) ∈ ∂θQk+1(x, u, θ). By
Proposition 3, the limit is a subdifferential of Q∗θ since ṽ is Lipschitz
on Y and Θ and the derivatives of ṽ are uniformly bounded. By
part (a), Q∗θ is locally Lipschitz in θ so that it is differentiable
almost everywhere [36, Thm. 3.1]. Since Q∗θ is differentiable, its
subdifferential is its derivative.
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