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Abstract

The increasingly tight coupling between humans and system operations in
domains ranging from intelligent infrastructure to e-commerce has led to
a challenging new class of problems founded on a well-established area of
research: incentive design. There is a clear need for a new tool kit for de-
signing mechanisms that help coordinate self-interested parties while avoid-
ing unexpected outcomes in the face of information asymmetries, exogenous
uncertainties from dynamic environments, and resource constraints. This
article provides a perspective on the current state of the art in incentive de-
sign from three core communities—economics, control theory, andmachine
learning—and highlights interesting avenues for future research at the in-
terface of these domains.
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1. INTRODUCTION

In recent years, technological advancements have enabled cost-effective deployment of sensors
and actuators at scale. This has, in turn, led to the promise of improved performance, efficiency,
and reliability in almost all of today’s modern systems. Moreover, enabled by such technologies,
humans are able to make real-time decisions that dynamically affect the performance of these
systems.Thus, as these new technologies reach further, the decisions, interactions, andmotivations
of human agents that increasingly influence the operations and dynamics of engineered systems
need to be considered an integral part of the design and day-to-day operation of such systems.

The following now-commonplace examples are demonstrative not only of widespread sensor–
actuator deployment but also of issues that may arise when stakeholder motivations are not prop-
erly accounted for:

� Smart grids: Many energy-efficiency programs run by electric utility companies use data
collected from households to forecast future energy demand, and some programs issue re-
wards for curtailing or deferring energy consumption at peak times. However, these incen-
tive programs may inadvertently motivate users to use energy-storage systems (e.g., batter-
ies) in inefficient ways, and these behaviors are often not observable by the system operators.
Furthermore, users can often receive monetary gains by strategically misrepresenting their
usage patterns (e.g., baseline inflation) and preferences to the utility companies, and many
of the incentive programs in deployment today are not robust to strategic data manipulation
(see 1 and the references therein).

� Mobility markets: Disruptive ride-sharing companies rapidly gain market share by provid-
ing cheap and convenient rides to users on short notice. They have been able to do so by
using smart-device applications to allocate portions of the transportation infrastructure that
were previously underutilized. Additionally, these companies often issue incentives to both
sides of the market. On the passenger side, they offer incentives to encourage increased
adoption, more frequent use, and ahead-of-time announcement of travel plans to help im-
prove resource allocation. Similarly, on the driver side, they offer a variety of monetary in-
centives for a number of reasons, including predictable supply,microscopic andmacroscopic
redistribution of supply, and more frequent use. However, these allocation algorithms need
to account for the utilities and motivations (which are private information) of the drivers
and passengers to ensure proper operation. Ride-sharing platforms can also promote dis-
criminatory behavior toward socioeconomically disadvantaged groups (2). Furthermore, a
malicious actor can manipulate the distribution of transportation resources throughout an
area using dishonest requests; for example, Yuan et al. (3) analyzed the effects of denial-of-
service attacks on mobility-as-a-service systems and showed that spoofed ride requests can
arbitrarily deplete supply.

� Crowdsourcing: Due to recent advancements,machine learning algorithms require increas-
ingly large data sets. Deep learning is a prominent example; given a sufficiently large and
representative data set, deep learning can achieve very low test error without any prior
knowledge of the problem space. However, this requires large amounts of data, and to
achieve data sets of sufficient scale, much of the data collection is crowdsourced. These
crowdsourcing mechanisms do not always incentivize accurate data collection; data sources
may not feel motivated to exert sufficient effort to collect quality data, and, furthermore,
some malicious data sources may intentionally poison data to induce poor results in the al-
gorithms. Recent research has analyzed the impact of incorrectly aligning incentives of the
data sources (4–7) as well as the sensitivity of many modern algorithms to perturbations in
a small fraction of the data set (see 8 and the references therein).
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A common thread throughout these examples is that human agents have a significant impact
on the output of systems with which they interact. For instance, in traditional infrastructure sys-
tems, humans were passive participants, consuming resources with no real impact on the exchange
of goods and services. But in intelligent infrastructure systems, such as smart grids and intel-
ligent transportation systems, humans are active participants, with the ability—through intelli-
gent augmentation or through now-commonplace cyber-physical systems and Internet-of-things
technologies—to make decisions in real time that influence market and system operations.

The design of such human-in-the-loop systems requires a careful analysis of the objectives and
incentives of the relevant agents not only to promote efficiency but also to avoid unintended con-
sequences. While on the surface this appears to be a long-standing and perhaps obvious problem
space, there are new challenges due to the tight coupling between humans, system operations, and
market exchanges; the multi-timescale nature of decisions and interactions; and the increasing
level of automation that has led to complex, mixed-autonomy environments in which mission-
critical tasks must be executed. Furthermore, new technologies and their supporting market struc-
tures are being realized, having been translated from prototypes to production while bypassing the
development of robust mechanisms to certify their performance and guarantee avoidance of unex-
pected outcomes. An example is the push for and testing of autonomous vehicles; many companies
are attempting to advance the frontier in the autonomous vehicle space, and there are numerous
examples of partially and fully autonomous vehicles on the road despite the lack of guarantees,
even probabilistic, for the algorithms and automation they employ.

Returning to the examples above, we note that they each illustrate how a misalignment of in-
centives can lead to inefficiencies and even cause unexpected or undesirable results. Thus, these
new technology-enabled markets and application domains drive the need for an understanding of
how to design mechanisms that (a) account for the behavior of human agents, such as competition
between users and adversarial decision-making; (b) maintain desirable economic properties (e.g.,
incentive compatibility, individual rationality, a balanced budget, and social-welfare maximiza-
tion); (c) are able to operate in dynamic, nonstationary environments, which include both physical
dynamics and coupling in various input distributions; (d) are based on limited prior knowledge
yet have performance guarantees; and (e) have explainable and interpretable models that support
generalization and policy or regulation design.

We believe there is a gap between the state-of-the-art theoretical and computational tools and
those needed not only to analyze these systems but also to design interventions for shaping them.
However, in terms of the problem of incentive design—the design of mechanisms for shaping the
behavior of autonomous agents—in these systems, there is a large body of work that we can draw
on to build the requisite tool kit.

1.1. Overview of the Current State of the Art

Historically, the problem of incentive design has been of interest primarily to three communities:
economics, control theory, and machine learning. Each of these fields has seen promising devel-
opments that on their own are insufficient. The goal of this article is to provide a perspective on
challenges for incentive design in human-in-the-loop systems; motivate the development of a new
set of tools for addressing them by highlighting existing approaches, pitfalls and all, that have tra-
ditionally been siloed within each of the fields of economics, control theory, andmachine learning;
and describe the open problems at their interface. With the realization of new market structures
for resource consumption and production in previously stagnated infrastructure systems and the
increasing availability of data and computational resources, now is the time to merge these fields
in a deeper, more meaningful way.
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Economists have long studied incentive design, and their approaches have focused largely on
designing incentives in static environments with significant a priori information and are heavily
model based. For instance, prior information typically includes a distribution across preference
types of users or an assumption that the utilities of users belong to a relatively specific class of
functions, such as monotonic, concave functions. While the model-based approach allows for in-
terpretation and often generalization, scalability remains a challenge.Moreover, these approaches
have led to the development of economicallymotivated constraints, such as incentive compatibility
and individual rationality; the former ensures truthful reporting, and the latter ensures voluntary
participation. These approaches usually have highly interpretable models that make them useful
for policy or regulatory design.

Similarly, the control theory community has developed several approaches to the design of in-
centives that address some of the desiderata listed above. A notable aspect of these approaches is
that they can often account for dynamics. Yet they often fail to consider the economically moti-
vated constraints mentioned above. Moreover, by and large, these approaches presuppose a sub-
stantial amount of prior knowledge and structure: The dynamics are often either known or given
in a parameterized form, it is commonly assumed that distributions on exogenous uncertainties
are known a priori, and the system designer typically has access to reliable information that cannot
be manipulated by other agents. This last item in particular allows the designer to sidestep issues
of moral hazard (i.e., lack of visibility into the actions of agents) and adverse selection (i.e., lack of
visibility into preferences of agents), which often arise in practical applications. These approaches
are generally very model based, and as such, they also benefit from being highly interpretable.

The machine learning community has studied similar problems using online learning meth-
ods. These approaches can operate with no prior knowledge and provide algorithms that are of-
ten completely model agnostic. Despite their optimality when very little underlying structure is
assumed, the results and theoretical performance guarantees, which come in the form of regret
bounds or worst-case competitive ratios, are often very conservative. Indeed, in many of the appli-
cations of interest, systems are interacting with human users, and humans are neither completely
adversarial in general nor completely random (i.e., stochastic). Hence, when either a stochastic
or adversarial environment is assumed, as in many machine learning approaches, the theoretically
prescribed number of samples required to determine optimal actions is too large to achieve satis-
factory performance in practice and is not identifying the true underlying model. Moreover, the
approaches tend to assume statistically independent and identically distributed (i.i.d.) observations
and stationary environments, both of which are far removed from reality.

More generally, each of these domains has individually developed techniques for addressing the
incentive design problem by making assumptions structured to allow the application of the tools
of that field.However, in many practical settings, these assumptions fail to hold, and this is increas-
ingly the case in the human-in-the-loop systems and emergingmarkets by which we aremotivated.
Nonetheless, a marriage of these different approaches may lead to new advancements in the theory
of incentive design, leading to practically relevant analysis tools and certifiable algorithms.

1.2. Organization

The remainder of this article is organized as follows. In Section 2, we provide a high-level descrip-
tion of incentive design problems, introduced with a small amount of mathematical formalism as
needed.The purpose of this section is to give the reader a formal sense of what an incentive design
problem is and what its features are.

In Section 3, we provide an overview of the existing work that treats the incentive design
problem in the economics, control theory, and machine learning communities. In Section 3.1,
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we describe at a high level the foundation of the incentive design problem and concepts salient to
the approaches taken in engineering and computer science as they are formulated within the eco-
nomics community. Building on this, in Sections 3.2 and 3.3 we introduce and describe techniques
applied by the engineering and computer science communities, focusing on control theory and
machine learning, respectively. Specifically, we shed light on the problems each of the communi-
ties has addressed and point out how they complement one another in an attempt to motivate new
work at the intersection of these domains. Throughout Section 3, we introduce examples based
on the three highlighted examples introduced above in order to illustrate different features of the
incentive design problem handled by each domain. This section also exposes parts of the incentive
design problem not treated by existing techniques in each of the three domains, while also fore-
shadowing that a combination of approaches from the three domains may lead to advancements
in the state of the art.

Such an overview then leads naturally into in Section 4, in which we discuss open problems
and challenges for which developing tools at the intersection of these domains may lead to solu-
tions. We discuss our perspective on how these approaches can be reconciled to address the new
problems of incentive design with desirable economic properties in dynamic settings with limited
information. Finally, in Section 5, we make concluding remarks.

2. A FORMAL INTRODUCTION TO INCENTIVE DESIGN

We restrict our commentary to a special class of incentive design problems that has a rich history
in three core domains: economics, control theory, and machine learning. Specifically, we focus our
attention on so-called principal–agent problems (9), a class of incentive design problems in which
there are two types of participants: the principal and the agent. Before diving into the review of
incentive design as it has been studied in the three domainsmentioned,we provide a brief overview
of the mathematical formalism used in the remaining sections.

We use the notation JP :U ×V → R for the principal’s utility and JA :U ×V → R for the
agent’s utility, whereU andV are the action spaces of the agent and principal, respectively. There
may be more than one principal and more than one agent.

As an example, consider the mobility market described in Section 1. This market could be
abstracted in such a way that the ride-sharing platform is the principal, and there may be many
competing platforms and hencemultiple principals. A platform’s users (i.e., passengers and drivers)
are agents. The ride-sharing platform wants to maximize revenue—say, JP—which is a function of
how users interact with the platform. That is, passengers decide when and how often to solicit a
ride, and drivers decide when and how often to work for the platform by accepting fares. All such
possible actions form the setU . One way to maximize revenue via increasing user participation is
to offer incentives to the two user groups. On the driver side, for example, such incentives might
be correspondences γ that return a value v ∈ V for a weekly bonus as a function of the number
of fares—say, u—accepted during the week. The platform must decide the structure of γ . It does
so by noting that given γ :U → V , users each have a utility JA[u, γ (u)] that associates a value
with possible actionsU , which determines their level of participation. The platform then aims to
design γ so as to induce a particular behavior on the part of the agents—that is, encourage each
of them through the incentive γ to choose an action u that maximizes the platform’s utility JP. In
essence, the platform can influence the behavior of the users through γ .

2.1. Formalism

As illustrated in this example, the agent’s and principal’s utilities are coupled since both are func-
tions of pairs (u, v) ∈U ×V , and thus there is a game between the principal and agent. However,
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there is a specific order of play: The principal announces a mapping γ :U → V of the agent’s
action space into the principal’s action space, after which an agent selects an action in response
to the announced mechanism. Formally, γ is the incentive mapping, and as noted, the principal’s
goal is to design γ to induce behaviors that maximize its utility JP.

To formalize the incentive design problem that the principal faces, there are often restrictions
on the structure of γ . For example, consider a demand-response scenario in which the principal
is an electric utility company and the agent is an energy consumer. Due to regulatory mandates, it
is likely that the structure of incentives that the electric utility company can offer is prespecified
or the value capped. We use the notation � = {γ :U → V} for the admissible set of such map-
pings from which the principal can choose. Following the example, the mappings in � may have a
particular structure—for example, � may be defined to be the set of continuous linear maps with
a specified upper and lower bound, and as noted, it may be practically motivated, as in a tariff
structure imposed by regulation.

The order of events is as follows: The principal designs γ knowing the agent has utility JA. It
then announces γ , after which the agent responds by selecting u ∈ argmax JA[u, γ (u)]. In particu-
lar, supposing the agent is a rational decision maker, given an announced γ ∈ �, the agent aims to
select an action that maximizes their utility—that is, u∗(γ ) ∈ argmaxu∈U JA[u, γ (u)], where we de-
note the dependence of u∗ on γ . In this setting, if the principal is also a rational, utility-maximizing
decision maker, then its goal is to choose γ ∈ � such that the agent chooses an action that maxi-
mizes the principal’s utility—that is, the principal seeks to find γ such that γ (ud) = vd and ud = u∗,
where (ud, vd) ∈ argmax JP(u, v). This is to say that the principal wants to incentivize the agent to
play according to what is best for the principal. In this way, γ realigns the preferences of the agent
with those of the principal.

Although there is a misalignment of objectives between the principal and the agent, if there
exists a γ such that γ (ud) = vd and ud is a maximizer of JA[u, γ (u)], then both the principal and
the agent are doing what is in their best interest. The agent is compensated via γ to play ud and
γ (ud) = vd, ensuring that the principal’s utility is maximized.

2.2. Challenges

Finding such a mapping is not as simple as it may seem since, in practice, there are information
asymmetries between the principal and the agent. That is, in reality, the principal and the agent
make their decisions based on some information set that is available to them. For instance, return-
ing to the ride-sharing example, the platform may not precisely know the drivers’ or passengers’
utilities JA. It is fairly intuitive that how individuals value different features that would affect their
utility, such as time–money trade-offs, would not be publicly known. In fact, making things even
more challenging, the users themselves may be unaware of the precise representation of JA and
may be learning their valuation or preferences for services over time. Analogously, platform users
do not have clear insight into the motivations of the platform. The information that is available
to the platform and users alike plays a role in how they make decisions. In Section 3, we formalize
how such challenges are treated by the economics, engineering, and computer science approaches
to incentive design, and we specifically note in that section and Section 4 that several interesting
and practically relevant questions remain open.

In particular, how this information set is conceived and mathematically modeled is a large part
of what distinguishes the different approaches taken in the domains of economics, control theory,
and machine learning. In the treatment of information asymmetries, different communities start
by making some assumptions about the abstraction of the partial information (e.g., encoded in
a prior distribution or revealed over time through sampling), which then inform the approach
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that is taken. Partial information can take many forms depending on what is observable by the
principal and the agent and when it is revealed to them, and the treatment of these informational
asymmetries varies from field to field. As we allude to in Section 4, however, there are ample
research opportunities in combining them to derive theoretically sound and practicallymeaningful
solutions to the class of incentive design problems for human-in-the-loop systems.

Beyond information asymmetries, other features may arise that bring the problem formulation
closer to reality while making solutions more elusive. For instance, the principal and the agent may
also face constraints due to the physical system or environment in which they operate, the market
structure that constrains their economic exchanges, or even other economic considerations—for
example, ensuring voluntary participation (i.e., agents do not opt for alternative services) or truth-
fulness (i.e., agents respond in accordance with their true preferences), concepts we formalize in
Section 3.1. It also may be the case that the incentive design problem occurs repeatedly in time or
is in fact dynamic, where the actions are time dependent and the state of the environment evolves
in time. Again, how these features are formalized and treated often depends on the domain ap-
plication and the community. In the next section, we describe such approaches with the goal of
highlighting both benefits and detriments and suggesting that a merger of domains may lead to
new and interesting solution approaches.

3. APPROACHES TO INCENTIVE DESIGN

In the following sections on each of the core areas (economics, control theory, and machine learn-
ing), we introduce features as they arise in the treatment of the incentive design problem.We de-
scribe at a high level the problems each of the communities has addressed and point out how they
complement one another in an attempt to motivate new work at the intersection of these domains.
The large number of works in these fields means that we cannot cover all of them in this short per-
spective, and our approach is therefore to highlight fundamental contributions from these domains
that apply to the types of systems that we are interested in—for example, human-in-the-loop sys-
tems ranging from intelligent infrastructure to e-commerce—and to point the interested reader
to relevant texts that summarize or otherwise cover large portions of the work in each section.

Specifically, from economics, we focus on the classical treatment of information asymmetries.
The approach from economics, as the first community to formalize the incentive design problem,
lays out the conceptual building blocks on which the other approaches are founded. Hence, the
section on economics provides a cursory introduction to the key concepts, and the sections that
follow refer back to these concepts.

From control theory,we focus on dynamics and the introduction of auxiliary state variables that
encode information about the evolution of the environment as it depends on agent choices. From
machine learning, we focus on adaptation and online learning. In economics and control theory,
models are key and shape the flavor of a large portion of the results, while in machine learning,
the approaches are largely model agnostic, enabling scalability. Bringing these domains closer
together by leveraging their successes is a great opportunity for future research, as we highlight
in Section 4.

In each section, we provide at least one running example, accompanied by several smaller ex-
amples, to guide the reader through the material. These examples align with the three examples
introduced in Section 1.

3.1. Economics

The class of problems outlined in Section 2 was first studied by economists as a mathematical
formalism for understanding and designing contracts between differently invested parties, each
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potentially possessing some private information. The information asymmetry between the two
entities is really the crux of these principal–agent problems. As we will see, the strategic decision-
making of agents in these classical settings can cause certain efficient and desirable outcomes to
be unattainable.

The economics community has produced a significant body of work on the issue of asymmetric
information and on the class of incentive design problems we described at a high level in the
preceding section, so much so that it is impossible to review it all. We point the reader to useful
textbooks (9, 10), including one from a control perspective (11), for more information on this
topic.

In this section,we review the specific approaches, assumptions, and flavor of results for the con-
ceptualization of two core information asymmetry representations, adverse selection and moral
hazard, and their treatment via screening and monitoring, respectively. The purpose of selecting
the particular approaches we discuss is that they complement approaches taken in control theory
and machine learning, which we discuss in the sections that follow, and we believe that the par-
ticular approaches give insight into the challenging problems that remain open (see Section 4) in
the development of a broader systems theory for human-in-the-loop systems at scale.

To facilitate the introduction of core concepts, let us begin with an illustrative example. Nu-
merous works have applied economics techniques to the design of incentives. One engineering
application where there has been significant crossover of economics approaches is in the energy
systems area.

Example 1 (demand response). In demand-response programs, an energy utility com-
pany issues incentives to energy consumers to change their energy consumption patterns.
In this setting, the energy utility company is the principal and the energy consumer is
the agent. The action u ∈U chosen by the agent is the energy consumption, and the
incentive program—designed by the utility company to reward the consumer for timely
curtailment—is denoted by γ ∈ �.

In this case, if a user’s energy consumption profile is u, then the utility company gives
incentive γ (u) = v ∈ V to the user—that is, v is the realized reward for the behavior u.
This may come in the form of cash-back rewards, raffled prizes, or discounted energy rates.
The value of this incentive to the consumer is captured in the energy consumer’s utility,
JA[u, γ (u)],whichmodels their satisfaction with the energy consumption patterns associated
with u, and the trade-off when the offered incentive is γ (u). Put another way, under this
model, when JA[u1, γ (u1)] = JA[u2, γ (u2)], the energy consumer is indifferent to whether
they receive incentive v1 = γ (u1) for energy consumption u1 or incentive v2 = γ (u2) for
energy consumption u2.

Analogously, the utility company’s utility, JP(u, v), models the operational costs of pro-
viding u to the energy consumer, as well as the cost of offering incentive γ (u) = v. These
incentives γ are often chosen to induce a consumption u with more energy-efficient behav-
iors or to curtail or shift some energy demand from peak hours to off-peak hours.

In practice, information asymmetries mean that the design of demand-response pro-
grams is challenging. The first information asymmetry that arises is the principal’s lack
of knowledge of JA. In this example, the utility company does not know the consumption
preferences of the consumer a priori. For example, does the consumer work from home?
Do they have a medical condition that requires the temperature of the house to be higher
than normal? What energy-consuming devices does the consumer own? Are they particu-
larly environmentally conscious and hence open to extreme curtailment? Another informa-
tion asymmetry that may arise, and is in fact common in many developing countries, is the
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observation of u: The consumer may spoof their energy signal in an attempt to pay less (12,
13, and the references therein).

In many practical demand-response programs, the utility company uses the historical
energy consumption as a baseline and then issues incentives during, for example, peak times.
The baseline is used to determine the value of the incentive, meaning users are paid based
on how much they curtail relative to their baseline. In these situations, energy consumers
can use their private knowledge of JA to their advantage. For instance, an energy consumer
may artificially inflate their baseline just prior to a demand-response program event in order
to receive larger payouts under the program. Examples of this behavior have been noted in
practice (see 1 and the references therein). Ideally, the utility company would like to design
incentive-based demand-response programs that are robust to strategic manipulation.

As illustrated in the above example, market failures—such as the incentive to artificially inflate
a baseline—due to information asymmetries can broadly fall into two categories: adverse selection
andmoral hazard. In the example, the utility company’s lack of knowledge of JA leads to the former,
while the lack of precise knowledge of consumption u due the agent’s ability to lie leads to the latter.
Generally speaking, adverse selection arises when the preferences of the agent are not known to
the principal—that is, the principal does not have full knowledge of JA. Moral hazard arises if JA
is known but the principal is unable to observe the action u ∈U chosen by the agent. These two
issues and the information asymmetry scenarios under which they arise are key in categorizing
inefficiencies that result from problems of incentive design and the approach that is taken.Hence,
we dedicate the remainder of this section to formalizing these two issues and then conclude with
a short description of the limitations of a purely economic approach and desiderata for alternative
approaches that build on the base economic formulation.

3.1.1. Adverse selection. As noted, adverse selection arises precisely in situations where the
principal is unable to identify the preferences of the agent. For example, as pointed out in the
previous section, within the class of problems we consider this could be realized as the agent’s util-
ity being dependent on some parameter θ ∈ � representing the agent’s type—that is, JA(u, v; θ ),
where we use the notation JA(·, ·; θ ) to indicate that JA is parameterized by θ . The agent’s type θ

can abstractly encode the agent’s preferences or even their internal state, and θ is private informa-
tion. Adverse selection arises when the type is unknown a priori to the principal.

One of the earliest and most famous works on the topic was the 1970 paper “The Market for
‘Lemons”’ by George Akerlof (14), which considers the economic consequences when a used-
car buyer cannot distinguish between a good used car and a lemon. In particular, it identifies
conditions in which no used-car sales will occur and the market will shut down. This market
shutdown can occur even when there are good used cars that sellers are willing to sell to buyers at
mutually beneficial prices. Adverse selection has been extensively studied since this seminal work
(see, e.g., 9, 10, 15–17, and the references therein).

Referring back to Example 1, as in “The Market for ‘Lemons,”’ a utility company may not be
able to distinguish between energy-conscientious users, frugal customers, traditional users, and
potentially uninformed users when designing the demand-response program and issuing incen-
tives under that program.Furthermore, these usersmight have something to gain bymisrepresent-
ing their types. In this case, it is entirely possible for demand-response programs to be inefficient,
just as the used-car market can unravel.

When decision-relevant information is held privately by an agent, the uninformed principal
may be able to elicit credible revelation of this private information by designing an appropri-
ate screening mechanism that is incentive compatible—that is, under the mechanism, an agent
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achieves the best outcome by acting according to their true preferences. The idea for the design
of a screening mechanism is that the principal proposes a menu of contracts containing variations
of the instrument, and the agent is expected to select the one that aligns with their preferences.
That is, the principal designs a correspondence that relates to each possible agent type an action–
value pair with an action u that the agent should take and a payout v that they will receive.

Although the principal does not know the type θ , in the design of such a menu, it is typically
assumed that the principal has a priori information in the form of a prior distribution ρ over the
type space � that encodes its beliefs about the agent’s type. Besides the assumption of a priori
information in the form of a distribution, it is also typical to assume that the agent’s utility JA
is concave in its actions and monotonically increasing in the preferences. These characteristics
capture the diminishing marginal-utility property and ensure that the problem is computation-
ally tractable; in many cases, such assumptions lead to simple analytical solutions that are easily
interpretable.

The menu of contracts is designed by the principal to maximize its expected utility given the
prior distribution ρ. For example, when � = {θi}mi=1 is a finite set,1 the principal attempts to de-
sign an assignment of actions u ∈U (e.g., the amount of energy a consumer curtails) and v ∈ V
(e.g., the reward for curtailment) to type θ via γ—that is, γ [u(θ )] = v(θ )—so as to maximize∑m

i=1 ρ(θi )JP[u(θi ), v(θi )]. These assignments are referred to as contracts, and the fact that there is
one contract for each of the types θi is why the term menu of contracts is used.

This optimization problem is subject to two fundamental constraints, incentive compatibility
and individual rationality, which we casually mentioned in Section 1 and define more formally
here. Incentive compatibility constraints ensure that the agent selects the contract that corre-
sponds to their true type—that is, if the agent’s true type is θ̄ ∈ �, then their expected utility is
highest for the contract γ [u(θ̄ )] = v(θ̄ ). When � = {θi}mi=1 is a finite set, incentive compatibility
constraints are given by

JA[u(θi ), v(θi ); θi] ≥ JA[u(θ j ), v(θ j ); θi], ∀ i, j ∈ {1, . . . ,m}. 1.

That is, for an agent of type θi, the contract [u(θi ), v(θi )] should be preferable to any other contract
[u(θ j ), v(θ j )].

Individual rationality—also referred to as voluntary participation—constraints ensure that the
agent participates. That is, relative to an outside option—say, J̄A—the expected utility under
the contract designed for each agent type is greater than J̄A. Again, when � = {θi}mi=1 is a finite
set, the individual rationality constraints take the form

JA[u(θi ), v(θi ); θi] ≥ J̄A, ∀ i ∈ {1, . . . ,m}. 2.

In Example 1, the menu of contracts would represent different available plans for a demand-
response program. Individual rationality ensures that energy consumers choose to participate in
the incentive program. Incentive compatibility ensures that energy consumers select the contract
that is designed for their type—for example, if the consumer is an energy-conscientious user, then
the contract designed for such users is preferable to them. In other words, energy consumers are
best off when they choose the option designed for them, and deviation only increases their cost.

One of the challenges with the incentive compatibility constraints is their combinatorial na-
ture: Supposing that � has m elements, there are m(m− 1) constraints. Issues with scalability
arise frequently in these settings, and much of the work in this area has focused on identifying

1The type space does not need to be finite-dimensional, and the treatment of the more general case, which
has the same essential formulation and features, can be found in textbooks such as Reference 10.
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assumptions that can effectively reduce the number of constraints. As noted above, concavity and
monotonicity assumptions on JA and its derivatives help reduce constraints. The Spence–Mirrlees
single-crossing condition (18) is one such assumption. In the case where � = {θi}mi=1 is a finite set,
the Spence–Mirrlees condition states that JA(·, v; θi+1) − JA(·, v; θi ) is monotonically increasing
for every fixed v and every i ∈ {1, . . . ,m− 1}. Intuitively, this means that the marginal utility of
consumption is increasing with respect to the type. Under this assumption, the number of con-
straints is reduced from m(m− 1) to merely 2(m− 1) constraints. More generally, a common
thread in the treatment of the principal–agent problem with adverse selection is to identify broad
conditions that allow the system designer to pinpoint conditions on the agent’s type under which
they would select one contract over another.

On the other hand, in cases when the principal is unable or unwilling to create a screening
mechanism, it may be at least partially in the agent’s best interest to credibly signal their private
information to the principal. Signaling mechanisms are also commonly studied in the context of
adverse selection (10). In this case, it is assumed that the agent has available a set of signaling
mechanisms from which they select according to their preferences. The goal of the principal is
to again design an incentive mapping γ that elicits truthful reporting and participation. For ex-
ample, in a demand-response setting, environmentally conscientious users will likely gain much
more satisfaction from buying an eco-friendly thermostat than a traditional user will. In an eco-
nomic sense, buying an eco-friendly thermostat costs the environmentally conscientious user less
than it costs a user of another type. Furthermore, the utility company can use this information
as a signal of the energy preferences of the consumer. If a utility company wishes to recruit only
environmentally conscientious users for an incentive program (e.g., if they expect this user group
to be more responsive and thus more lucrative to engage with), they can require an eco-friendly
thermostat. They must then design their rewards so that the rewards are positive for environmen-
tally conscientious users but participation is not worthwhile for other users in consideration of
the cost of the eco-friendly thermostat.

3.1.2. Moral hazard. When the agent’s actions are hidden from the principal, then this form
of information asymmetry gives rise to the so-called problem of moral hazard. The term moral
hazard originated from the study and design of insurance contracts. For example, people are more
likely to take risky actions once they have insurance coverage and therefore do not bear the full
burden of the risk. Common solutions to the problem of moral hazard include the introduction of
mechanisms for monitoring the agent’s actions (19) and sharing compensation with the agent (20).

Formally, moral hazard arises when the principal is unable to observe u, the agent’s actions. In
the formulation of solutions to this type of information asymmetry, it is typically assumed that the
principal is able to observe some event s ∈ �,where� is the space of observable events.The event s
is a random variable that is a function of the agent’s action u and some random, unknown state
of nature z. In particular, the principal observes s(u, z) ∈ � and does not observe u—that is, the
only knowledge the principal has of u is through the observation s(u, z). The principal’s goal is to
design a mapping γ : � → V such that the agent is induced to select the action that is desirable
from the principal’s point of view.

Consider the demand-response setting described in Example 1, in which the utility company
(the principal) wishes to motivate the energy consumer (the agent) to reduce their energy con-
sumption. Recall that v represents the reward given to the energy consumer for curtailing their
consumption by u under the incentive mapping γ . In this setting, we can model the baseline con-
sumption without any curtailment as z. The utility company does not know how much energy
the consumer would have used in the absence of any incentives; rather, it observes only the real-
ized energy consumption—say, s(u, z), which depends on the baseline level of consumption z and
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the amount of curtailment u. If not properly incentivized, a user may try to falsely claim that even
though the realized energy consumption s(u, z) is high, several factors caused their baseline energy
consumption z to be extremely high, and in fact they curtailed a lot of energy consumption—that
is, u is high.

The order of events is as follows. First, the principal offers a contract γ : � → V that commits
to an action v = γ (s) for each observable signal s. The agent either accepts or rejects the contract.
If the agent rejects the contract, their payoff is the value of their outside option, J̄A. Alternatively,
if the agent accepts, then they choose an action u∗ ∈ argmaxu Ez (JA{u, γ [s(u, z)]}), and nature
subsequently draws the random variable z determining γ [s(u, z)]. The principal then observes
s(u∗, z), and the agent’s realized utility is JA{u∗, γ [s(u∗, z)]}.

The principal designs γ (s) to maximize Ez (JP{u, γ [s(u, z)]}) and does so by formulating an
optimization problem in (u, γ ) given the objective Ez (JP{u, γ [s(u, z)]}). As in the adverse-selection
problem, this optimization problem for the design of γ is subject to two key constraints. First is
the individual rationality constraint, which is given by Ez (JA{u, γ [s(u, z)]}) ≥ J̄A and, as we noted,
ensures that the agent does not opt out. Second is the incentive compatibility constraint, which
is given by u ∈ argmaxu′ Ez (JA{u′, γ [s(u′, z)]}) and ensures that the agent chooses an action in
accordance with their true preferences given the prior the principal has on the environment—
that is, a prior distribution over z. Note that the key issue is that the contract γ cannot depend
on u; as a consequence, rather than perfect risk sharing, there is an analysis of the incentives–
insurance trade-off. As with adverse selection, we find that assumptions are often motivated by
the scale and intractability of the original problem; for example, the first-order approach makes
strong assumptions to replace the incentive compatibility constraint with its first-order optimality
conditions. There is a rich literature on the analysis of moral-hazard problems (see 9, 10, and the
references therein) that seeks to solve this difficult problem, sometimes with further constraints.

3.1.3. Desiderata and limitations. Fundamentally, the models assume users are rational and
have a significant amount of prior information even when faced with very stylized but meaningful
information asymmetries. They also make fairly restrictive assumptions on the form of utilities,
such as concavity and monotonicity, because they capture diminishing-returns properties while
also remaining extremely computationally tractable. These assumptions would certainly be vi-
olated if behavioral decision models (discussed in Section 4), such as prospect-theoretic value
functions or satisficing, both of which can introduce nonsmoothness, were used in their place.
The economics approach broadly allows for quite a bit of interpretation, explanation, and gen-
eralization due to the use of heavily model-based tools, but this also means that these tools are
not scalable. Recent work has considered dynamic contracts that handle time-varying user pref-
erences and environments (see 21–28 and the references therein), but the assumptions are often
too restrictive to be applied to the dynamics of an underlying state that corresponds to a physi-
cal system.2 This may be due in large part to the motivating applications that are considered by
economists, such as labor or insurance markets, which may not necessarily have these features.

3.2. Control Theory

The control approach to the incentive design problem builds on the economic foundation de-
scribed above by offering an approach to handling the notion of an exogenous state variable that

2There are a few application-domain-specific works that do model physical dynamics; for example, in power
economics, work has been done on the design of pricing mechanisms, largely in the form of tariff structures
or auctions, given some time-varying exogenous signal, such as wind (29, 30).
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summarizes the environment as well as dynamics. In particular, the incentive design problem di-
rectly embodies the spirit and form of a control problem: The principal is the controller and
the agent is the plant. It is even common in control to design the controller using some objective
function (i.e., optimal control or policy).However, unlike the typical plant structure, the agent also
chooses actions by optimizing some criteria—that is, the agent or plant is itself strategic. Models
from control that capture this sort of behavior fall under the category of leader–follower deci-
sion problems, or, synonymously, Stackelberg games (31). There is a large body of literature that
draws on classical control tools to solve Stackelberg games and hierarchical decision problems,
sometimes even using the moniker of incentive design (see, e.g., 32–44).

As with the section on economics, the literature in this area is too large to review in full here;
two papers by Olsder (38, 39) provide an overview of much of the work in this area up to 2009.
Hence, in this section we focus on elements arising in control that either complement the ap-
proaches from economics mentioned above or introduce new and interesting model features that
are relevant for human-in-the-loop systems. Specifically, we discuss how the control-theoretic ap-
proach allows naturally for dynamics and enables the introduction of a state that encodes axillary
environment information and itself may be dynamic.

3.2.1. Example. In many of the example applications mentioned in Section 1, there is some nat-
ural environment feature that can be treated as the state—for example, for the demand-response
scenario described in Example 1, a natural abstraction of state is the temperature of a consumer’s
home, which evolves dynamically in time and affects their energy consumption and hence their
utility. In the following examples, we present two motivating abstractions of ride-sharing markets
that not only highlight control-theoretic models that allow for useful exogenous state charac-
terizations but also illustrate some open problems and challenges in incentive design problems in
dynamic, uncertain contexts,which we touch on in Section 4.As noted in Section 1, in ride-sharing
markets, platform providers offer incentives to both drivers and passengers. In this scenario, the
platform serves as the principal, and there are two types of agents: drivers and passengers.

Example 2 (incentivizing drivers in ride-sharing markets). Passengers can be modeled
as forming queues at different nodes on a graph that represents different locations in a
city. For instance, passengers willing to accept a ride arrive at nodes according to a Poisson
process, and once they accept, they are in the queue associated with their arrival node—that
is, they wait to be matched with a driver and then wait for that driver to arrive. Once they
are picked up, they are in service.

In thismodel, the state xt represents a vector of queue lengths at each node.These queues
have their own dynamics, xt = f (xt , ut , vt , t ), which depend on external arrivals, an abstrac-
tion of the actions of the drivers ut (i.e., their decisions of which node to be circling near
and which fares they accept at a given time t), and an abstraction of the incentives offered to
the drivers vt = γ (ut ) (e.g., higher prices for certain nodes or end-of-day incentives for vis-
iting a node more than once). One goal of the platform might be to minimize average user
wait time across nodes by incentivizing drivers to be near locations of high demand, which
change dynamically throughout the day. The drivers have their own utility functions, which
depends on the information available to them—e.g., Ex,u[JAi (xt , ut , vt )], where the expecta-
tion is taken with respect to driver i’s beliefs about the state of the system and the strategies
of the other drivers.

The challenge in designing incentives vt = γ (ut ) is that the platform not only has un-
certainty regarding the dynamics of the network of queues but also most certainly lacks
knowledge of the drivers’ utility functions. Moreover, drivers are strategic. For example,
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they may work for multiple platforms. Websites even exist that offer strategies for drivers
to take advantage of bonus programs offered by ride-sharing platforms.

An analogous model can be constructed for incentivizing passengers in ride-sharing markets
where drivers in the system form an exogenous state process.

Example 3 (incentivizing passengers in ride-sharingmarkets). Drivers can bemodeled
as forming queues at different nodes in a graph that represents different locations in a city.
For instance, drivers in a particular neighborhood waiting for fares can be abstracted as
a queue that is served based on some priority rule set by the platform (e.g., a first-come,
first-served basis, as is the case at airports).

In this framework, existing works have modeled passengers as one-off users of the plat-
formwho decide to participate based on the immediate price (45). Expanding on this model,
passengers are in fact repeat customers who make choices about participation and usage
based on not only the immediate price shown to them but also incentives offered to them
over time—for example, discounts for taking a ride with a particular platform at a particular
location during an expected high-demand event or for planning or scheduling a ride ahead
of time. In such a model, the platform again acts as the principal with cost JP(xt , ut , vt , t ) at
time t, where xt is a vector of the driver queue lengths at each node (i.e., neighborhood),
which has its own dynamics xt+1 = f (xt , ut , vt , t ); ut is a vector of choices by each user (e.g.,
a zero–one vector indicating whether users accepted a ride in a location); and vt is a vector
containing both the price at different nodes for different passengers and the realized values
of incentives under γ currently targeted at passengers taking actions ut .

The challenges here are similar: The platform faces uncertainties about the dynam-
ics and does not directly observe the passengers’ preferences. Moreover, passengers are
strategic—for example, they may have an incentive to price shop, both by looking at other
platforms’ prices or offers and by juking the system by searching for lower-cost rides on
nearby blocks.

Of course, both of these models are very abstract, and in fact it might be the case that the
platform tries to simultaneously match drivers and passengers who are both modeled as strategic
market participants, a model that invites many more interesting challenges, which we discuss in
Section 4.Nonetheless, these examples illustrate how the notion of state along with state dynamics
can be used to abstract some exogenous process (e.g., queue length) that affects the decision of
the principal, whose efforts are focused on incentivizing a particular user group. Such exogenous
environment information and its dynamics are captured in the modeling approaches taken by the
control community.

3.2.2. Overview of literature and techniques. In most cases, the control-theoretic approach
is to first determine what the principal can achieve with respect to its objective and both choice
variables (u, v) and then try to find a strategy γ that lets the principal reach this goal by inducing the
agent to play a particular strategy. In repeated or dynamic settings, finding such a strategy can be
thought of as a control tracking problemby formulating an auxiliary tracking cost.This philosophy
is also core to many control problems: Characterize what performance is at once desirable and
achievable for a plant and then design a controller (sometimes optimal for a given objective) that
induces the plant to meet this performance objective. On the other hand, if one does not have a
sense of what the principal can achieve in terms of its utility, very little is known (38), although
the machine learning community has developed techniques for designing algorithmic strategies
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for this problem in repeated or sequential settings with limited or no feedback from the agent or
the environment, as discussed in Section 3.3.

In the dynamic setting, both the principal and the agent have time-varying utilities, and the
underlying model of the environment dynamics is a differential or difference equation. For in-
stance, as alluded to in Examples 2 and 3, in a discrete-time setting,3 the agent’s utility is modeled
as JA(xt , ut , vt ), where xt+1 = f (xt , ut , vt , t ) is the state dynamics and ut and vt are the decisions
of the agent and principal, respectively, at time t. The principal’s utility is similarly formulated as
JP(xt , ut , vt ). Both the principal and the agent face problems of maximizing their utilities over some
horizon (e.g., the utility could be time averaged or discounted and the horizon finite or infinite,
all of which are treated in the literature).

There are two typical approaches to the leader–follower-type problem: forward (or, alterna-
tively, bilevel optimization) and reverse Stackelberg games. In forward Stackelberg games, the
principal tries to optimize its utility subject to the constraint that the agent is selecting an optimal
action at each time given vt and xt and is subject to the dynamics.Many works in the control com-
munity have addressed this type of problem, but reverse Stackelberg games more directly capture
the class of incentive design problems we consider, and hence we focus our review on existing
approaches to it.

In a reverse Stackelberg game, the order of play is as follows. A principal (referred to as a leader
in this body of work) announces a mapping γ of the agent’s (follower’s) decision space into the
principal’s decision space. The agent then determines its response. In this case, the principal first
determines a set of {(udt , vd

t )}t pairs that optimize its expected utility over the horizon, then finds
a mapping γt :U → V that induces the agent to choose action udt at each time t. For example,
consider a T horizon problem in which both the principal and the agent seek to maximize their
expected utilities

∑T
t=0 JP(xt , ut , vt ) and

∑T
t=0 JA(xt , ut , vt ), respectively, subject to the dynamics

xt+1 = f (xt , ut , vt , t ).The principal then selects {(udt , vd
t )}t ∈ argmax

∑T
t=0 JP(xt , ut , vt ), after which

it selects a γ in the following set:

M(T )=
{
γ ∈ �

∣∣∣ γ ({udt }t ) = {vd
t }t ,

{udt }t ∈ argmax
{∑T

t=0 JA(xt , ut , vt )|{vt}t = γ ({ut}t ), xt+1 = f (xt , ut , vt )
}}

. 3.

One such mechanism might be, for example, a sequence {γt}t such that γt (ut ) = vt .
The reverse Stackelberg structure of play, as compared with the forward Stackelberg game,

allows the principal to design a mapping γ : u �→ v as opposed to simply the response v and hence
affords the principal more influence over the behavior of the agent.This revelation led to the term
incentive controllability (35), a concept loosely related to incentive compatibility in the sense that
the objective is to characterize when it is possible to control the agent to make a desired choice.
This structure of play also allows for the introduction of multiple noncooperative agents where
the principal’s objective is to coordinate them around a set of choices that is best from its point of
view (37–39, 46, 47). In the dynamic case, a significant number of works from the control com-
munity have addressed the problems of incentive controllability and multiple agents within a very
specific class of system dynamics and costs (i.e., linear quadratic) that are well explored. For in-
stance, assuming linear dynamics and quadratic costs, several efforts have focused on characteriz-
ing the solution (e.g., existence and uniqueness) to the reverse Stackelberg game and reducing the
problem of finding it to a convex optimization problem (33–35, 37, 39). Other efforts have relaxed
the linear assumption on dynamics and similarly sought to characterize local equilibria (46).

3There are analogous continuous-time models, but for the sake of brevity, we do not detail them here.
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The reverse Stackelberg structure is also amenable to situations of partial information, where,
for example, the principal or the agents lack information about the state, others’ actions, or even
the utility functions of others. For instance, in Example 2, the platform may not know drivers’
preferences regarding which node they would like to finish working at or how long they intend
to work. And in either Example 2 or Example 3, the platform may also not know the arrival rates
of drivers or passengers in the respective queue models and hence has partial information about
the state dynamics.

Efforts have also beenmade to address the case of partial information (see, e.g., 35, 36, 48).With
the exception of a few recent works,4 these approaches tend to not identify the lack of information
as adverse selection and moral hazard even though the form of information asymmetry is the
same and the approach that is taken in the event of partial information is often very different. In
particular, given the dynamics, in the face of partial information, agents can form estimates and
propagate priors using the observations they obtain over time.Some recent approaches have begun
to develop learning algorithms that leverage techniques from adaptive control, game-theoretic
learning, and reinforcement learning to design incentives in the face of partial information (50–
52). These approaches take the view that the principal lacks some information about the decision-
making process of the agents, imposes a model structure on the aspect of the decision-making
process it lacks, and then tries to make inferences about this model structure.

For instance, in a repeated one-shot game scenario in the absence of an auxiliary state, Ratliff
& Fiez (52) treated the case of adverse selection in which the principal does not know the agent’s
utility function JA(x, u, v; θA) but knows that it belongs to some class of functionsF (θ). Specifically,
the principal finds (ud, vd) ∈ argmax JP(u, v) and seeks to induce the agent to play ud by repeatedly
offering incentives to the agent. Since θA is unknown, instead of designing a menu of contracts
with respect to a prior, the approach is to maintain and update an estimate of θA, which is then used
to adaptively design a sequence {γt}t with the goal of ensuring the agent’s action asymptotically
approaches the desired action—that is, ut (γt ) → ud. Under the assumptions of zero-mean, finite-
variance, i.i.d. noise and stable and persistently exciting dynamics—the latter of which is very
difficult to verify—such results can be obtained. By relaxing the conditions, it is also possible to
obtain asymptotic guarantees ensuring that ut ∈ Bε (ud)—that is, an ε neighborhood around the
desired action.

In general, the typical control-theoretic approach in the case of partial information is to assume
a model structure, construct an estimator or inference method, and design γ based on its output.
The typical analysis and results have the flavor of almost sure, asymptotic guarantees. In practice,
this may be limiting, as systems with many agents and nonstationary environments may not reach
a steady state very quickly or at all.Moreover, while the efforts from the control community form a
rich set of tools that address several of the challenges that motivate this article—including dynam-
ics in the decision-making process, the inclusion of an auxiliary state, and partial information—
the techniques are heavily model based, they assume significant problem structure, and the results
(particularly in the partial-information case) are often limited to specific problem classes, such as
linear-quadratic problems with stabilizable, detectable dynamics and Gaussian noise. It is also the
case that when there are uncertainties or partial information, the distributions are assumed to be
known a priori, thereby making the estimation problem much more tractable to solve, when in
practice this information is rarely available.

4As with the economics literature, the control literature includes application-driven works (e.g., in the area
of power systems and smart grids) that have been looking at contract design in cases where there is adverse
selection and moral hazard (see, e.g., 49).
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3.3. Machine Learning

Approaches from the machine learning community tend to be less model based than those in the
control or even economics communities, and hence the results and techniques are complementary.
Indeed, in recent years, there has been increasing interest in studying adaptive incentive design
problems through the lens of online learning. This line of inquiry looks at repeated principal–
agent interactions where the principal faces some uncertainty regarding the preferences or actions
of the agent. The objective of the principal is to design a policy γ that determines the best action
to play at each interaction with the agent using only the information that has been amassed prior
to each interaction. The assumptions about the information available to the principal a priori and
what information is revealed over time inform the algorithm design; in fact, the mathematical
formalism encoding what feedback is received by the decision maker after an action is taken is a
key attribute of how methods are devised in sequential decision-making problems more broadly.

As noted, in comparison with the approaches taken in the economics and control theory lit-
erature, the methods developed in online learning lean more toward model agnostic than model
based. That being said, the literature on online learning has focused predominantly on direct op-
timization problems that do not capture economically motivated constraints, such as incentive
compatibility, individual rationality, and preferences that evolve in time.

As a prelude to discussing how the online learning lens can be used for adaptive incentive
design, we first describe the traditional framework under which such problems have been studied
in the literature. The canonical online learning model considers a sequential game between a
decision maker and nature over a finite time horizon T . At each round t of the game, the decision
maker selects a move vt ∈ V , and nature simultaneously takes an action zt ∈ Z , after which the
decision maker receives utility J(zt , vt ). The decision maker seeks to maximize the utility at each
round so that the cumulative regret over the horizon, defined as

RT = supv∈V
∑T

t=1 E[J(zt , v)] −
∑T

t=1 E[J(zt , vt )], 4.

is minimized. Note that the per-round regret compares the action taken by the decision maker
with the best action that could have been taken in hindsight.

The literature and techniques developed for this problem can be broadly classified on the basis
of the feedback observed by the principal after selecting an action. In traditional online learning,
the underlying assumption is that the decision maker is able to observe nature’s move (zt ) and
hence the utility J(zt , vt ) for all vt ∈ V , even those actions inV not selected by the decision maker.
By contrast, a parallel stream of literature has studied online learning in the presence of bandit
feedback, where the decision maker observes only the utility J(zt , vt ) for the action taken (vt )
and uses this information to shape future actions. The need for limited feedback can arise in
many applications, such as online ad placement, where the decision maker observes only whether
the user clicked on an advertisement [i.e., J(zt , vt ) ∈ {0, 1}] and not the user’s underlying features
(i.e., zt ). Finally, an alternative distinction in the literature stems from the source of the action zt
adopted by nature: In the stochastic model, zt is drawn i.i.d. from a distribution, whereas in the
adversarial model, zt is arbitrarily chosen.

Fortunately, there are well-developed, near-optimal learning strategies in each of these envi-
ronments. In the stochastic model, upper confidence bound (UCB) index policies (53) are ordi-
narily adopted, while in the adversarial model, multiplicative-weights-based policies (54, 55) are
employed.The index policy stores a UCB index—that is, the sum of the empirical mean of rewards
experienced and the confidence width—on the empirical mean utility of each available action and
plays the action with the maximum index. The crucial philosophy underlying these policies is
to balance exploration and exploitation—that is, to continue to learn about the utility of each
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action in order to minimize long-term regret while simultaneously focusing on the most promis-
ing actions to minimize short-term regret. On the other hand, in multiplicative weights, a prob-
ability distribution over actions is maintained and updated using a multiplicative-weights update
rule based on the observed utility each time an action is taken. At each round, the action to play
is sampled at random from this distribution. (For more comprehensive coverage of such online
learning approaches, see References 56–58.)

Many of the applications mentioned in Section 1 as well as in other domains, such as digital
marketplaces (e.g., crowdsourced systems and recommendation engines), are characterized by re-
peated principal–agent interactions where the principal must design a policy to induce strategic
agents to coordinate around actions that ultimately maximize the principal’s own utility and do so
in the face of environmental uncertainties and informational asymmetries. The traditional model
of online learning does not directly capture principal–agent interactions where individual agents
act based on their own self-interest. However, there have been promising attempts at extending
this model to take into account the agency available to individual agents (see, e.g., 59–63). Indeed,
the online learning model above can be extended to a multiround principal–agent problem, in
which the decision maker is the principal, by allowing the principal’s reward at each round to de-
pend not only on their action and the realization of the state of nature but also on the action ut of
an agent.

Formally, in the most basic formulation, a multiround principal–agent problem can be de-
scribed as follows. At round t, the principal selects an action vt ∈ V , zt is realized, and the agent
selects ut ∈ argmaxu∈U E[JA(zt , u, vt )].The principal then receives per-round utility JP(zt , ut , vt ). It
is typically assumed that the principal is not aware of the agent’s private type and utility function,
and sometimes not even the agent’s selected action ut .5 Hence, one can imagine either adverse
selection or moral hazard being addressed via online learning approaches that leverage only the
information known a priori and the feedback that has been obtained. The goal of the principal is
to find a policy γ (usually an algorithm) that minimizes a regret notion over a finite horizon by
determining the best action fromV at each round, given information up to that round. Given this
setting, the goal of many works in this area is to provide finite time bounds on regret.

3.3.1. Example. Asmentioned above, problems in the realm of digital marketplaces are increas-
ingly beingmodeled as repeated principal–agent interactions.A prominent example in recent years
is crowdsourcing. In general, crowdsourcing is the practice of soliciting contributions (in the form
of services, content, etc.) from willing participants of the online community. In the example that
follows, we describe an application of crowdsourcing involving two self-interested parties that
captures many of the salient aspects of the repeated principal–agent problem—strategic inter-
actions, adverse selection, and moral hazard—and demonstrates how the problem can be solved
using techniques from online learning.

Example 4 (crowdsourcing). Crowdsourcing platforms such as AmazonMechanical Turk
are designed to match available workers with tasks to complete. The functionality is simple:
A requester posts a task and the amount they will pay for the completion of the task, and
a worker can then choose to do the work and is paid the specified amount following task
completion.While the advent of these systems has provided an inexpensive and on-demand
workforce that was once unavailable, the quality of the crowdsourced work can be highly

5A notable exception is the work on contextual bandit approaches for online decision-makingwhen, in addition
to the per-round reward, the decisionmaker gets some additional contextual information (64), such as auxiliary
state or type information.
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variable (65–67). Taking this into account, we model the task of incentivizing high-quality
contributions from workers using the framework of online principal–agent interactions.

We consider a principal (requester) who wants a set of tasks completed via a pool of
agents (workers) crowdsourced through (say) Amazon Mechanical Turk with maximum
quality at minimum cost. To incentivize high-quality contributions, the principal seeks to
design a policy for sequentially selecting a payment mechanism, consisting of a base pay-
ment and a quality-contingent bonus payment, to offer an agent for completing a task. Let
� be a finite set containing all payment mechanisms γ that map a given level of quality q to
a payment v. The principal–agent interaction at each time t ∈ T is as follows: Given a task,
the principal selects a payment mechanisms γt ∈ �, an agent of type zt is matched to the
task, and this agent completes the task with effort level ut ∈U . The agent type is modeled
to be drawn from a stochastic distribution at each time and may represent attributes such as
skill and dedication. Moreover, the amount of effort an agent expends is strategically cho-
sen to maximize the expected value of the utility function given by the payment from the
principal minus the cost of the effort exerted. In our notation, the utility function of the
agent is JA(zt , ut , vt ) = vt − ct , where vt = γt (qt ) is the realized payment from the mecha-
nism, qt = f (ut , zt ) represents the quality of the work, and ct = g(ut , zt ) denotes the cost the
agent incurs to complete the work in terms of time spent, energy loss, etc.

Following the principal–agent interaction, the principal observes (only) the quality of
the work, pays out the realization of the payment mechanism, and can use the information
obtained to adjust the policy for selecting payment mechanisms. The utility that the prin-
cipal receives from an interaction with an agent is the value of the work minus the payment
made to the agent. That is, JP(zt , ut , vt ) equals rt − vt , where rt = h(qt ) denotes the value
derived from the quality of the work and vt = γt (qt ) is the realized payment from the mech-
anism. The goal of the principal is to maximize the expected utility obtained from a policy
over a finite horizon. Equivalently, the principal seeks to learn a policy that can minimize
the cumulative regret, defined as

RT = supv∈V
∑T

t=1 E[JP(zt , ut , v)] −
∑T

t=1 E[JP(zt , ut , vt )].

Each payment mechanism available to the principal has a stochastic distribution on the
utility that the principal will obtain. This means that for each γ ∈ �, there exists a mean μ

such that E[JP(zt , ut , v)] = μ, because each agent selects actions to maximize the expected
utility, and the agent type is drawn i.i.d. from a stochastic distribution. Hence, the prob-
lem of learning a regret-minimizing policy for incentivizing high-quality contributions in
crowdsourcing can be reduced to a stochastic multiarmed bandit problem.The UCB policy
is a near-optimal strategy that could be applied to solve the problem. In short, the principal
would select at each time the payment mechanism that had the maximum UCB on the em-
pirical mean utility obtained from the payment mechanism being offered to agents in the
past.

Example 4 captures important aspects of online principal–agent decision problems, including
strategic behavior, adverse selection, and moral hazard. For instance, adverse selection and moral
hazard can occur because the principal does not directly observe the type (utility function) or
action (effort level) of the agent, only the final quality of the work. Under the assumptions about
the users and the environment as presented, a near-optimal strategy could be directly obtained
using a well-known multiarmed bandit algorithm.

This example does not completely capture reality, however. It assumes that workers are one-
off participants in the system—that is, they interact with the system only once. Moreover, worker
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types are assumed to be drawn i.i.d. from a stationary distribution, when in reality the agent would
likely have memory, and their responses in each round would depend on the previous actions of
the principal. Several recent works, many in the crowdsourcing context, have started to address
some issues related to the incentive design problem (5, 6, 61, 62) For example, the crowdsourcing
problem presented above is closely related to the work of Ho et al. (5) on bandit algorithms for
repeated principal–agent problems, but the authors extended the formulation presented so that
the set of payment mechanisms being considered can be extremely large or even infinite while
obtaining similar performance guarantees. However, there are still many open problems related
to handling repeat users whose preferences (and hence behavior) depend on the actions taken by
the principal. The available tools from online learning need to be either extended or integrated
with existing approaches from the economics and control theory literature, as we discuss further
in Section 4.5.

3.3.2. Overview of literature and techniques. Beyond the most basic formulation, as noted
above, the principal may face constraints on their budget (this could be a per-round budget or cou-
pled over time) or desire that agents participate (individual rationality) and be truthful (incentive
compatibility). A handful of approaches address one or more of these constraints for the principal–
agent problem in the online learning setting (68, 69). In Example 4, the set of feasible payment
mechanisms that can be offered by the principal may be limited by the principal’s initial monetary
endowment (i.e., total budget). Incentive compatibility, for the same example, could refer to the
notion that the agent’s utility is maximized when their effort level is aligned with maximizing the
quality of the work subject to costs incurred (see, e.g., 6, 61).

A prototypical example of incentive-compatible online learning comes from works pertaining
to two-sided markets with sellers (principals) and buyers (agents). The literature in this domain
can be divided into two distinct streams (70): (a) online posted pricing mechanisms, where the
principal seeks to learn an optimal set of prices for each good, and (b) truthful online auction
design (71–73), which could involve complex interactions between the entities (e.g., multiround
bids).We focus on the former because it falls under the broad umbrella of incentive design, where
the prices serve as incentives to guide buyer decisions. Early work in this area (74) concentrated
on single-item markets with limited supply and developed dynamic pricing algorithms that ex-
tended traditional work in online learning to the pricing problem by discretizing the action space
and proposing new index policies based on greedy selection. Follow-up works extended many of
these regret bounds to settings involving fixed budgets (6) and multiple goods (75, 76). The latter
exploited the correlation across goods to limit the exploration phase, which could be large owing
to the exponential size description of agents’ utility functions. Although these papers focused only
on markets, their techniques have yielded new insights on online learning where the principal’s
actions are coupled across time (e.g., due to a finite budget).

While markets wield prices in order to influence the behavior of myopic agents, most digital
platforms pursue alternative means of incentivizing agents to explore unknown actions without
sacrificing incentive compatibility. In this regard, a line of research has focused on designing
both monetary (77–79) and nonmonetary (63, 80, 81) incentives in an online fashion to promote
exploration. Particularly notable is the design of signaling strategies (as in 63, 80) that offer
information as an incentive to converge to welfare-maximizing outcomes. Although it is typical
to consider asymmetric information structures in favor of the principal, a few works have looked
at settings where the agent possesses an informational advantage (61, 82, 83). Here, the goal is
to incentivize agents to reveal their private information or beliefs in a truthful manner. Broadly
speaking, the incentives proposed can be classified as dynamic contracts that extend the techniques
from Section 3.1 to an online environment. Ho et al. (5) discussed this subject in detail.
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These works, however, tend to make the strong assumption that agent behavior is independent
of time—that is, their preferences are static and not influenced by, for example, the incentives
offered by the principal. Moreover, they assume that the behavior of each agent is independent of
the behavior of all other agents. Several works have considered dynamic agents or eschewed the
independence assumption. Amin et al. (84) considered dynamic agents, constructing a repeated
principal–agent interaction to model the problem of a seller learning auction prices to maximize
long-term revenue while a buyer strategically attempts to maximize their own long-term profit.
Braverman et al. (85) took an analogous principal–agent approach with an extension to several
agents, each of which, when selected, receives utility that they can strategically share with the
principal in order to maximize their utility over the horizon, while the principal concurrently
attempts to maximize utility received from the agents. Recently, Ratliff et al. (59) considered a
variant of the principal–agent problem where the agent’s preferences evolve in time according
to a Markov chain and the principal’s actions affect the evolution dynamics; this was one of the
first attempts to address nonstationary environments in principal–agent interactions in that the
same agent repeatedly interacts with the principal and the principal’s actions influence that agent’s
behavior so that, from the point of view of the principal, the environment is nonstationary. In
particular, there is a single stochastic process that evolves, and the actions are therefore dependent
on one another. Fiez et al. (60) further extended this work to the combinatorial setting, where at
each round the principal must match incentives to agents given budget constraints.

The online learning literature with dynamic agents or sources of dependence is relatively un-
focused at present, with many important open problems. Accordingly, only a limited amount of
work has been done on incentive compatibility when agent behavior is correlated with time or
dependent on the actions of the principal. For example, in the crowdsourcing setting mentioned
above, an agent who interacts with the principal for multiple rounds may seek to benefit by re-
sorting to low effort levels if they can influence the payment mechanism offered in subsequent
rounds. Clearly, there is potential to extend work in the online principal–agent domain to capture
richer agent behavior and dynamics.

One particular feature of the online learning literature that differentiates it from the adaptive
control and learning techniques briefly mentioned in Section 3.2 is that most works (particularly
those providing solutions to a variant of the principal–agent problem) assume that the action
space of the principal is a finite set. These works often create benchmarks based on the single best
action in the set independent of time, as in Equation 4—largely because, in the online learning
literature, the view of incentive design that tends to be formed is a repeated interaction between
the principal and the agent as opposed to a dynamic or sequential interaction where the utilities are
dependent on time (e.g., through some exogenous state variable or time-dependent components
of the utilities). Nonetheless, the techniques allow for the design of algorithms with performance
guarantees for adaptively designing incentives given very little a priori information and feedback
over time. This motivates, perhaps, a rapprochement between online learning techniques and
those from adaptive control.

4. OPEN QUESTIONS AND RESEARCH OPPORTUNITIES

Having reviewed the various approaches to different formulations of the incentive design problem
from the communities of economics, control theory, and machine learning, we now provide our
perspective on several interesting open problems that have not been completely solved by any of
the individual communities but that may be solvable through an interdisciplinary approach.

While a substantial amount of work has addressed different formulations and aspects of the
incentive design problem, it is still an open problem to solve incentive design with repeatedly
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returning agents whose decision-making processes evolve with time and are functions of the
principal’s actions (thus making the environment the principal interacts with nonstationary) and
where the principal faces adverse-selection- and moral-hazard-type information asymmetries, is
subjected to constraints (e.g., on their budget over time or due to a surrounding market structure),
or is exposed to some external context (i.e., physical system dynamics or exogenous observations
of the environment). The agents may also compete or have a more complex interaction struc-
ture among themselves. There may be more than one principal, adding an additional layer of
complexity. These are all challenges in practical realizations of the incentive design problem that
have yet to be sufficiently addressed. In the remainder of this article, we discuss opportunities
and additional challenges where we believe potential solutions are on the horizon.

4.1. Bounded Rationality and Risk Sensitivity

A common thread across the disciplines mentioned above is their supposition that the principal
and the agents are rational entities that unambiguously favor strategies that maximize their ex-
pected utility. In reality, it is well understood that human decision-making is bound by various
cognitive limitations. Indeed, the rise of digital marketplaces has led to a renewed focus on the
field of behavioral economics, pioneered by Nobel laureates such as Kahneman (and his collabo-
rator Tversky) (86) and Thaler.

The interaction between human cognitive biases and incentives aimed at rational agents has led
to the emergence of perverse incentives that achieve unintended, often adverse consequences. For
example, in the domain of urban transportation, city officials who enforce zone-based congestion
pricing in a bid to ease traffic may observe that these incentives often have only limited or even
negative impact on overall congestion (87, 88). This occurs because the congestion pricing tariffs
do not take into account the time–money trade-offs among users and because drivers become
acclimated to the increased prices [e.g., due to anchoring bias (89)]. Furthermore, such schemes
may achieve the unintended effect of raising home prices inside the congestion zone because
residents pay higher prices to avoid road taxes [e.g., due to loss aversion (89)] (90).

A large number of works have sought to address these issues by introducing more realistic
utility functions that capture several aspects of human behavior, which could include risk sensi-
tivity, loss aversion, and reference-point dependence, among other pertinent behavioral decision-
making features. Such nonlinear utilities are a core component of the famed prospect theory (89,
91). Alternatively, other decision-theoretic models, such as satisficing (92), capture myopic behav-
iors, such as choosing the first option that meets an agent’s minimal criteria. These works provide
strong preliminary support. They tend to be rather simplistic, and their empirical validation has
been limited largely to static decision-making problems with two outcomes. There is still signif-
icant work to be done in extending and integrating these models (or at least the salient features
that model human decision-making) in an incentive design framework, particularly in large-scale
systems with many agents and dynamics.

With this in mind, a promising direction for future work involves leveraging recent advances
in neural networks, deep learning, and classical results from inverse learning to infer (potentially)
nonlinear models of how humans respond to various incentives under a repeated-interaction
model (93–98). A significant challenge is to develop techniques for model-agnostic, scalable
learning that results in explainable and interpretable outcomes. An alternative approach to
tackling the problem of bounded rationality is in the design of robust incentives that achieve
desirable outcomes irrespective of how agents behave. Although such approaches are preferable
to model-specific incentives, they are, predictably, limited by their efficacy and tend to result in
very conservative strategies.
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4.2. Information Design: Leveraging Uncertainty for Good

Uncertainty is an unavoidable aspect of not only physical systems but also digital systems involv-
ing human behavior. Almost all of the works on human decision-making under uncertainty that
pertain to incentive design consider uncertainty as an adverse phenomenon—indeed, it is intuitive
to believe that suboptimal decisions are an obvious by-product of uncertainty. This raises a nat-
ural question: Are there situations in which one can design incentives that perform better under
uncertainty than they do in more deterministic environments?

Surprisingly, in a number of settings, uncertainty can be beneficial; for example, in transporta-
tion networks, the overall congestion can be decreased when a principal carefully calibrates the
level of information available to each user (99–101). Much as tolls can push the system to a better
outcome, information can similarly affect equilibrium quality. Indeed, Acemoglu et al. (99) cast the
classic Braess paradox (102)—which says that, under certain conditions, adding links to a network
can increase the total congestion felt by users when they behave in a self-interested way—in light
of informational uncertainties and highlighted that, in many networks, the average travel time
could decrease when users are aware of only some routes as opposed to having perfect informa-
tion about all of the routes. More generally, in the face of uncertainty, a conservative user tends to
overestimate the delay on some paths, which could lead to less crowding on popular routes and
a balanced distribution of traffic (100). The surprising effects of uncertainty can also be seen in
security allocation in airports (103), energy markets (104), and recommendation systems (63).

These counterintuitive results suggest several important avenues to explore, including the
following:

� Leveraging of uncertainty in incentive design: The positive effects of uncertainty as ob-
served in some scenarios motivates the development of a new theory of incentive design
that deviates from the norm by explicitly leveraging uncertainty as a positive effect in de-
centralized systems.

� Information as an incentive: Information or uncertainty can itself be thought of as a design
feature, thereby motivating the development of methods for using information as an incen-
tive (63, 80, 105, 106), which enables a principal to control the level of uncertainty of the
various agents to achieve a more desirable outcome.

� Codesign of incentives and information: In many cases, what is achievable with incentives
may not be achievable with information shaping and vice versa. This motivates deriving
a theoretical and computational framework for the codesign of incentives and informa-
tion that lead to a quantifiable improvement in performance while mitigating unintended
consequences.

Central in each of these avenues is the design of information in some form. However, infor-
mation design leads to the technically challenging question of whether information design can be
achieved without unfair discrimination.

4.3. Fairness

As with most work on incentive design, work on online learning typically focuses solely on al-
gorithms that maximize social welfare over a finite horizon (e.g., in terms of regret). A notable
exception involves the work on mean-variance optimization in online learning (107, 108). In sys-
tems that comprise multiple independent entities (principal, agents, etc.), maximizing the utili-
tarian welfare does not necessarily lead to egalitarian or equitable outcomes. These implications
are exacerbated in multiagent incentive design problems where a principal may offer vastly differ-
ent incentives (or information) to different agents, leading to contentions about unfair treatment
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by individual users or communities. For example, dynamic pricing of parking and other public
facilities can systematically disenfranchise populations in high-demand environments (109, 110).

An impressive body of work in recent years has looked at online algorithms that learn the pref-
erences of agents without sacrificing fairness according to one or more metrics, such as being envy
free (111, 112) or having statistical parity (113), individual fairness (114), ormaximin fairness (115).
A possibility raised by many of these works is that achieving fair outcomes may be intrinsically
misaligned with maximizing social welfare. Despite these constraints, several promising research
directions warrant investigation:

� Approximations and trade-offs: Given that achieving fairness may be incompatible with
maximizing welfare, a reasonable compromise is to approximatelymaximize efficiency while
retaining fairness (116). Such an approach could then naturally segue into a thorough char-
acterization of the efficiency–fairness Pareto frontier (117).

� Long-term fairness: While fairness may be harder to guarantee in a onetime interaction
between a principal and agents, repeated interactions provide an opportunity for the de-
signer to implement solutions that are equitable over a longer horizon (e.g., the average
amount of perceived unfairness approaches zero over many interactions). An important
open question is to identify algorithms that satisfy this property. Preliminary results sup-
port the hypothesis that long-term fairness may be easier to achieve without compromising
social efficiency (118, 119).

� Model-based fairness: Almost all of the works mentioned above consider a typical design
or optimization problem and add fairness as an external constraint. In many settings, it may
be more natural to embed fairness directly into the model (as in 120)—for example, in a
sequential game where self-interested agents maintain fidelity levels for various principals
based on the perceived unfairness of the incentive received.

The ubiquity of incentives in society and the adverse socioeconomic implications of algorith-
mic discrimination make it imperative that researchers include fairness in the design process and
not simply as an afterthought.Fortunately, healthy discussions by a diverse range of academic com-
munities and industry practitioners provide an encouraging sign that fairness-based constraints
will play a key role in developing learning policies in the future (113, 121–123). Inherent in the
quest for fairness in online learning is a trade-off with efficiency,which can be quite costly (117). In
some problems with certain fairness criteria, the steep loss in efficiency is unavoidable; it remains
to be seen whether new learning approaches and fairness metrics can be developed to mitigate the
cost of such a trade-off.

4.4. Interaction Between Markets: Cooperation to Competition

In the principal–agent problem, it is typical to consider settings where a single principal inter-
acts with self-interested agents or multiple principals interact with different agents in isolation.
Incentive design for such systems often relies crucially on the assumption that either there is no
external option available to the agents or the external option does not interact or compete with the
offers the principal is making. In the case of digital marketplaces, it is more often the norm that
agents have a choice between multiple principals, particularly in repeated-interaction settings, as
when drivers and passengers select between different ride-sharing platforms or customers switch
between ticket-booking portals. It is customary to expect each principal to design independent
incentives for their users to increase adoption. This raises two questions: How robust are current
mechanisms to the presence of external competition? And how does one redesign incentives to
take into account competing principals or even platforms?
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On the one hand, a considerable body of literature has explored competition in market design,
industrial organization, and game theory. For example, economists have long studied the problem
of competition versus innovation (see 124 and the references therein)—that is, how does the level
of competition in the market affect the type of incentives received by the agent? On the other
hand, in repeated-interaction settings that feature multiple principals, our understanding of how
competing incentives and externalities affect agent behavior is rather limited.

An urgent need, therefore, is to gravitate toward a broader theory of incentive design via online
learning that is cognizant of competition between providers—perhaps leveraging techniques from
economics and control theory to model multiagent interaction—without being too sensitive to
the strategies adopted by other principals (125). At the same time, it is imperative to understand
how current learning approaches perform as more participants enter the market (4). For example,
preliminary results indicate that, in the presence of competition, markets could become stuck at
a bad equilibrium where all of the principals play greedy strategies without performing sufficient
exploration (126, 127).Therefore, a key research direction is the design of upstream incentives that
motivate principals to pursue policies that are aligned with the social good; for example, in ride-
sharing markets, a regulatory authority could impose upper caps on the price paid by consumers
and lower caps on the revenue guaranteed to drivers.

A closely related issue that has raised concerns from antitrust policymakers (128) and algorithm
designers alike is algorithmic collusion (129)—scenarios where multiple algorithms representing
independent principals interact with each other (sometimes unintentionally) to yield socially un-
desirable solutions.The problem is particularly acute in the field of automated pricing,where com-
peting algorithms could engage in concurrent price increases, resulting in poor social welfare. In
light of these serious risks, it is critical that designers reexamine the classic approaches for develop-
ing incentives to identify which algorithms aremore susceptible to collusive behavior (see, e.g., 63).

4.5. Integrating Model-Based Approaches into a Model-Agnostic Regime

The economics and control-theoretic incentive design approaches discussed above are over-
whelmingly model based. This paradigm has several advantageous properties, including strong
performance guarantees and explainable outcomes. However, these techniques often do not
scale well and may not be applicable in problems for which significant a priori information is
unavailable.

Online learningmethods, by contrast, are predominantlymodel agnostic in that, from the point
of view of the principal, very little is assumed about the agent. Moreover, for each of these cases,
algorithms exist that are nearly optimal under the limited assumptions. However, since correla-
tion or structure is not being exploited, the near-optimal guarantees may still be relatively weak
or unattainable in large-scale environments. To give a concrete example, the standard UCB-based
and near-greedy algorithms in online learning (53) require the principal to take each possible
action before any learning begins. In problems with many possible actions (e.g., selecting adver-
tisements and item recommendations), it is clear that such an approach would be unrealistic.

To overcome such deficiencies, standard online learning techniques have been augmented
with stronger assumptions and endowed with model-like structure, thereby improving sample
efficiency and the ability to generalize. Despite the exciting progress in this area, by and large
these methods have not been extended to the online incentive design problem, which presents
several further challenges, including information asymmetries between the principal and the
agent and nonstationarity in repeated interactions owing to agent behavior. In the remainder
of this section, we present models that have been imposed on the traditional online learning
framework and consider how they may be promising in future work on online incentive design.
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A prominent example is online stochastic linear optimization with bandit feedback (130, 131),
which models the cost of the principal as a linear function of the actions taken with initially
unknown parameters. Such an approach is advantageous because the decision maker can learn
the cost of each action solely by learning the parameters of the linear function. Standard indepen-
dence assumptions do not hold for this problem, making it more difficult to analyze technically.
However, the ability to leverage correlations between actions and the structure of themodel makes
this method interpretable and scalable (64). A related line of research has examined how a priori
knowledge of a similarity structure between actions can be leveraged in the online learning setting
(132–135). Considering the principal’s cost in the incentive design problem to be a linear func-
tion of a selected agent would certainly raise compelling questions. It would also be intriguing
to investigate how knowing that groups of similar agents existed could be leveraged to speed up
incentivizing agents.

As opposed to a purely optimization approach, probabilistic online learningmethods that lever-
age priors on the distribution of costs, such as Thompson sampling (136, 137) and Gaussian pro-
cess optimization (138, 139), have received increased attention in recent years and have proven to
be empirically effective. These methods could be used for incentive design in several ways, includ-
ing the principalmaintaining distributions over parameters thatmodel agents’ behavior and agents
updating priors on the principal’s behavior for strategic purposes. Connecting back to Section 4.1,
we note that maintaining layers of beliefs also allows for bounded rationality interpretations of the
behavior exhibited by agents.

In practice, it is often the case that any of the above-mentioned structures are combined with
side information or context that is available to the principal when making decisions (64, 140–142).
In terms of the control perspective, one may relate context in an incentive problem to some obser-
vation of the state of the environment. In this way, the principal can leverage the extra information
to learn more fine-grained policies. The ideas of context and information exchange from online
learning are ripe for exploration in the incentive design problem.

In the online learning community, performance is often analyzed using the metric of com-
petitive ratio (143–145), which gives the ratio of the online learning optimum to the offline full-
information optimum. Future work in incentive design may benefit from assimilating such anal-
ysis. Essentially, in the incentive design problem, a competitive ratio would inform the value of
a priori information. Using a competitive ratio metric in the context of incentive design may
give insights into cases where acquiring information and applying model-based methods may be
preferable to model-agnostic methods or vice versa.

As standard online learning frameworks are endowed with increasingly complex assumptions
and structures, they begin to edge closer to and obtain the favorable aspects of the model-based
methods in economics and control theory while maintaining scalability and the ability to learn in
a sample-efficient manner. However, as only a few works have focused on applying these richer
methods to the incentive design problem (62, 146–148), there is significant opportunity to apply
the online learning literature to these problems.

4.6. Causal and Counterfactual Reasoning

In both physical and digital ecosystems, the rapid pace of evolution of the underlying environment
necessitates that the principal constantly test new incentives aimed at better aligning the agents’
objective with their own.Traditionally, firms have preferred to employ methodologies such as A/B
testing (149) to evaluate how proposed treatments compare with existing incentives. However, in
many cases such an approach may be infeasible; for example, in online marketplaces, frequent A/B
testing could adversely affect revenues or result in claims of unfair treatment (150). A powerful
technique in the field of learning theory that allows the designer to circumvent these issues is
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counterfactual reasoning—using observations about a past treatment to infer the effectiveness of
an alternative intervention.

The field of counterfactual inference features a rich set of tools in both online and offline learn-
ing (150–152) to evaluate the performance of untested incentives and solve for optimal incentives,
thereby allowing a designer to make the most of limited data samples. At the same time, almost
all of this work has focused on static systems without economic constraints, such as individual
rationality or incentive compatibility. Therefore, the design of incentives for multiagent systems
with self-interested users whose behavior may evolve with time remains uncharted territory.

Extending classical theories of counterfactual learning to game-theoretic models is nontrivial
due to the presence of confounding variables (see, e.g., 152, 153) and hidden dependencies. That
is, unobserved system variables or externalities that correlate positively with one incentive may fail
to do so for another. For instance, digital incentives that are deployed via mobile applications may
correlate with the age of the recipient, and the results may fail to replicate for more traditional
incentives. This calls for a more holistic approach to counterfactual learning for designing incen-
tives that take into account a causal graph of relationships between different variables that could
potentially affect agents’ responses in direct and indirect ways (154). How traditional approaches
in online learning via causal inference extend (154–156) to principal–agent or Stackelberg models
remains an important open question.

Themultiarmed bandit approaches in online learning briefly discussed in Section 3.3 represent
interesting solutions to incentive design via exploration–exploitation strategies for assessing the
performance of a set of incentives when the principal has no a priori information and receives
limited feedback. The classic multiarmed bandit and contextual bandit models can be expressed as
special cases of the more general framework for causal inference (152, 156). A promising direction
for future work is drawing on more general causal learning techniques to develop algorithms
for incentive design that exploit causal feedback to make inferences about the performance of
incentives without needing to explore all possibilities.

5. CLOSING REMARKS

Motivated by applications in which there are technology-enabled, largely self-interested humans
interacting and consuming resources in a constrained physical system, this article provides a per-
spective on challenges and opportunities in the development of a tool kit for incentive design.We
have reviewed work from economics, control theory, and machine learning that we believe to be
building blocks for this new tool kit. Incentive design has long been studied in economics and con-
trol theory and is a more recent venture for machine learning. Each of these fields contributes a
unique perspective on the design of incentives, and we have tried to articulate open questions and
expose avenues for future research that bridge these domains by leveraging existing contributions
to advance the theoretical and computational frontier for incentive design.
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