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Abstract

The hierarchical interaction between the actor and critic in actor-critic based reinforcement learning
algorithms naturally lends itself to a game-theoretic interpretation. We adopt this viewpoint and model
the actor and critic interaction as a two-player general-sum game with a leader-follower structure known
as a Stackelberg game. Given this abstraction, we propose a meta-framework for Stackelberg actor-critic
algorithms where the leader player follows the total derivative of its objective instead of the usual
individual gradient. From a theoretical standpoint, we develop a policy gradient theorem for the refined
update and provide a local convergence guarantee for the Stackelberg actor-critic algorithms to a local
Stackelberg equilibrium. From an empirical standpoint, we demonstrate via simple examples that the
learning dynamics we study mitigate cycling and accelerate convergence compared to the usual gradient
dynamics given cost structures induced by actor-critic formulations. Finally, extensive experiments on
OpenAI gym environments show that Stackelberg actor-critic algorithms always perform at least as well
and often significantly outperform the standard actor-critic algorithm counterparts.

1 Introduction

The algorithmic techniques for reinforcement learning can be classified into policy-based, value-based, and
actor-critic methods (Sutton and Barto, 2018). Policy-based methods directly optimize a parameterized policy
to maximize the expected return, while value-based methods estimate the expected return and then infer
an optimal policy from the value-function by selecting the maximizing actions. Actor-critic methods bridge
policy-based and value-based methods by learning the parameterized policy (actor) and the value-function
(critic) together. In particular, actor-critic methods learn a critic that approximates the expected return of the
actor while concurrently learning an actor to optimize the expected return based on the critic’s estimation.

In this paper, we adopt a game-theoretic perspective of actor-critic reinforcement learning algorithms.
To provide some relevant background from game theory, recall that Stackelberg games are a class of games
that describe interactions between a leader and a follower (Başar and Olsder, 1998). In a Stackelberg game,
the leader is distinguished by the ability to act before the follower. As a result of this structure, the leader
optimizes its objective accounting for the anticipated response of the follower, while the follower selects a
best response to the leader’s action to optimize its own objective. The interaction between the actor and
critic in reinforcement learning has an intrinsic hierarchical structure reminiscent of a Stackelberg game.
Indeed, the actor aims to be at an optimum knowing that the critic responds near-optimally to the selected
parameters, while the critic seeks to be at an optimum given the actor parameters or vice versa between
the actor and critic. This observation forms the basis of our work which contributes a novel game-theoretic
modeling framework along with theoretical and empirical results.

Modeling Contributions. We explicitly cast the interaction between the actor and critic as a two-player
general-sum Stackelberg game toward solving reinforcement learning problems. Notably, this perspective
deviates from the majority of work on actor-critic reinforcement learning algorithms which implicitly neglect
the interaction structure by independently optimizing the actor and critic objectives using individual gradient
dynamics. In order to solve the game iteratively in a manner that reflects the interaction structure, we study

1



learning dynamics in which the player deemed the leader updates its parameters using the total derivative of
its objective defined using the implicit function theorem and the player deemed the follower updates using
the typical individual gradient dynamics. We refer to this gradient-based learning method as the Stackelberg
gradient dynamics. The designations of leader and follower between the actor and critic can result in distinct
game-theoretic outcomes and we explore both choices and explain how the proper roles depends on the
respective objective functions.

Theoretical Contributions. The Stackelberg gradient dynamics were previously studied in general
nonconvex games and enjoy a number of theoretical guarantees (Fiez et al., 2020). In this paper we tailor the
analysis of this learning dynamic to the reinforcement learning problem. To do this, we begin by developing
a policy gradient theorem for the total derivative update (Theorem 1). Then, building off of this result, we
develop a meta-framework of Stackelberg actor-critic algorithms. Specifically, this framework adapts the
standard actor-critic, deep deterministic policy gradient, and soft-actor critic algorithms to be optimized
using the Stackelberg gradient dynamics in place of the usual individual gradient dynamics. For the class
of Stackelberg actor-critic algorithms this meta-framework admits, we prove a local convergence guarantee
(Theorem 2) to a local Stackelberg equilibrium defined by gradient-based sufficient conditions.

Experimental Contributions. From an empirical standpoint, we begin by pointing out in Section 3
that the objective functions in actor-critic algorithms commonly exhibit a type of hidden structure in terms of
the parameters. Given this observation, we develop simple, yet illustrative examples comparing the behavior
of Stackelberg actor-critic algorithms with standard actor-critic algorithms. In particular, we observe that the
Stackelberg dynamics mitigate cycling in the parameter space and accelerate convergence. We discover from
extensive experiments on OpenAI gym environments that similar observations carry over to complex problems
and that our Stackelberg actor-critic algorithms always perform at least as well and often significantly
outperform the standard actor-critic algorithm counterparts.

2 Related Work

Game-theoretic frameworks have been studied extensively in reinforcement learning but mostly in multi-agent
setting (Yang and Wang, 2020). In multi-agent reinforcement learning, the decentralized learning scheme is
mostly adopted in practice (Zhang et al., 2019), where agents typically behave independently and optimize
their own objective with no explicit information exchange. A shortcoming of this method is that agents
fail to consider the learning process of other agents and simply treat them as a static component of the
environment (Hernandez-Leal et al., 2017). To resolve this, several works design learning algorithms that
explicitly account for the learning behavior of other agents (Zhang and Lesser, 2010; Foerster et al., 2018;
Letcher et al., 2018), which is shown to improve learning stability and induce cooperation. In contrast,
Prajapat et al. (2020) study a competitive policy optimization method for multi-agent reinforcement learning
which performs recursive reasoning about the behavior of opponents to exploit them in two-player zero-sum
games.

The past research taking a game-theoretic viewpoint of single-agent reinforcement learning is limited
despite the fact that there is often implicitly multiple players in reinforcement learning algorithms. Rajeswaran
et al. (2020) propose a framework that casts model-based reinforcement learning as a two-player general-sum
Stackelberg game between a policy player and a model player. However, they only consider optimizing
the objective of each player using the typical individual gradient dynamics with timescale separation as
an approximation to Stackelberg gradient dynamics. Concurrent to this work, Hong et al. (2020) analyze
the Stackelberg gradient dynamics with timescale separation for bilevel optimization with application to
reinforcement learning. For reinforcement learning, they give a convergence guarantee for an actor-critic
algorithm under assumptions such as exact linear function approximation which result in the total derivative
being equivalent to the individual gradient. We provide a complimentary study by developing a general
framework for Stackelberg actor-critic algorithms that we analyze without such assumptions and also
extensively evaluate empirically on reinforcement learning tasks.

Single-agent reinforcement learning algorithms with second-order information trace back to natural policy
gradient methods (Kakade, 2001) and the natural actor-critic algorithm (Peters and Schaal, 2008; Bhatnagar
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et al., 2009). Since then, such techniques have been proposed for both policy-based and actor-critic methods
(Schulman et al., 2015a, 2017; Shen et al., 2019; Tangkaratt et al., 2018). However, the gradient information
in the past works do not account for the interaction between the actor and critic as in this work.

3 Motivation & Preliminaries

In this section, we begin by presenting background on Stackelberg games and the relevant equilibrium concept.
Then, to motivate and illustrate the utility of Stackelberg-based actor-critic algorithms, we highlight a key
hidden structure that exists in actor-critic objective formulations and explore the behavior of Stackelberg
gradient dynamics in comparison to individual gradient dynamics given this design. Finally, we provide the
necessary mathematical background and formalism for actor-critic reinforcement learning algorithms.

3.1 Game-Theoretic Preliminaries

A Stackelberg game is a game between two agents where one agent is deemed the leader and the other the
follower. Each agent has an objective they want to optimize that depends on not only their own actions but
also on the actions of the other agent. Specifically, the leader optimizes its objective under the assumption
that the follower will play a best response. Let f1(x1, x2) and f2(x1, x2) be the objective functions that
the leader and follower want to minimize, respectively, where x1 ∈ X1 ⊆ Rd1 and x2 ∈ X2 ⊆ Rd2 are their
decision variables or strategies and x = (x1, x2) ∈ X1 ×X2 is their joint strategy. The leader and follower
aim to solve the following problems:

minx1∈X1
{f1(x1, x2)

∣∣ x2 ∈ arg miny∈X2
f2(x1, y)}, (L)

minx2∈X2
f2(x1, x2). (F)

Since the leader assumes the follower chooses a best response x∗2(x1) = arg miny f2(x1, y),1 the follower’s
decision variables are implicitly a function of the leader’s. In deriving sufficient conditions for the optimization
problem in (L), the leader utilizes this information by the total derivative of its cost function which is given
by

∇f1(x1, x
∗
2(x1)) = ∇1f1(x) + (∇x∗2(x1))>∇2f1(x).

where ∇x∗2(x1) = −(∇2
2f2(x))−1∇21f2(x). 2

Hence, a point x = (x1, x2) is a local solution to (L) if ∇f1(x1, x
∗
2(x1)) = 0 and ∇2f1(x1, x

∗
2(x1)) > 0. For

the follower’s problem, sufficient conditions for optimality are ∇2f2(x1, x2) = 0 and ∇2
2f2(x1, x2) > 0. This

gives rise to the following equilibrium concept which characterizes sufficient conditions for a local Stackelberg
equilibrium.

Definition 1 (Differential Stackelberg Equilibrium, Fiez et al. 2020). The joint strategy x∗ = (x∗1, x
∗
2) ∈

X1 × X2 is a differential Stackelberg equilibrium if ∇f1(x∗) = 0, ∇2f2(x∗) = 0, ∇2f1(x∗) > 0, and
∇2

2f2(x∗) > 0.

The Stackelberg learning dynamics derive from the first-order gradient-based sufficient conditions and are
given by

x1,k+1 = x1,k − α1∇f1(x1,k, x2,k)

x2,k+1 = x2,k − α2∇2f2(x1,k, x2,k)

where αi, i = 1, 2 are the learning rates for the leader and follower, respectively.
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Figure 1: (a)–(b) Vector fields and trajectories of the actor and critic updates using individual gradient and
Stackelberg gradient. (c) Error ‖w − w∗‖2 + ‖θ − θ∗‖2 for individual gradient, Stackelberg gradient, and
Stackelberg gradient with regularization, where (θ∗, w∗) = (0, 0).
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Figure 2: (a)–(b) Individual gradient and Stackelberg gradient with entropic regularization added to the
actor objective following Soft Actor-Critic.

3.2 Motivating Examples

In the next section we present several common actor-critic formulations including the “vanilla” actor-critic,
deep deterministic policy gradient, and soft actor-critic. A common theme among them is that the actor and
critic objectives exhibit a simple hidden structure in the parameters. In particular, the actor objective typically
has a hidden linear structure in terms of the parameters θ which is abstractly of the form Qw(θ) = w>µ(θ).
Analogously, the critic objective usually has a hidden quadratic structure in the parameters w which is
abstractly of the form or (R(θ) − Qw(θ))2. The terminology of hidden structure in this context refers to
the fact that the specified structure appears when the functions transforming the parameters are removed.3

Interestingly, similar observations have been made regarding generative adversarial network formulations and
exploited to gain insights into gradient learning dynamics for optimizing them (Vlatakis-Gkaragkounis et al.,
2019; Flokas et al., 2021).

Based on this observation, we investigate simple, yet illustrative reinforcement learning problems with the
aforementioned structure and compare and contrast the behavior of the Stackelberg gradient dynamics with
the usual individual gradient dynamics. As we demonstrate later in Section 5, the insights we uncover from
this study generally carry over to complex reinforcement learning problems.

1Under sufficient regularity conditions on the follower’s optimization problem, the best response map is a singleton. This is a
generic condition in games (Ratliff et al., 2014; Fiez et al., 2020).

2The partial derivative of f(x1, x2) with respect to the xi is denoted by ∇if(x1, x2) and the total derivative of f(x1, h(x1))
for some function h, is denoted ∇f where ∇f(x1, h(x1) = ∇1f(x1, h(x1)) + (∇h(x1))>∇2f(x1, h(x1)).

3The actor and critic functions could be approximated by neural nets in practice but we consider the simplest linear case,
which captures the hidden structure and gives insights for general cases.
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Example. Consider a single step Markov decision process where the reward function is given by R(θ) = − 1
5θ

2

and θ ∈ [−1, 1] is the decision variable of actor. Suppose that the critic is designed using the most basic linear
function approximation Qw(θ) = wθ with w ∈ [−1, 1]. The actor seeks to find the action that maximizes the
value indicated by the critic and the critic approximates the rewards of actions generated by the actor. Thus,
the actor has objective J(θ, w) = Qw(θ) = wθ and the critic has objective L(θ, w) = Eθ∼ρ[(R(θ)−Qw(θ))2].
For simplicity, we assume the critic only minimizes the mean square error of the sample action generated by
current actor θ. The critic objective is then L(θ, w) = (R(θ)−Qw(θ))2 = (w · θ + 1

5θ
2)2.

Actor-Critic & Deep Deterministic Policy Gradient. The structure of this example closely mirrors
the hidden structure of both the “vanilla” actor-critic and deep deterministic policy gradient formulations as
described in the next section. The typical way to optimize the objectives is by performing individual gradient
dynamics (gradient descent-ascent) on the actor and critic parameters. Figure 1(a) shows the gradient vector
field and the parameter trajectories under the individual gradient dynamics. We observe that although the
trajectory eventually converges to the equilibrium point (θ∗, w∗) = (0, 0), it cycles significantly. Figure 1(b)
shows the vector field and parameter trajectories under the Stackelberg gradient dynamics, the details of
which will be introduced in Section 4. We observe that the cycling behavior is completely eliminated as a
result of the consideration given to the interaction structure. Figure 1(c) shows the error to equilibrium
‖w − w∗‖2 + ‖θ − θ∗‖2 for the individual gradient dynamics and the Stackelberg gradient dynamics along
with a regularized version introduced in Section 4.5. This highlights that cycling is mitigated and convergence
accelerated by optimizing using the Stackelberg gradient.

Soft Actor-Critic. The soft actor-critic algorithm also exhibits a similar structure, but with entropic
regularization included in the actor objective. We show the vector fields along with the parameter trajectories
for the individual gradient dynamics and the Stackelberg gradient dynamics in Figure 2(a) and Figure 2(b),
respectively. Given the entropic regularization, both learning algorithms behave similarly. This perhaps
indicates that the individual gradient dynamics are more well-suited to optimize this form of objectives and
highlights the importance of considering how game dynamics perform on types of hidden structures when
optimizing actor-critic algorithms in reinforcement learning.

Further details on the examples in this section are provided in Appendix A. Importantly, regardless of
the objective function structure, the Stackelberg gradient dynamics tend to converge rather directly to the
equilibrium and for some hidden structures they significantly mitigate oscillations and stabilize training. It is
well-known that this is a desirable property of the reinforcement learning algorithms owing to the implications
for both evaluation and real-world applications (Chan et al., 2019). Together, this motivating section suggests
that introducing the Stackelberg dynamics as a “meta-algorithm” on existing actor-critic methods is likely to
lead to more favorable convergence properties. We demonstrate this empirically in Section 5.

3.3 Actor-Critic Algorithms

We consider discrete-time Markov decision processes (MDPs) with continuous state space S and continuous
action space A. We denote the state and action at time step t by st and at, respectively. The initial state s0
is determined by the initial state density s0 ∼ ρ(s). At time step t, the agent in state st takes an action at
according to a policy at ∼ π(·|st) and obtains a reward rt = r(st, at). The agent then transitions to state
st+1 determined by the transition function st+1 ∼ P (s′|st, at). A trajectory τ = (s0, a0, . . . , sT , aT ) gives the

cumulative rewards or return defined as R(τ) =
∑T
t=0 γ

tr(st, at), where the discount factor 0 < γ ≤ 1 assigns
weights to rewards received at different time steps. The expected return of π after executing at in state st
can be expressed by the Q function

Qπ(st, at) = Eτ∼π
[∑T

t′=t γ
t′−tr(st′ , at′)|st, at

]
.

Correspondingly, the expected return of π in state st can be expressed by the value function V defined as

V π(st) = Eτ∼π
[∑T

t′=t γ
t′−tr(st′ , at′)|st

]
.
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The goal of reinforcement learning is to find an optimal policy that maximizes the expected return which is
given by

J(π) = Eτ∼π
[∑T

t=0 γ
tr(st, at)

]
=
∫
τ
p(τ |π)R(τ)dτ

= Es∼ρ,a∼π(·|s)
[
Qπ(s, a)

]
,

where p(τ |π) = ρ(s0)
∏T
t=0 π(at|st)P (st+1|st, at).

The policy-based approach (Williams, 1992) parameterizes the policy π by the parameter θ and finds the
optimal parameter choice θ∗ by maximizing the expected return

J(θ) = Es∼ρ,a∼πθ(·|s)
[
Qπ(s, a)

]
. (1)

This optimization problem can be solved by gradient ascent. By the policy gradient theorem (Sutton et al.,
2000),

∇θJ(θ) = Es∼ρ,a∼πθ(·|s) [∇θ log πθ(a|s)Qπ(s, a)] ,

where ∇θ denotes the derivative with respect to θ. A common method to approximate Qπ(s, a) in the policy
gradient is by sampling trajectories and averaging returns, which is known as REINFORCE (Williams, 1992).

“Vanilla” Actor-Critic (AC). The actor-critic method (Konda and Tsitsiklis, 2000; Grondman et al.,
2012) relies on a critic function Qw(s, a) parameterized by w to approximate Qπ(s, a). By replacing Qw(s, a)
with Qπ(s, a) in (1), the actor which is parameterized by θ has the objective

J(θ, w) = Es∼ρ,a∼πθ(·|s)
[
Qw(s, a)

]
. (2)

The objective is optimized using gradient ascent where

∇θJ(θ, w) = Es∼ρ,a∼πθ(·|s)[∇θ log πθ(a|s)Qw(s, a)]. (3)

The critic which is parameterized by w has the objective to minimize the mean square error between the
Q-functions

L(θ, w) = Es∼ρ,a∼πθ(·|s)[(Qw(s, a)−Qπ(s, a))2], (4)

where the function Qπ(s, a) is approximated by Monte Carlo estimation or bootstrapping (Sutton and Barto,
2018).

The actor-critic method optimizes the objectives with individual gradient dynamics (Peters and Schaal,
2008; Mnih et al., 2016) which gives rise to the updates

θ ← θ + αθ∇θJ(θ, w), (5)

w ← w − αw∇wL(θ, w), (6)

where αθ and αw are the learning rates of actor and critic. Clearly, even in this basic actor-critic method, the
actor and critic are coupled since J and L depend on both θ and w, which naturally lends to a game-theoretic
interpretation.

Deep Deterministic Policy Gradient (DDPG). The DDPG algorithm (Lillicrap et al., 2016) is an off-
policy method with subtly different objective functions for the actor and critic. In particular, the formulation
has a deterministic actor µθ(s) : S → A with the objective

J(θ, w) = Eξ∼D [Qw(s, µθ(s))] . (7)

The critic objective is the mean square Bellman error

L(θ, w) = E
ξ∼D

[(Qw(s, a)− (r + γQ0(s′, µθ(s
′))))

2
], (8)

where ξ = (s, a, r, s′), D is a replay buffer, and Q0 is a target Q network.4

4In the DDPG algorithm, the next-state actions used in the target network come from the target policy instead of the current
policy. To be consistent with SAC, we use the current policy.

6



Algorithm 1: Stackelberg Actor-Critic Framework

Input: actor-critic algorithm ALG, player designations, and learning rate sequences αθ,k, αw,k.
if actor is leader, update actor and critic in ALG with:

θk+1 = θk + αθ,k∇J(θk, wk) (11)

wk+1 = wk − αw,k∇wL(θk, wk) (12)

if critic is leader, update actor and critic in ALG with:

θk+1 = θk + αθ,k∇θJ(θk, wk) (13)

wk+1 = wk − αw,k∇L(θk, wk) (14)

Soft Actor-Critic (SAC). The SAC algorithm (Haarnoja et al., 2018) exploits the double Q-learning
trick (Van Hasselt et al., 2016) and employs entropic regularization to encourage exploration. The actor’s
objective J(θ, w) is

Eξ∼D
[

min
i=1,2

Qwi(s, aθ(s))− η log(πθ(aθ(s)|s))
]
, (9)

where aθ(s) is a sample from πθ(·|s) and η is entropy regularization coefficient. The parameter of the critic is
the union of both Q networks parameters w = {w1, w2} and the critic objective is defined correspondingly by

L(θ, w) = Eξ∼D
[∑

i=1,2 (Qwi(s, a)− y(r, s′))
2 ]
, (10)

where
y(r, s′) = r + γ(min

i=1,2
Q0,i(s

′, aθ(s
′))− η log(πθ(aθ(s

′)|s′))).

The target networks in DDPG and SAC are updated by taking the Polyak average of the network parameters
over the course of training, and the actor and critic networks are updated by individual gradient dynamics
identical to (5)–(6).

4 Stackelberg Framework

In this section, we begin by formulating the actor-critic interaction as two-player general-sum Stackelberg
game and introduce a Stackelberg framework for actor-critic algorithms, under which we develop novel
Stackelberg versions of existing algorithms: Stackelberg actor-critic (STAC), Stackelberg deep deterministic
policy gradient (STDDPG), and Stackelberg soft actor-critic (STSAC). Following this, we give a local convergence
guarantee for the algorithms to a local Stackelberg equilibrium. Finally, a regularization method for practical
usage of the algorithms is discussed.

4.1 Meta-Algorithm

Given an actor-critic formulation, in particular, the objectives of the actor and critic defined by J(θ, w) and
L(θ, w), we can interpret the problem as a two-player general-sum Stackelberg game. If we view the actor as
the leader and the critic as a follower, then the players aim to solve the following optimization problems,
respectively:

maxθ{J(θ, w∗(θ))
∣∣ w∗(θ) = arg minw′ L(θ, w′)} (AL)

minw L(θ, w). (CF)

On the other hand, if we view the critic as the leader and the actor as the follower, then the players aim to
solve the following optimization problems, respectively:

minw{L(θ∗(w), w)
∣∣ θ∗(w) = arg maxθ′ J(θ′, w)} (CL)

maxθ J(θ, w). (AF)
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As described in Section 3.1, we propose to optimize the objectives using a learning algorithm that accounts
for the structure of the problems. Specifically, since the leader assumes the follower selects a best response, it
is natural to optimize the leader objective by following the total derivative given that the follower’s decision is
implicitly a function of the leader’s. The meta-framework we adopt for Stackelberg refinements of actor-critic
methods is in Algorithm 1. The distinction compared to the usual actor-critic methods is that in the updates
we replace the individual gradient for the leader by the implicitly defined total derivative which accounts for
the interaction structure whereas the rest of the actor-critic method remains identical.

The dynamics with the actor as the leader are given by (11)–(12) where the actor’s total derivative J(θ, w)
is

∇θJ(θ, w)−∇>wθL(θ, w)(∇2
wL(θ, w))−1∇wJ(θ, w). (15)

When the critic is the leader the dynamics are given by (13)–(14) where the critic’s total derivative ∇L(θ, w)
is

∇wL(θ, w)−∇>θwJ(θ, w)(∇2
θJ(θ, w))−1∇θL(θ, w). (16)

We now consider instantiations of this framework and explain how the total derivative can be obtained
from sampling along with natural choices of leader and follower.

4.2 Stackelberg “Vanilla” Actor-Critic

We start by instantiating the Stackelberg meta-algorithm for the “vanilla” actor-critic (AC) algorithm for
which the actor and critic objectives are given in (2) and (4), respectively.5 In this on-policy formulation, the
critic assists the actor in learning the optimal policy by approximating the value function of the current policy.
To give an accurate approximation, the critic aims to be selecting a best response w∗(θ) = arg minw′ L(θ, w′).
Thus, the actor naturally plays the role of leader and the critic the follower.

However, estimating the total derivative ∇J(θ, w) as defined in (15) is not straightforward and we analyze
each component individually. The individual gradient ∇θJ(θ, w) can be computed by policy gradient theorem
as given in (3). Moreover, ∇wJ(θ, w) = Es∼ρ,a∼πθ(·|s)[∇wQw(s, a)], which follows by direct computation, and
similarly

∇2
wL(θ, w) = Es∼ρ,a∼πθ(·|s)

[
2∇wQw(s, a)∇>wQw(s, a)

+2(Qw(s, a)−Qπ(s, a))∇2
wQw(s, a)

]
.

To compute ∇wθL(θ, w) in (15), we begin by obtaining ∇θL(θ, w) with the following policy gradient
theorem. The proof of Theorem 1 is in Appendix B.

Theorem 1. Given an MDP and actor-critic parameters (θ, w), the gradient of L(θ, w) with respect to θ is
given by

∇θL(θ, w) = Eτ∼πθ [∇θ log πθ(a0|s0)

(Qw(s0, a0)−Qπ(s0, a0))2 +
∑T
t=1 γ

t∇θ log πθ(at|st)

(Qπ(s0, a0)−Qw(s0, a0))Qπ(st, at)].

Theorem 1 allows us to compute ∇θwL(θ, w) directly by ∇w(∇θL(θ, w)) since the distribution of ∇θL(θ, w)
does not depend on w and ∇w can be moved into the expectation.

The critic in AC is often designed to approximate the state value function V π(s) which has computational
advantages, and the policy gradient can be computed by advantage estimation (Schulman et al., 2015b). In
this formulation, J(θ, w) = Eτ∼πθ

[
r(s0, a0) +Vw(s1)

]
and L(θ, w) = Es∼ρ[(Vw(s)−V π(s))2]. Then ∇θL(θ, w)

can be computed by the next proposition that is derived in Appendix C.

5We only demonstrate the “vanilla” actor-critic algorithm and its Stackelberg version here and in our experiments, but the
framework could be generalized to more on-policy actor-critic algorithms (e.g., A2C, A3C, Mnih et al. 2016).
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Proposition 1. Given an MDP and actor-critic parameters (θ, w), if the critic has the objective function
L(θ, w) = Es∼ρ[(Vw(s)− V π(s))2], then ∇θL(θ, w) is given by

E
τ∼πθ

[2
T∑
t=0
γt∇θ log πθ(at|st)(V π(s0)− Vw(s0))Qπ(st, at)].

Given these derivations, terms in (15) can be estimated by sampled trajectories, and STAC updates
using (11)–(12).

4.3 Stackelberg DDPG and SAC

In comparison to on-policy methods where the critic is designed to evaluate the actor using sampled trajectories
generated by the current policy, in off-policy methods the critic minimizes the Bellman error using samples
from a replay buffer. Thus, the leader and follower designation between the actor and critic in off-policy
methods is not as clear. To this end, we propose variants of STDDPG and STSAC where the leader and follower
order can be switched. Given the actor as the leader (AL), the algorithms are similar to policy-based methods,
where the critic plays an approximate best response to evaluate the current actor. On the other hand, given
the critic as the leader (CL), the actor plays an approximate best response to the critic value, resulting in
behavior closely resembling that of the value-based methods.

As shown in (7)–(8) for DDPG and (9)–(10) for SAC, the objective functions of off-policy methods are
defined in expectation over an arbitrary distribution from a replay buffer instead of the distribution induced
by the current policy. Thus, each terms in the total derivatives updates in (15) and (16) can be computed
directly and estimated by samples. Then, STDDPG and STSAC update using (11)–(12) or (13)–(14) depending
on the choices of leader and follower.

4.4 Convergence Guarantee

Consider, without loss of generality, the actor is designated as the leader and the critic the follower. Then, the
actor and critic updates with the Stackelberg gradient dynamics and learning rates sequences {αθ,k}, {αw,k}
are of the form

θk+1 = θk + αθ,k(∇J(θ, w) + εθ,k+1), (17)

wk+1 = wk − αw,k(∇wL(θ, w) + εw,k+1), (18)

where {εθ,k+1}, {εw,k+1} are stochastic processes. The results in this section assume the following.

Assumption 1. The maps ∇J : Rm → Rmθ , ∇wL : Rm → Rmw are Lipschitz, and ‖∇J‖ <∞. The learning
rate sequences are such that αθ,k = o(αw,k) and

∑
k αi,k =∞,

∑
k α

2
i,k <∞ for i ∈ I = {θ, w}. The noise pro-

cesses {εi,k} are zero mean, martingale difference sequences: given the filtration Fk = σ(θs, ws, εθ,s, εw,s, s ≤
k), {εi,k}i∈I are conditionally independent, E[εi,k+1| Fk] = 0 a.s., and E[‖εi,k+1‖| Fk] ≤ ci(1 + ‖(θk, wk)‖)
a.s. for some constants ci ≥ 0 and i ∈ I.

The following result gives a local convergence guarantee to a local Stackelberg equilibrium under the
assumptions and the proof is in Appendix D. For this result, recall that for a continuous-time dynamical
system of the form ż = −g(z), a stationary point z∗ of the system is said to be locally asymptotically stable
or simply stable if the spectrum of the Jacobian denoted by −Dg(z) is in the open left half plane.

Theorem 2. Consider an MDP and actor-critic parameters (θ, w). Given a locally asymptotically stable differ-
ential Stackleberg equilibrium (θ∗, w∗) of the continuous-time limiting system (θ̇, ẇ) = (∇J(θ, w),−∇wL(θ, w)),
under Assumption 1 there exists a neighborhood U for which the iterates (θk, wk) of the discrete-time system
in (17)–(18) converge asymptotically almost surely to (θ∗, w∗) for (θ0, w0) ∈ U .

This result is effectively giving the guarantee that the discrete-time dynamics locally converge to a stable,
game theoretically meaningful equilibrium of the continuous-time system using stochastic approximation
methods given suitable learning rate sequences and unbiased gradient estimates (Borkar, 2009).
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4.5 Implicit Map Regularization

The total derivative in the Stackelberg gradient dynamics requires computing the inverse of follower Hessian
∇2

2f2(x). Since critic networks in practical reinforcement learning problems may be highly non-convex,
(∇2

2f2(x))−1 can be ill-conditioned. Thus, instead of computing this term directly in the Stackelberg actor-
critic algorithms, we compute a regularized variant of the form (∇2

2f2(x) +λI)−1. This regularization method
can be interpreted as the leader viewing the follower as optimizing a regularized cost f2(x) + λ

2 ‖x2‖
2, while

the follower actually optimizes f2(x). Interestingly, the regularization parameter λ can serve to interpolate
between the Stackelberg and individual gradient updates for the leader as we now formalize.

Proposition 2. Consider a Stackelberg game where the leader updates using the regularized total derivative
∇λf1(x) = ∇1f1(x) − ∇>21f2(x)(∇2

2f2(x) + λI)−1∇2f1(x). As λ → 0 then ∇λf1(x) → ∇f1(x) and when
λ→∞ then ∇λf1(x)→ ∇1f1(x).

5 Experiments

We now show the results of extensive experiments comparing the Stackelberg actor-critic algorithms with the
comparable actor-critic algorithms. We find that the actor-critic algorithms with the Stackelberg gradient
dynamics always perform at least as well and often significantly outperform the standard gradient dynamics.
Moreover, we provide game-theoretic interpretations of the results.

We run experiments on the OpenAI gym platform (Brockman et al., 2016) with the Mujoco Physics
simulator (Todorov et al., 2012). The performance of each algorithm is evaluated by the average episode
return versus the number of time steps (state transitions after taking an action according to the policy). For
a fair comparison, the hyper-parameters for the actor and critic including the neural network architectures
are set equal when comparing the Stackelberg actor-critic algorithms with the stand normal actor-critic
algorithms. The implementation details are in Appendix E.

Performance. Figures 3(a)–3(d) show the performance of STAC and AC on several tasks. We also experiment
with the common heuristic of “unrolling” the critic m steps between actor steps. For each task, STAC with
multiple critic unrolling steps performs the best. This is due to the fact when the critic is closer to the best
response, then the real response of the critic is closer to what is anticipated by the Stackelberg gradient for
the actor. Interestingly, in CartPole, STAC with m = 1 performs even better than AC with m = 80.

Figures 3(e)–3(h) show the performance of STDDPG-AL and STDDPG-CL in comparison to DDPG. We observe
that on each task, STDDPG-AL outperforms DDPG by a clear margin, whereas STDDPG-CL has overall better
performance than DDPG except on Walker2d. Figures 3(i)–3(l) show the performance of STSAC-AL and STSAC-
CL in comparison to SAC. For this formulation, the advantage afforded by the Stackelberg gradient is not as
apparent.

In all experiments, when the actor is the leader, the Stackelberg versions either outperform or are
comparable to the existing actor-critic algorithms, offering compelling evidence that the Stackelberg framework
has an empirical advantage in many tasks and settings. We now provide game-theoretic interpretations of the
experimental results and connect back to the examples and observations from Section 3.2.

Game-Theoretic Interpretations. SAC is considered the state-of-the-art model-free reinforcement learn-
ing algorithm and we observe it significantly outperforms DDPG (e.g., on Hopper and Walker2d). The common
interpretation of its advantage is that SAC encourages exploration by penalizing low entropy policies. Here we
provide another viewpoint.

From a game-theoretic perspective, the objective functions of AC and DDPG take on hidden linear and hidden
quadratic structures for the actor and critic. This structure can result in cyclic behavior for individual gradient
dynamics as shown in Section 3.2. SAC constructs a more well-conditioned game structure by regularizing the
actor objective, which leads to the learning dynamics converging more directly to the equilibrium as seen in
Section 3.2. This also explains why we observe improved performance with STAC and STDDPG-AL compared to
AC and DDPG, but the performance gap between STSAC-AL and SAC is not as significant.
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Figure 3: Comparison of AC, DDPG, SAC with their Stackelberg versions on OpenAI gym environments. Note
in (a)–(d) the Stackelberg versions are red/purple and in (e)-(l) they are green/red.

Comparing AL with CL, the actor as the leader always outperforms the critic as the leader in our experiments.
As described in Section 3.2, the critic objective is typically a quadratic mean square error objective which
results in a hidden quadratic structure whereas the actor’s objective typically is in the form of a hidden linear
due to parameterization of the Q network and policy. As a result, the critic cost structure is more well-suited
for computing an approximate local best response since it is more likely to be well-conditioned. Thus, the
critic being the follower is a more natural hierarchical structure of the game. Unrolling the critic for multiple
steps to approximate this structure and has been shown to perform well empirically (Schulman et al., 2015a).
Algorithm 2 (Appendix E) shows a similar heuristic can be employed for the Stackelebrg framework.

6 Conclusion

We revisit the standard actor-critic algorithms from a game-theoretic perspective to capture the hierarchical
interaction structure and introduce a Stackelberg framework for actor-critic algorithms. In this framework,
we introduce novel Stackelberg versions of existing actor-critic algorithms. In experiments on a number of
environments, we show that the Stackelberg actor-critic algorithms always outperform the existing counterparts
when the actor plays the leader.
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A Motivation Example Details

In this appendix section, we provide more detail for the example in Section 3.
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Figure 4: Vector fields and trajectories of the individual gradient, Stackelberg gradient and regularized
Stackelberg gradient updates. The Stackelberg updates eliminate cycling by changing the shape of the vector
field.
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Figure 5: (a) Convergence error ‖w − w∗‖2 + ‖θ − θ∗‖2 where (θ∗, w∗) = (0, 0) is the equilibrium. (b) The
return R(θ) of the actor. The Stackelberg update eliminates cycling and hence, converges more directly
to the equilibrium as can be seen in (a), whereas the individual gradient update oscillates significantly.
Regularization helps to speed up convergence.

Recall the motivating example in which the actor plays the leader with the objective function J(θ, w) = w·θ,
and the critic plays the follower with objective function L(θ, w) = (w · θ + 1

5θ
2)2. Figure 4 shows the vector

fields and trajectories of each of the updates: individual gradient play6, Stackelberg gradient play, and
regularized Stackelberg gradient play. In Figure 4(a), we observe clear cycling behavior. Such cycling
behavior may be an indication of reduced reliability along the learning path and is often exacerbated by noise.
Generally speaking, it is more desirable to observe smooth, monotonic changes in performance as compared
to cycling behavior or noisy fluctuations around a observable trend. The reason for this is that when we
go to deploy such algorithms in the real world, it can be extremely costly to have the algorithm perform
in oscillatory or even unpredictable ways. This is in particular true when, as is often the case, there are
unmodeled exogenous inputs or environmental factors.

6In the learning in games literature, this is also often referred to as simultaneous gradient play or simultaneous gradient
descent-ascent.
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On the other hand, Stackelberg gradient converges more directly to the equilibrium point (θ∗, w∗) = (0, 0)
and shown in both Figures 4(b) and 4(c) where the latter are the trajectories of the regularized Stackelberg
gradient introduced in Section 4.5. Figure 5(a) shows the error ‖w − w∗‖2 + ‖θ − θ∗‖2 and Figure 5(b)
shows the return R(θ) of each of the updates. We can observe that the cycling is mitigated and convergence
accelerated by optimizing using the Stackelberg gradient, which leads to more stable returns along the
learning.
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Figure 6: Vector fields and trajectories of the SAC and STSAC-AL updates.
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Figure 7: (a) Error for each algorithm, SAC and STSAC-AL, ‖w − w∗‖2 + ‖θ − θ∗‖2 where (θ∗, w∗) = (0, 0) is
the equilibrium. (b) Return of the actor R(θ).

In Figures 6 and 7, we show the result of adding entropy regularization to the actor’s objective using the
SAC algorithm. Since SAC involves sampling from an stochastic policy, we plot the empirical mean gradient
vector fields in Figure 6(a) and Figure 6(b), where the gradients for update are estimated by samples. With
the entropy regularization, both gradient updates converge much faster and the gap between them are less
significant (Figure 7(a) and 7(b)).
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B Proof of Theorem 1

Recall that the critic’s objective is given by L(θ, w) = Es∼ρ,a∼πθ(·|s)[(Qw(s, a)−Qπ(s, a))2]. The derivative
is computed as follows:

∇θL(θ, w) = ∇θ
∫
s0

ρ(s0)

∫
a0

πθ(a0|s0) (Qw(s0, a0)−Qπ(s0, a0))
2

da0ds0

=

∫
s0

ρ(s0)

∫
a0

∇θπθ(a0|s0) (Qw(s0, a0)−Qπ(s0, a0))
2

da0ds0

+

∫
s0

ρ(s0)

∫
a0

πθ(a0|s0)∇θ (Qw(s0, a0)−Qπ(s0, a0))
2

da0ds0

=

∫
s0

ρ(s0)

∫
a0

πθ(a0|s0)∇θ log πθ(a0|s0) (Qw(s0, a0)−Qπ(s0, a0))
2

da0ds0

+ 2

∫
s0

ρ(s0)

∫
a0

πθ(a0|s0) (Qπ(s0, a0)−Qw(s0, a0))∇θQπ(s0, a0)da0ds0.

From here, it remains to compute ∇θQπ(s0, a0). To do so, recall that Qπ(st, at) and V π(st) are given by

Qπ(st, at) = Eτ∼π
[∑T

t′=t γ
t′−tr(st′ , at′)|st, at

]
= r(st, at) + γ

∫
s′
P (s′|st, at)V π(s′)ds′,

and

V π(st) = Eτ∼π
[∑T

t′=t γ
t′−tr(st′ , at′)|st

]
=

∫
a

πθ(a|st)Qπ(st, a)da.

Hence, ∇θQπ(s0, a0) is computed as follows:

∇θQπ(s0, a0) = γ

∫
s1

P (s1|s0, a0)∇θV π(s1)ds1

= γ

∫
s1

P (s1|s0, a0)

∫
a1

(∇θπθ(a1|s1)Qπ(s1, a1) + πθ(a1|s1)∇θQπ(s1, a1)) da1ds1

= γ

∫
s1

P (s1|s0, a0)

∫
a1

πθ(a1|s1)∇θ log πθ(a1|s1)Qπ(s1, a1)da1ds1

+ γ2
∫
s1

P (s1|s0, a0)

∫
a1

πθ(a1|s1)

∫
s2

P (s2|s1, a1)∇θV π(s2)ds2da1ds1

= γ

∫
s1

P (s1|s0, a0)

∫
a1

πθ(a1|s1)∇θ log πθ(a1|s1)Qπ(s1, a1)da1ds1

+ γ2
∫
s1

P (s1|s0, a0)

∫
a1

πθ(a1|s1)

∫
s2

P (s2|s1, a1)

∫
a2

πθ(a2|s2)∇θ log πθ(a2|s2)Qπ(s2, a2)da2ds2da1ds1

+ γ3
∫
s1

P (s1|s0, a0)

∫
a1

πθ(a1|s1)

∫
s2

P (s2|s1, a1)

∫
a2

πθ(a2|s2)

∫
s3

P (s3|s2, a2)∇θV π(s3)ds3da2ds2da1ds1

= γ

∫
τ

p(τ1:1|θ)∇θ log πθ(a1|s1)Qπ(s1, a1)dτ1:1

+ γ2
∫
τ

p(τ1:2|θ)∇θ log πθ(a2|s2)Qπ(s2, a2)dτ1:2

+ . . .

=

∫
τ

T∑
t=1

γtp(τ1:t|θ)∇θ log πθ(at|st)Qπ(st, at)dτ. (19)
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where the last equality is obtained by unrolling and marginalization for the entire length of the trajectory.
Thus, coming back to the computation of ∇θL(θ, w), we have that

∇θL(θ, w) =

∫
s0

ρ(s0)

∫
a0

πθ(a0|s0)∇θ log πθ(a0|s0) (Qw(s0, a0)−Qπ(s0, a0))
2

da0ds0

+ 2

∫
s0

ρ(s0)

∫
a0

πθ(a0|s0) (Qπ(s0, a0)−Qw(s0, a0))∇θQπ(s0, a0)da0ds0

=

∫
τ

p(τ0|θ)∇θ log πθ(a0|s0) (Qw(s0, a0)−Qπ(s0, a0))
2

+ 2

T∑
t=1

γtp(τ0:t|θ)∇θ log πθ(at|st) (Qπ(s0, a0)−Qw(s0, a0))Qπ(st, at)dτ

= Eτ∼πθ

[
∇θ log πθ(a0|s0) (Qw(s0, a0)−Qπ(s0, a0))

2

+

T∑
t=1

γt∇θ log πθ(at|st) (Qπ(s0, a0)−Qw(s0, a0))Qπ(st, at)

]

which completes the proof.

C Proof of Proposition 1

The critic’s objective is given by L(θ, w) = Es∼ρ
[
(Vw(s)− V π(s))

2
]
. Hence, taking the derivative with

respect to θ, we have that

∇θL(θ, w) =

∫
s0

ρ(s0)∇θ(Vw(s0)− V π(s0))2ds0

= 2

∫
s0

ρ(s0)(V π(s0)− Vw(s0))∇θV π(s0)ds0. (20)

Now we compute ∇θV π(s0) in (20). Use the result of (19), we have

∇θV π(s0) =

∫
a0

∇θπθ(a0|s0)Qπ(s0, a0) + πθ(a0|s0)∇θQπ(s0, a0)da0

=

∫
τ

πθ(a0|s0)

(
∇θ log πθ(a0|s0)Qπ(s0, a0) +

T∑
t=1

γtp(τ1:t|θ)∇θ log πθ(at|st)Qπ(st, at)

)
dτ. (21)

Substituting (21) into (20), we have that

∇θL(θ, w) = 2

∫
τ

T∑
t=0

γtp(τ0:t|θ)∇θ log πθ(at|st) (V π(s0)− Vw(s0))Qπ(st, at)dτ

= Eτ∼πθ

[
2

T∑
t=0

γt∇θ log πθ(at|st) (V π(s0)− Vw(s0))Qπ(st, at)

]

which completes the proof.
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D Proof of Theorem 2

Without loss of generality, the actor plays the role of the leader. Consider a differential Stackelberg equilibrium
of the game (θ∗, w∗) which is locally asymptotically stable7 for the continuous time dynamical system[

θ̇
ẇ

]
=

[
∇J(θ, w)
−∇wL(θ, w))

]
where the total derivative of actor in the Stackelberg gradient is given by

∇J(θ, w) = ∇θJ(θ, w)−∇>wθL(θ, w)(∇2
wL(θ, w))−1∇wJ(θ, w).

and the individual gradient for the critic is ∇wL(θ, w). The actor and critic employ the discrete time updates
given in Algorithm 1 where the actor is the leader. Since the actor and critic have unbiased estimates of their
gradients and the learning rates are chosen as stated in Section 4.4, then the result of the theorem follows
from Theorem 7 in (Fiez et al., 2020). That is, from an initial point (θ0, w0) ∈ U , the Stackelberg gradient
dynamics converge asymptotically to (θ∗, w∗) ∈ U almost surely.

Indeed, the result holds by the following reasoning. Under the assumptions on the noise processes and
stepsize sequences, we treat the updates in Algorithm 1 as a stochastic approximation process (θk, wk). Then,
we define asymptotic pseudo-trajectories—i.e., linear interpolations between iterates (θk, wk) and (θk+1, wk+1).
Since (θ∗, w∗) is locally asymptotically stable, there exists a neighborhood of (θ∗, w∗) and a local Lyapunov
function on that neighborhood. This Lyapunov function can be used to show that the continuous time flow
also starting from iterates (θk, wk) and the asymptotic pseudo-trajectories are contracting onto one another
asymptotically, for any sequence of iterates starting at (θ0, w0) ∈ U . Hence, the iterates (θk, wk), in turn,
converge asymptotically to (θ∗, w∗) almost surely.

Comments on designing gradient estimators. Methods such as REINFORCE (or Monte Carlo method)
provide an unbiased estimator of the follower’s individual gradient. Obtaining an unbiased estimate of the
total derivative for the leader, on the other hand, is a bit more nuanced. This is because there are multiple
gradients being multiplied by one another in the expectation. However, as a heuristic, one way to approximate
it is using the expected value of each of the terms that shows up in the total derivative.

Depending on the actor-critic algorithm and objective functions, following either Theorem 1 (Proposition 1)
or direct derivatives, each term in the total derivative can be computed as an expectation over a distribution of
state and action (generated by current policy in AC and any arbitrary policy in DDPG and SAC). Take DDPG as

an example where J(θ, w) = Eξ∼D [Qw(s, µθ(s))], and L(θ, w) = Eξ∼D
[
(Qw(s, a)− (r + γQ0(s′, µθ(s

′))))
2
]
.

The second term in total derivative appears to be a multiplication of several expectations:

∇J(θ, w) = ∇θJ(θ, w)−∇>wθL(θ, w)(∇2
wL(θ, w))−1∇wJ(θ, w)

= Eξ∼D [∇θQw(s, µθ(s))]− Eξ∼D
[
∇wθ

(
(Qw(s, a)− (r + γQ0(s′, µθ(s

′))))
2
)>

(
∇2
w

(
(Qw(s, a)− (r + γQ0(s′, µθ(s

′))))
2
))−1

∇wQw(s, µθ(s))

]
≈ Eξ∼D [∇θQw(s, µθ(s))]− Eξ∼D

[
∇wθ

(
(Qw(s, a)− (r + γQ0(s′, µθ(s

′))))
2
)]>

(
Eξ∼D

[
∇2
w

(
(Qw(s, a)− (r + γQ0(s′, µθ(s

′))))
2
)])−1

Eξ∼D [∇wQw(s, µθ(s))] .

For this approximation, we can obtain an unbiased estimate by resetting the simulator as described in (Sutton
et al., 2000, Chapter 11) to estimate each term in the product of expectations. As a result, this is a reasonable
heuristic in practice for an approximation to the total derivative. Our policy gradient theorems also provide

7That is, the local linearization of the above dynamics around the point (θ∗, w∗) are in the open left-half complex plane.
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Algorithm 2: Stackelberg Actor-Critic Framework with Unrolling Follower Update and Regulariza-
tion

Input: actor-critic algorithm ALG, player designations, follower unrolling steps m, regularization
hyperparameter λ, and learning rate sequences α1,k, α2,k.

for k = 0, 1, 2 . . . do
if actor is leader, then update actor and critic in ALG with

θk+1 = θk + α1,k(∇θJ(θk, wk,0)− (∇>wθL ◦ (∇2
wL+ λI)−1 ◦ ∇wJ)(θk, wk,0))

wk,l+1 = wk,l − α2,k∇wL(θk, wk,l), l ∈ [0,m− 1]

wk+1,0 = wk,m

if critic is leader, then update actor and critic in ALG with

wk+1 = wk − α1,k(∇wL(θk,0, wk)− (∇>θwJ ◦ (∇2
θJ + λI)−1 ◦ ∇θL)(θk,0, wk))

θk,l+1 = θk,l + α2,k∇θJ(θk,l, wk), l ∈ [0,m− 1]

θk+1,0 = θk,m

end

us a way to derive the estimates of each of these individual terms. Obtaining unbiased estimates as an active
area of research (see, e.g., Hong et al. 2020; Ramponi and Restelli 2020). Moreover, from both a theoretical
and practical perspective, understanding how the batch size affects the estimate of follower Hessian and the
total derivative remains open.

E Implementation Details

This section includes complete details about our experiments. Our implementation is developed based on
public resource Spinning Up8 and our source code is available at https://anonymous.4open.science/r/

51a8d354-203a-400a-b4ea-db012a74d0e9/.
We follow the default neural network architecture used in Spinning Up. Particularly, the AC and STAC

use networks of size (64, 32) with tanh units for both the policy and the value function. The DDPG, STDDPG,
SAC, and STSAC use networks of size (256, 256) with relu units. The AC and STAC collected 4000 steps of
agent-environment interaction per batch and use vanilla gradient descent optimizer and the DDPG, STDDPG,
SAC, and STSAC use Adam optimizer with mini-batches of size 100 at each gradient descent step.

The policy gradient terms for AC and STAC are estimated by generalized average estimator (GAE) (Schulman
et al., 2015b) and critics are updated by Monte Carlo method (Sutton and Barto, 2018). In discrete control
task (CartPole), we set the Hessian regularization hyper-parameter λ = 0, and in continuous control tasks
(others), we set the regularization hyper-parameter λ = 500.

The performances for AC and STAC are measured as the average trajectory return across the batch collected
at each epoch. Performances for DDPG, STDDPG, SAC, and STSAC are measured once every 10, 000 steps by
running the deterministic policy (or, in the case of SAC, the mean policy) without action noise for ten
trajectories, and reporting the average return over those test trajectories.

In our Stackelberg framework, the learning rule for the leader involves computing an inverse-Hessian-vector
product for the ∇2

2f2(x1, x2) inverse term and Jacobian-vector product for the ∇12f2(x1, x2) terms. The
second term can be computed directly by autograd.grad in torch. For the inverse-Hessian-vector term, we
implement the conjugate gradient method using autograd.grad iteratively. This enable us to compute and
estimate the total derivative on GPU directly and perform Stackelberg gradient update. In all experiments,
the Stackelberg versions of actor-critic algorithms roughly take twice the time to train.

In Algorithm 2, we provide a more detailed version of our Stackelberg actor-critic algorithm framework
when multiple follower unrolling steps and implicit map regularization are involved.

8Developed by Josh Achiam in 2018: https://spinningup.openai.com/en/latest/
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