
On Gradient-Based Learning in Continuous Games∗1

Eric Mazumdar†, Lillian J. Ratliff‡, and S. Shankar Sastry§2

3

Abstract.4
We introduce a general framework for competitive gradient-based learning that encompasses a wide breadth of multi-5

agent learning algorithms, and analyze the limiting behavior of competitive gradient-based learning algorithms using dy-6
namical systems theory. For both general-sum and potential games, we characterize a non-negligible subset of the local7
Nash equilibria that will be avoided if each agent employs a gradient-based learning algorithm. We also shed light on the8
issue of convergence to non-Nash strategies in general- and zero-sum games, which may have no relevance to the underlying9
game, and arise solely due to the choice of algorithm. The existence and frequency of such strategies may explain some of10
the difficulties encountered when using gradient descent in zero-sum games as, e.g., in the training of generative adversar-11
ial networks. To reinforce the theoretical contributions, we provide empirical results that highlight the frequency of linear12
quadratic dynamic games (a benchmark for multi-agent reinforcement learning) that admit global Nash equilibria that are13
almost surely avoided by policy gradient.14

Key words. continuous games, gradient-based algorithms, multi-agent learning15

AMS subject classifications.16

1. Introduction. With machine learning algorithms increasingly being deployed in real world17

settings, it is crucial that we understand how the algorithms can interact, and the dynamics that can18

arise from their interactions. In recent years, there has been a resurgence in research efforts on multi-19

agent learning, and learning in games. The recent interest in adversarial learning techniques also20

serves to show how game theoretic tools can be being used to robustify and improve the performance21

of machine learning algorithms. Despite this activity, however, machine learning algorithms are still22

being treated as black-box approaches and being naı̈vely deployed in settings where other algorithms23

are actively changing the environment. In general, outside of highly structured settings, there exists24

no guarantees on the performance or limiting behaviors of learning algorithms in such settings.25

Indeed, previous work on understanding the collective behavior of coupled learning algorithms,26

either in competitive or cooperative settings, has mainly looked at games where the global structure27

is well understood like bilinear games [19, 23, 25, 44], convex games [27, 40], or potential games28

[28], among many others. Such games are more conducive to the statement of global convergence29

guarantees since the assumed global structure can be exploited.30

In games with fewer assumptions on the players’ costs, however, there is still a lack of understand-31

ing of the dynamics and limiting behaviors of learning algorithms. Such settings are becoming increas-32

ingly prevalent as deep learning is increasingly being used in game theoretic settings [1, 15, 17, 49].33

Gradient-based learning algorithms are extremely popular in a variety of these multi-agent settings34

due to their versatility, ease of implementation, and dependence on local information. There are nu-35
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merous recent papers in multi-agent reinforcement learning that employ gradient-based methods (see,36

e.g. [1, 15, 49]), yet even within this well-studied class of learning algorithms, a thorough understand-37

ing of their convergence and limiting behaviors in general continuous games is still lacking.38

Generally speaking, in both the game theory and the machine learning communities, two of the39

central questions when analyzing the dynamics of learning in games are the following:40

Q1. Are all attractors of the learning algorithms employed by agents equilibria relevant to the under-41

lying game?42

Q2. Are all equilibria relevant to the game also attractors of the learning algorithms agents employ?43

In this paper, we provide some answers to the above questions for the class of gradient-based learning44

algorithms by analyzing their limiting behavior in general continuous games. In particular, we leverage45

the continuous time limit of the more naturally discrete multi-agent learning algorithms. This allows us46

to draw on the extensive theory of dynamical systems and stochastic approximation to make statements47

about the limiting behaviors of these algorithms in both deterministic and stochastic settings. The latter48

is particularly relevant since it is common for stochastic gradient methods to be used in multi-agent49

machine learning contexts.50

Analyzing gradient-based algorithms through the lens of dynamical systems theory has recently51

yielded new insights into their behavior in the classical optimization setting [22,42,48]. We show that52

a similar type of analysis can also help understand the limiting behaviors of gradient-based algorithms53

in games. We remark, however, that there is a fundamental difference between the dynamics that are54

analyzed in much of the single-agent, gradient-based learning and optimization literature and the ones55

we analyze in the competitive multi-agent case: the combined dynamics of gradient-based learning56

schemes in games do not necessarily correspond to a gradient flow. This may seem a subtle point, but57

it it turns out to be extremely important.58

Gradient flows admit desirable convergence guarantees—e.g., almost sure convergence to local59

minimizers—due to the fact that they preclude flows with the worst geometries [34]. In particular,60

they do not exhibit non-equilibrium limiting behavior such as periodic orbits. Gradient-based learning61

in games, on the other hand, does not preclude such behavior. Moreover, as we show, asymmetry in62

the dynamics of gradient-play in games can lead to surprising behaviors such as non-relevant limiting63

behaviors being attracting under the flow of the game dynamics and relevant limiting behaviors, such64

as a subset of the Nash equilibria being almost surely avoided.65

1.1. Related Work. The study of continuous games is quite extensive (see e.g. [2, 30]), though66

in large part the focus has been on games admitting a fair amount of structure. The behavior of67

learning algorithms in games is also well-studied (see e.g. [16]). In this section, we comment on the68

most relevant prior work and defer a more comprehensive discussion of our results in the context of69

prior work to Section 6.70

As we noted, previous work on learning in games in both the game theory literature, and more71

recently from the machine learning community, has largely focused on addressing (Q1) whether all72

attractors of the learning dynamics are game-relevant equilibria, and (Q2) whether all game-relevant73

equilibria are also attractors of the learning dynamics. The primary type of game-relevant equilibrium74

considered in the investigation of these two questions is a Nash equilibrium.75

The majority of the existing work has focused on Q1. In fact, a large body of prior work focuses76

on games with structures that preclude the existence of non-Nash equilibria. Consequently, answer-77

ing Q1 reduces to analyzing the convergence of various learning algorithms (including gradient-play)78
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to the unique Nash equilibrium or the set of Nash equilibria. This is often shown by exploiting the79

game structure. Examples of classes of games where gradient-play has been well-studied are potential80

games [28], concave or monotone games [8, 27, 40], and gradient-play over the space of stochastic81

policies in two-player finite-action bilinear games [44]. In the latter setting, other gradient-like algo-82

rithms such as multiplicative weights have also been studied fairly extensively [19], and have been83

shown to converge to cycling behaviors.84

Some works have also attempted to address Q1 in the context of gradient-play in two-player zero-85

sum games. Concurrently with this paper, for a general class of “sufficiently smooth” two-player, zero-86

sum games it was shown that there exists stationary points for gradient-play that are non-Nash [12]1.87

In such games, it has also been shown that gradient-play can converge to cycles (see, e.g., [19,25,47]).88

There is also related work in more general games on the analysis of when Nash equilibria are89

attracting for gradient-based approaches (i.e. Q2). Sufficient conditions for this to occur are the90

conditions for stable differential Nash equilibria introduced in [35–37] and the condition for variational91

stability later analyzed in [27]. We remark that these conditions are equivalent for the classes of games92

we consider. Neither of these works give conditions under which Nash equilibria are avoided by93

gradient-play or comment on other attracting behaviors.94

Expanding on this rich body of literature (only the most relevant of which is covered in our short95

review), in this paper we provide answers to Q1 without imposing structure on the game outside96

regularity conditions on the cost functions by exploiting the observation that gradient-based learning97

dynamics are not gradient flows. We also provide answers to Q2 by demonstrating that a non-trivial98

set of games admit Nash equilibria that are almost surely avoided by gradient-play. We give explicit99

conditions for when this occurs. Using similar analysis tools, we also provide new insights into the100

behavior of gradient-based learning in structured classes of games such as zero-sum and potential101

games.102

1.2. Contributions and Organization. We present a general framework for modeling com-103

petitive gradient-based learning that applies to a broad swath of learning algorithms. In Section 3,104

we draw connections between the limiting behavior of this class of algorithms and game-theoretic105

and dynamical systems notions of equilibria. In particular, we construct general-sum and zeros-sum106

games that admit non-Nash attracting equilibria of the gradient dynamics. Such points are attracting107

under the learning dynamics, yet at least one player—and potentially all of them—has a direction in108

which they could unilaterally deviate to decrease their cost. Thus, these non-Nash equilibria are of109

questionable game theoretic relevance and can be seen as artifacts of the players’ algorithms.110

In Section 4, we show that policy gradient multi-agent reinforcement learning (MARL), generative111

adversarial networks (GANs), gradient-based multi-agent multi-armed bandits, among several other112

common multi-agent learning settings, conform to this framework. The framework is amenable to113

tools for analysis from dynamical systems theory.114

Also in Section 4, we show that a subset of the local Nash equilibria in general-sum games and115

potential games is avoided almost surely when each player employs a gradient-based algorithm. We116

show that this holds in two broad settings: the full information setting when each player has oracle117

access to their gradient but randomly initializes their first action, and a partial information setting118

where each player has access to an unbiased estimate of their gradient.119

1This paper was under review at the time that [12] became publicly available. Our results show the existence of these
non-Nash equilibria and attracting cycles in both general-sum and zero-sum games.
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Thus, we provide a negative answer to both Q1 and Q2 for n–player general-sum games, and120

highlight the nuances present in zero-sum and potential games. We also show that the dynamics121

formed from the individual gradients of agents’ costs are not gradient flows. This in turn implies that122

competitive gradient-based learning in general-sum games may converge to periodic orbits and other123

non-trivial limiting behaviors that arise in, e.g., chaotic systems.124

To support the theoretical results, we present empirical results in Section 5 that show that policy125

gradient algorithms avoid global Nash equilibria in a large number of linear quadratic (LQ) dynamic126

games, a benchmark for MARL.127

We conclude in Section 6 with a discussion of the implications of our results and some links with128

prior work as well as some comments on future directions.129

2. Preliminaries. Consider n agents indexed by I = {1, . . . , n}. Each agent i ∈ I has their130

own decision variable xi ∈ Xi, where Xi is their finite-dimensional strategy space of dimension mi.131

Define X = X1 × · · · × Xn to be the finite-dimensional joint strategy space with dimension m =132 ∑
i∈Imi. Each agent is endowed with a cost function fi ∈ Cs(X,R) with s ≥ 2 and such that fi :133

(xi, x−i) 7→ fi(xi, x−i) where we use the notation x = (xi, x−i) to make the dependence on the action134

of the agent xi, and the actions of all agents excluding agent i, x−i = (x1, . . . , xi−1, xi+1, . . . , xn)135

explicit. The agents seek to minimize their own cost, but only have control over their own decision136

variable xi. In this setup, agents’ costs are not necessarily aligned with one another, meaning they are137

competing.138

Given the game G = (f1, . . . , fn), agents are assumed to update their strategies simultaneously139

according to a gradient-based learning algorithm of the form140

(2.1) xi,t+1 = xi,t − γi,thi(xi,t, x−i,t),141

where γi,t is agent i’s step-size at iteration t.142

We analyze the following two settings:143

1. Agents have oracle access to the gradient of their cost with respect to their own choice144

variable—i.e. hi(xi,t, x−i,t) = Difi(xi,t, x−i,t) whereDifi ≡ ∂fi/∂xi denotes the derivative145

of fi with respect to xi.146

2. Agents have an unbiased estimator of their gradient—i.e., hi(xi,t, x−i,t) = Difi(xi,t, x−i,t)+147

wi,t+1 where {wi,t} is a zero mean, finite variance stochastic process.148

We refer to the former setting as deterministic gradient-based learning and the latter setting as stochas-149

tic gradient-based learning. Assuming that all agents are employing such algorithms, we aim to ana-150

lyze the limiting behavior of the agents’ strategies. To do so, we leverage the following game-theoretic151

notion of a Nash equilibrium.152

Definition 2.1. A strategy x ∈ X is a local Nash equilibrium for the game (f1, . . . , fn) if, for153

each i ∈ I, there exists an open set Wi ⊂ Xi such that that xi ∈ Wi and fi(xi, x−i) ≤ fi(x
′
i, x−i)154

for all x′i ∈Wi. If the above inequalities are strict, then we say x is a strict local Nash equilibrium.155

The focus on local Nash equilibria is due to our lack of assumptions on the agents’ cost functions.156

If Wi = Xi for each i, then a local Nash equilibrium x is a global Nash equilibrium. This holds in157

e.g the bimatrix games and the linear quadratic games we analyze in Section 5. Depending on the158

agents’ costs, a game (f1, . . . , fn) may admit anywhere from one to a continuum of local or global159

Nash equilibria; or none at all.160

This manuscript is for review purposes only.



ON GRADIENT-BASED LEARNING IN CONTINUOUS GAMES 5

3. Linking Games and Dynamical Systems. In this section, we draw links between the161

limiting behavior of dynamical systems and game-theoretic notions of equilibria in three broad classes162

of continuous games. For brevity, the proofs of the propositions in this section are supplied in Ap-163

pendix A. A high-level summary of the links we draw is shown in Figure 1.164

Define ω(x) = (D1f1(x), . . . , Dnfn(x)) to be the vector of player derivatives of their own cost165

functions with respect to their own choice variables. When each player is employing a gradient-based166

learning algorithm, the joint strategy of the players, (in the limit as the agents’ step-sizes go to zero)167

follows the differential equation168

ẋ = −ω(x).169170

A point x ∈ X is said to be an equilibrium, critical point, or stationary point of the dynamics171

if ω(x) = 0. Stationary points of ẋ = −ω(x) are joint strategies from which, under gradient-play,172

the agents do not move. We note that ω(x) = 0 is a necessary condition for a point x ∈ X to be a173

local Nash equilibrium [37]. Hence, all local Nash equilibria are critical points of the joint dynamics174

ẋ = −ω(x).175

Central to dynamical systems theory is the study of limiting behavior and its stability properties.176

A classical result in dynamical systems theory allows us to characterize the stability properties of an177

equilibrium x∗ by analyzing the Jacobian of the dynamics at x∗. The Jacobian of ω is defined by178

Dω(x) =

 D
2
1f1(x) · · · Dn1f1(x)

...
. . .

...
D1nfn(x) · · · D2

nfn(x)

 .179

Since Dω is a matrix of second derivatives, it is sometimes referred to as the ‘game Hessian’. Similar180

to the Hessian matrix of a gradient flow,Dω allows us to further characterize the critical points of ω by181

their properties under the flow of ẋ = −ω(x). Let λi(x) ∈ spec(Dω(x)) for i ∈ {1, . . . ,m} denote182

the eigenvalues of Dω at x where Re(λ1(x)) ≤ · · · ≤ Re(λm(x))—that is, λ1(x) is the eigenvalue183

with the smallest real part. Of particular interest are asymptotically stable equilibria.184

Definition 3.1. A point x ∈ X is a locally asymptotically stable equilibrium of the continuous185

time dynamics ẋ = −ω(x) if ω(x) = 0 and Re(λ) > 0 for all λ ∈ spec(Dω(x)).186

Locally asymptotically stable equilibria have two properties of interest. First, they are isolated,187

meaning that there exists a neighborhood around them in which no other equilibria exist. Second,188

they are exponentially attracting under the flow of ẋ = −ω(x), meaning that if agents initialize in a189

neighborhood of a locally asymptotically stable equilibrium x∗ and follow the dynamics described by190

ẋ = −ω(x), they will converge to x∗ exponentially fast [41]. This, in turn, implies that a discretized191

version of ẋ = −ω(x), namely192

(3.1) xt+1 = xt − γω(xt),193

converges locally for appropriately selected step size γ at a rate of O(1/t). Such results motivate194

the study of the continuous time dynamical system ẋ = −ω(x) in order to understand convergence195

properties of gradient-based learning algorithms of the form (2.1).196

Another important class of critical points of a dynamical system are saddle points.197
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Definition 3.2. A point x ∈ X is a saddle point of the dynamics ẋ = −ω(x) if ω(x) = 0198

and λ1(x) ∈ spec(Dω(x)) is such that Re(λ1(x)) ≤ 0. A saddle point such that Re(λi) < 0 for199

i ∈ {1, . . . , `} and Re(λj) > 0 for j ∈ {`+ 1, . . . ,m} with 0 < ` < m is a strict saddle point of the200

continuous time dynamics ẋ = −ω(x).201

Strict saddle points are especially relevant to our analysis since their neighborhoods are character-202

ized by stable and unstable manifolds [41]. When the agents evolve according to the dynamics solely203

on the stable manifold, they converge exponentially fast to the critical point. However, when they204

evolve solely on the unstable manifold, they diverge from the equilibrium exponentially fast. Agents205

whose strategies lie on the union of the two manifolds asymptotically avoid the equilibrium. We make206

use of this general fact in Section 4.1.207

To better understand the links between the critical points of the gradient dynamics and the Nash208

equilibria of the game, we make use of an equivalent characterization of strict local Nash that leverages209

first and second order conditions on player cost functions. This makes them simpler objects to link to210

the various dynamical systems notions of equilibria than local Nash equilibria.211

Definition 3.3 ( [35,37]). A point x ∈ X is a differential Nash equilibrium for the game defined212

by (f1, . . . , fn) if ω(x) = 0 and D2
i fi(x) � 0 for each i ∈ I.213

In [36], it was shown that local Nash equilibria are generically differential Nash equilibria where214

det(Dω(x)) 6= 0 (i.e., Dω is non-degenerate). Thus, in the space of games where the agents’ costs215

are at least twice differentiable, the set of games that admit local Nash equilibria that are not non-216

degenerate differential Nash equilibria is of measure zero [36]. In [36] it was also shown that non-217

degenerate Nash equilibria are structurally stable, meaning that small perturbations to the agents’218

costs functions will not change the fundamental nature of the equilibrium. This also implies that219

gradient-play with slightly biased estimators of the gradient will not have vastly different behaviors in220

neighborhoods of equilibria.221

Given these different equilibrium notions of the learning dynamics and the underlying game, let us222

define the following sets which will be useful in stating the results in the following sections. For a game223

G = (f1, . . . , fn), denote the sets of strict saddle points and locally asymptotically stable equilibria224

of the gradient dynamics, ẋ = −ω(x), as SSP(ω) and LASE(ω), respectively, where we recall that225

ω(x) = (D1f1(x), . . . , Dnfn(x)). Similarly, denote the set of local Nash equilibria, differential Nash226

equilibria, and non-degenerate differential Nash equilibria of G as LNE(G), DNE(G), and NDDNE(G),227

respectively. As previously mentioned, NDDNE(G) = LNE(G) in almost all continuous games. The key228

takeaways of this section are summarized in Figure 1.229

3.1. General-sum games. We first analyze the properties of local Nash equilibria under the230

joint gradient dynamics in n-player general-sum games.231

Proposition 3.4. A non-degenerate differential Nash equilibrium is either a locally asymptoti-232

cally stable equilibrium or a strict saddle point of ẋ = −ω(x)—i.e., NDDNE(G) ⊂ SSP(ω)∪ LASE(ω).233

234

Locally asymptotically stable differential Nash equilibria satisfy the notion of variational stability235

introduced in [27]. In fact, a simple analysis shows that the definitions of variationally stable equilibria236

and locally asymptotically stable differential Nash equilibria [35] are equivalent in the games we237

consider—i.e., games where each players’ cost is at least twice continuously differentiable. We remark238
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Figure 1: Links between the equilibria of generic continuous games G and their properties under the
gradient dynamics ẋ = −ω(x).

that, from the definition of asymptotic stability, the gradient dynamics have a O(1/t) convergence rate239

in the neighborhood of such equilibria.240

An important point to make is that not every locally asymptotically stable equilibrium of ẋ =241

−ω(x) is a non-degenerate differential Nash equilibrium. Indeed, the following proposition provides242

an entire class of games whose corresponding gradient dynamics admit locally asymptotically stable243

equilibria that are not local Nash equilibria.244

Proposition 3.5. In the class of general-sum continuous games, there exists a continuum of245

games containing games G such that LASE(ω) 6⊂ NDDNE(G), and moreover, LASE(ω) 6⊂ LNE(G).246

247

Proof. Consider a two player game G = (f1, f2) on R2 where248

f1(x1, x2) =
a

2
x2

1 + bx1x2, and f2(x1, x2) =
d

2
x2

2 + cx1x2249
250

for constants a, b, c, d ∈ R. The Jacobian of ω is given by251

Dω(x1, x2) =

[
a b
c d

]
, ∀(x1, x2) ∈ R2.(3.2)252

253

If a > 0 and d < 0, then the unique stationary point x = (0, 0) is neither a differential Nash nor a254

local Nash equilibria since the necessary conditions are violated (i.e., d < 0). However, if a > −d and255

ad > cb, the eigenvalues of Dω have positive real parts and (0, 0) is asymptotically stable. Further,256

this clearly holds for a continuum of games. Thus, the set of locally asymptotically stable equilibria257

that are not Nash equilibria may be arbitrarily large.258

The, preceding proposition shows that there exists attracting critical points of the gradient dynam-259

ics in general-sum continuous games that are not Nash equilibria and may not be even relevant to the260

game. Thus, this provides a negative answer to Q2 (whether all attracting equilibria in general-games261

are game-relevant for the learning dynamics).262
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Remark 3.6. We note that, by definition, the non-Nash locally asymptotically stable equilibria (or263

non-Nash equilibria) do not satisfy the second-order conditions for Nash equilibria. Thus, at these264

joint strategies, at least one player – and maybe all of them – has a direction in which they would265

unilaterally deviate if they were not using gradient descent. As such, we view convergence to these266

points to be undesirable.267

3.2. Zero-sum games. Let us now restrict our attention to two-player zero-sum games, which268

often arise when training GANs, in adversarial learning, and in MARL [9,17,29]. In such games, one269

player can be seen as minimizing f with respect to their decision variable and the other as minimizing270

−f with respect to theirs. The following proposition shows that all differential Nash equilibria in271

two-player zero-sum games are locally asymptotically stable equilibria under the flow of ẋ = −ω(x).272

Proposition 3.7. For an arbitrary two-player zero-sum game, (f,−f) on Rm, if x is a differ-273

ential Nash equilibrium, then x is both a non-degenerate differential Nash equilibrium and a locally274

asymptotically stable equilibrium of ẋ = −ω(x)—that is, DNE(G) ≡ NDDNE(G) ⊂ LASE(ω).275

This result guarantees that the differential Nash equilibria of zero-sum games are isolated and276

exponentially attracting under the flow of ẋ = −ω(x). This in turn guarantees that simultaneous277

gradient-play has a local linear rate of convergence to all local Nash equilibria in all zero-sum con-278

tinuous games. Thus, the answer to Q1 is the context of zero-sum games is “yes”, since all Nash279

equilibria are attracting for the gradient dynamics.280

The converse of the preceding proposition, however, is not true. Not every locally asymptotically281

stable equilibrium in two-player zero-sum games are non-degenerate differential Nash equilibria. In-282

deed, there may be many locally asymptotically stable equilibria in a zero-sum game that are not local283

Nash equilibria. The following proposition highlights this fact.284

Proposition 3.8. In the class of zero-sum continuous games, there exists a continuum of games285

such that for each game G, LASE(ω) 6⊂ DNE(G) ⊂ LNE(G).286

Proof. Consider the two-player zero-sum game (f,−f) on R2 where287

f(x1, x2) =
a

2
x2

1 + bx1x2 +
c

2
x2

2;288
289

and a, b, c ∈ R. The Jacobian of ω is given by290

Dω(x1, x2) =

[
a b
−b −c

]
, ∀ (x1, x2) ∈ R2.291

If a > c > 0 and b2 > ac, then Dω(x1, x2) has eigenvalues with strictly positive real part, but the292

unique stationary point is not a differential Nash equilibrium—since−c < 0—and, in fact, is not even293

a Nash equilibrium. Indeed,294

−f(0, 0) > −f(0, x2) = − c
2
x2

2, ∀ x2 6= 0.295

Thus, there exists a continuum of zero-sum games with a large set of locally asymptotically stable296

equilibria of the corresponding dynamics ẋ = −ω(x) that are not differential Nash.297

The, preceding proposition again shows that there exists non-Nash equilibria of the gradient dy-298

namics in zero-sum continuous games. Thus, this proposition also provides a negative answer to Q2299

in the context of zero-sum games.300
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3.3. Potential Games. One last set of games with interesting connections between the Nash301

equilibria and the critical points of the gradient dynamics is the class known as potential games. This302

particularly nice class of games are ones for which ω corresponds to a gradient flow under a coordinate303

transformation—that is, there exists a function φ (commonly referred to as the potential function)304

such that for each i ∈ I, Difi ≡ Diφ. We remark that due to the equivalence this class of games305

is sometimes referred to as an exact potential game. Note that a necessary and sufficient condition306

for (f1, . . . , fn) to be a potential game is that Dω is symmetric [28]—that is, Dijfj ≡ Djifi. This307

gives potential games the desirable property that the only locally asymptotically stable equilibria of308

the gradient dynamics are local Nash equilibria.309

Proposition 3.9. For an arbitrary potential game, G = (f1, . . . , fn) on Rm, if x is a locally310

asymptotically stable equilibrium of ẋ = −ω(x) (i.e., x ∈ LASE(ω)), then x is a non-degenerate311

differential Nash equilibrium (i.e., x ∈ NDDNE(G)).312

The full proof of Proposition 3.9 is supplied in Appendix A. The preceding proposition rules out313

non-Nash locally asymptotically stable equilibria of the gradient dynamics in potential games, and314

implies that every local minimum of a potential game must be a local Nash equilibrium. Thus, in315

potential games, unlike in general-sum and zero-sum games, the answer to Q2 is positive. However,316

the following proposition shows that the existence of a potential function is not enough to rule out317

local Nash equilibria that are saddle points of the dynamics.318

Proposition 3.10. In the class of continuous games, there exist a continuum of potential games319

containing games G that admit Nash equilibria that are saddle points of the dynamics ẋ = −ω(x)—320

i.e., ∃ G such that for some x ∈ LNE(G), x ∈ SSP(ω).321

Proof. Consider the game (f, f) on X = R2 described by322

f(x1, x2) =
a

2
x2

1 + bx1x2 +
c

2
x2

2323

where a, b, d ∈ R. The Jacobian of ω is given by324

Dω(x1, x2) =

[
a b
b c

]
, ∀ (x1, x2) ∈ R2.325

If a, c > 0, then x = (0, 0) is a local Nash equilibrium. However, if ac < b2, Dω(x) has one positive326

and one negative eigenvalue and (0, 0) is a saddle point of the gradient dynamics. Thus, there exists a327

continuum of potential games where a large set of differential Nash equilibria are strict saddle points328

of ẋ = −ω(x).329

Proposition 3.10 demonstrates a surprising fact about potential games. Even though all minimizers330

of the potential function must be local Nash equilibria, not all local Nash equilibria are minimizers of331

the potential function.332

3.4. Main Takeaways. The main takeaways of this section are summarized in Figure 1. We333

note that for zero-sum games, Proposition 3.8 shows that LNE(G) ⊂ LASE(ω). Since the inclusion is334

strict, the answer to Q2 in such games is “no”. For general-sum games, Proposition 3.5 allows us to335

to conclude that there do exist attracting, non-Nash equilibria. Thus, the answer to Q2 is also “no”. In336

potential games, since LASE(ω) ⊂ LNE(G) the answer is “yes”.337
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In the following sections, we provide answers to Q1 by showing that all local Nash equilibria in338

LNE(G)∩SSP(ω) are avoided almost surely by gradient-based algorithms in both the deterministic and339

stochastic settings. In particular, since LNE(G)∩ SSP(ω) 6= ∅ in potential and general-sum games, one340

cannot give a positive answer to Q1 in either of these classes of games.341

4. Convergence of Gradient-Based Learning. In this section, we provide convergence and342

non-convergence results for gradient-based algorithms. We also include a high-level overview of well-343

known algorithms that fit into the class of learning algorithms we consider; more detail can be found344

in Appendix C.345

4.1. Deterministic Setting. We first address convergence to equilibria in the deterministic346

setting in which agents have oracle access to their gradients at each time step. This includes the347

case where agents know their own cost functions fi and observe their own actions as well as their348

competitors’ actions—and hence, can compute the gradient of their cost with respect to their own349

choice variable.350

Since we have assumed that each agent i ∈ I has their own learning rate (i.e. step sizes γi), the351

joint dynamics of all the players are given by352

(4.1) xt+1 = g(xt)353

where g : x 7→ x− γ�ω(x) with γ = (γi)i∈I and γ > 0 element-wise. By a slight abuse of notation,354

γ�ω(xt) is defined to be element-wise multiplication of γ and ω(·) where γ1 is multiplied by the first355

m1 components of ω(·), γ2 is multiplied by the next m2 components, and so on.356

We remark that this update rule immediately distinguishes gradient-based learning in games from357

gradient descent. By definition, the dynamics of gradient descent in single-agent settings always358

correspond to gradient flows —i.e x evolves according to an ordinary differential equation of the form359

ẋ = −∇φ(x) for some function φ : Rd → R. Outside of the class of exact potential games we defined360

in Section 3, the dynamics of players’ actions in games are not afforded this luxury—indeed, Dω is361

not in general symmetric (which is a necessary condition for a gradient flow). This makes the potential362

limiting behaviors of ẋ = −ω(x) highly non-trivial to characterize in general-sum games.363

The structure present in a gradient-flow implies strong properties on the limiting behaviors of x. In364

particular, it precludes the existence of limit cycles or periodic orbits (limiting behaviors of dynamical365

systems where the state of system cycles infinitely through a set of states with a finite period) and366

chaos (an attribute of nonlinear dynamical systems where the system’s behavior can vary extremely367

due to slight changes in initial position) [41]. We note that both of these behaviors can occur in the368

dynamics of gradient-based learning algorithms in games2.369

Despite the wide breadth of behaviors that gradient dynamics can exhibit in competitive settings,370

we are still make statements about convergence (and non-convergence) to certain types of equilibria.371

To do so, we first make the following standard assumptions on the smoothness of the cost functions fi372

and the magnitude of the agents’ learning rates γi.373

Assumption 1. For each i ∈ I, fi ∈ Cs(X,R) with s ≥ 2, supx∈X ‖Dω(x)‖2 ≤ L < ∞, and374

0 < γi < 1/L where ‖ · ‖2 is the induced 2-norm.375

2The Van der Pol oscillator and Lorenz system (see e.g [41]) can be seen as the resulting gradient dynamics in a 2-player
and 3-player general-sum game respectively. The first is a classic example of a system where players converge to cycles and
the second is an example of a chaotic system.
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Given these assumptions, the following result rules out converging to strict saddle points.376

Theorem 4.1. Let fi : X → R and γ satisfy Assumption 1. Suppose that X = X1× · · ·×Xn ⊆377

Rm is open and convex. If g(X) ⊂ X , the set of initial conditions x ∈ X from which competitive378

gradient-based learning converges to strict saddle points is of measure zero.379

We remark that the above theorem holds for X = X1 × · · · × Xn = Rm in particular, since380

g(X) ⊂ X holds trivially in this case. It is also important to note that, as we point out in Section 3,381

local Nash equilibria can be strict saddle points. Thus, all local Nash equilibria that are strict saddle382

points for ẋ = −ω(x) are avoided almost surely by gradient-play even with oracle gradient access and383

random initializations. This holds even when players randomly initialize uniformly in an arbitrarily384

small ball around such Nash equilibria. In Section 5, we show that many linear quadratic dynamic385

games have a strict saddle point as their global Nash equilibrium. For brevity, we provide the proof of386

Theorem 4.1 in Appendix A, and provide a proof sketch below.387

Proof sketch of Theorem 4.1. The core of the proof is the celebrated stable manifold theorem from388

dynamical systems theory, presented in Theorem A.1. We construct the set of initial positions from389

which gradient-play will converge to strict saddle points and then use the stable manifold theorem390

to show that the set must have measure zero in the players’ joint strategy space. Therefore, with a391

random initialization players will never evolve solely on the stable manifold of strict saddles and they392

will consequently diverge from such equilibria.393

To be able to invoke the stable manifold theorem, we first show that the mapping g : Rm → Rm394

is a diffeomorphism, which is non-trivial due to the fact that we have allowed each agent to have their395

own learning rate γi and Dω is not symmetric. We then iteratively construct the set of initializations396

that will converge to strict saddle points under the game dynamics. By the stable manifold theorem,397

and the fact that g is a diffeomorphism, the stable manifold of a strict saddle point must be measure398

zero. Then, by induction we show that the set of all initial points that converge to a strict saddle point399

must also be measure zero.400

In potential games we can strengthen the above non-convergence result and give convergence401

guarantees.402

Corollary 4.2. Consider a potential game (f1, . . . , fn) on open, convex X = X1 × · · · ×Xn ⊆403

Rm and where each fi ∈ Cs(X,R) for s ≥ 3. Let ν be a prior measure with support X which is404

absolutely continuous with respect to the Lebesgue measure and assume limt→∞ g
t(x) exists. Then,405

under Assumption 1, competitive gradient-based learning converges to non-degenerate differential406

Nash equilibria almost surely. Moreover, the non-degenerate differential Nash to which it converges is407

generically a local Nash equilibrium.408

Corollary 4.2 guarantees that in potential games, gradient-play will converge to a differential Nash409

equilibrium. Combining this with Theorem 4.1 guarantees that the differential Nash equilibrium it410

converges to is a local minimizer of the potential function. A simple implication of this result is that411

gradient-based learning in potential games cannot exhibit limit cycles or chaos.412

Of note is the fact that the agents do not need to be performing gradient-based learning on φ413

to converge to Nash almost surely. That is, they do not need to know the function φ; they simply414

need to follow the derivative of their own cost with respect to their own choice variable, and they are415

guaranteed to converge to a local Nash equilibrium that is a local minimizer of the potential function.416

We note that convergence to Nash equilibria is a known characteristic of gradient-play in potential417
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games. However, our analysis also highlights that gradient-play will avoid a subset of the Nash equi-418

libria of the game. This is surprising given the particularly strong structural properties of such games.419

The proof for Corollary 4.2 is provided in Appendix A and follows from Proposition 3.9, Theorem 4.1,420

and the fact that Dω is symmetric in potential games.421

4.1.1. Implications and Interpretation of Convergence Analysis. Both Theorem 4.1422

and Corollary 4.2 show that gradient-play in multi-agent settings avoids strict saddles almost surely423

even in the deterministic setting. Combined with the analysis in Section 3 which shows that (local)424

Nash equilibria can be strict saddles of the dynamics for general-sum games, this implies that a subset425

of the Nash equilibria are almost surely avoided by individual gradient-play, a potentially undesir-426

able outcome in view of Q1 (whether all Nash equilibria are attracting for the learning dynamics). In427

Section 5, we show that the global Nash equilibrium is a saddle point of the gradient dynamics in a428

large number of randomly sampled LQ dynamic games. This suggests that policy gradient algorithms429

may fail to converge in such games, which is highly undesired. This is in stark contrast to the sin-430

gle agent setting where policy gradient has been shown to converge to the unique solution of LQR431

problems [13].432

In Section 3, we also showed that local Nash equilibria of potential games can be strict saddles433

points of the potential function. Non-convergence to such points in potential games is not necessarily434

a bad result since this in turn implies convergence to a local minimizer of the potential function (as435

shown in [22,32]) which are guaranteed to be local Nash equilibria of the game. However, these results436

do imply that one cannot answer “yes” to Q1 in potential games since some of the Nash equilibria are437

not attracting under gradient-play.438

In zero-sum games, where local Nash equilibria cannot be strict saddle points of the gradient439

dynamics, our result suggests that eventually gradient-based learning algorithms will escape saddle440

points of the dynamics.441

The almost sure avoidance of all equilibria that are saddle points of the dynamics further implies442

that if (3) converges to a critical point x, then x ∈ LASE(ω)—i.e., x is locally asymptotically stable for443

ẋ = −ω(x). This may not be a desired property however, since we showed in Section 3 that zero-sum444

and general-sum games both admit non-Nash LASE.445

Since gradient-play in games generally does not result in a gradient flow, other types of limiting446

behaviors such as limit cycles can occur in gradient-based learning dynamics. Theorem 4.1 says447

nothing about convergence to other limiting behaviors. In the following sections we prove that the448

results described in this section extend to the stochastic gradient setting. We also formally define449

periodic orbits in the context of dynamical systems and state stronger results on avoidance of some450

more complex limiting behaviors like linearly unstable limit cycles.451

4.2. Stochastic Setting. We now analyze the stochastic case in which agents are assumed to452

have an unbiased estimator for their gradient. The results in this section allow us to extend the results453

from the deterministic setting to a setting where each agent builds an estimate of the gradient of their454

loss at the current set of strategies from potentially noisy observations of the environment. Thus, we455

are able to analyze the limiting behavior of a class of commonly used machine learning algorithms for456

competitive, multi-agent settings. In particular, we show that agents will almost surely not converge457

to strict saddle points. In Appendix B.1, we show that the gradient dynamics will actually avoid more458

general limiting behaviors called linearly unstable cycles which we define formally.459

To perform our analysis, we make use of tools and ideas from the literature on stochastic approxi-460
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Class Gradient Learning Rule

Gradient-Play x+
i = xi − γiDifi(xi, x−i)

GANs θ+ = θ − γE[DθL(θ, w)]
w+ = w + γE[DwL(θ, w)]

MA Policy Gradient x+
i = xi − γiE[DiJi(xi, x−i)]

Individual Q-learning q+
i (ui) = qi(ui) + γi(ri(ui, π−i(qi, q−i))− qi(ui))

MA Gradient Bandits x+
i,` = xi,` + γiE[βiRi(ui, u−i)|ui = `], ` = 1, . . . ,mi

MA Experts x+
i,` = xi,` + γiE[Ri(ui, u−i)|ui = `], ` = 1, . . . ,mi

Table 1: Example problem classes that fit into competitive gradient-based learning rules. Details on
the derivation of these update rules as gradient-based learning schemes is provided in Appendix C.

mations (see e.g [6]). We note that the convergence of stochastic gradient schemes in the single-agent461

setting has been extensively studied [7,26,33,38]. We extend this analysis to the behavior of stochastic462

gradient algorithms in games.463

We assume that each agent updates their strategy using the update rule464

(4.2) xi,t+1 = xi,t − γi,t(Difi(xi,t, x−i,t) + wi,t+1)465

for some zero-mean, finite-variance stochastic process {wi,t}. Before presenting the results for the466

stochastic case, let us comment on the different learning algorithms that fit into this framework.467

4.2.1. Examples of Stochastic Gradient-Based Learning. The stochastic gradient-based468

learning setting we study is general enough to include a variety of commonly used multi-agent learning469

algorithms. The classes of algorithms we include is hardly an exhaustive list, and indeed many exten-470

sions and altogether different algorithms exist that can be considered members of this class. In Table 1,471

we provide the gradient-based update rule for six different example classes of learning problems: (i)472

gradient-play in non-cooperative continuous games, (ii) GANs, (iii) multi-agent policy gradient, (iv)473

individual Q-learning, (v) multi-agent gradient bandits, and (vi) multi-agent experts. We provide a474

detailed analysis of these different algorithms including the derivation of the gradient-based update475

rules along with some interesting numerical examples in Appendix C. In each of these cases, one can476

view an agent employing the given algorithm as building an unbiased estimate of their gradient from477

their observation of the environment.478

For example, in multi-agent policy gradient (see, e.g., [46, Chapter 13]), agents’ costs are defined479

as functions of a parameter vector xi that parameterize their policies πi(xi). The parameters xi are480

agent i’s choice variable. By following the gradient of their loss function, they aim to tune the param-481

eters in order to converge to an optimal policy πi. Perhaps surprisingly, it is not necessary for agent482

i to have access to π−i(x−i) or even x−i in order for them to construct an unbiased estimate of the483

gradient of their loss with respect to their own choice variable xi as long as they observe the sequence484

of actions, say u−i,t, of all other agents generated. These actions are implicitly determined by the other485

agents’ policies π−i(x−i)(·). Hence, in this case if agent i observes {(rj,t, uj,t, sj,t), ∀ j ∈ I} where486
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(rj , uj , sj) are the reward, action, and state of agent j, then this is enough to construct an unbiased487

estimate of their gradient. We provide further details on multi-agent policy gradient in Appendix C.488

4.2.2. Stochastic Gradient Results. Returning to the analysis of (4.2), we make the follow-489

ing standard assumptions on the noise processes [38, 39].490

Assumption 2. The stochastic process {wi,t+1} satisfies the assumptions E[wi,t+1| F ti ] = 0,491

t ≥ 0 and E[‖wi,t+1‖2| F ti ] ≤ σ2 < ∞ a.s., for t ≥ 0, where Fi,t is an increasing family of492

σi-fields—i.e. filtration, or history generated by the sequence of random variables—given by Fi,t =493

σi(xi,k, wi,k, k ≤ t), t ≥ 0.494

We also make new assumptions on the players’ step-sizes. These are standard assumptions in the495

stochastic approximation literature and are needed to ensure that the noise processes are asymptotically496

controlled.497

Assumption 3. For each i ∈ I, fi ∈ Cs(X,R) with s ≥ 2, Difi is Li–Lipschitz with 0 <498

Li < ∞, the step-sizes satisfy γi,t ≡ γt for all i ∈ I and
∑

t γt = ∞ and
∑

t(γt)
2 < ∞, and499

supt ‖xt‖ <∞ a.s.500

Let (a)+ = max{a, 0} and a · b denotes the inner product. The following theorem extends the results501

of Theorem 4.1 to the stochastic gradient dynamics in games.502

Theorem 4.3. Consider a game (f1, . . . , fn) onX = X1×· · ·×Xn = Rm. Suppose each agent503

i ∈ I adopts a stochastic gradient algorithm that satisfies Assumptions 2 and 3. Further, suppose that504

for each i ∈ I, there exists a constant bi > 0 such that E[(wi,t · v)+|Fi,t] ≥ bi for every unit vector505

v ∈ Rmi . Then, competitive stochastic gradient-based learning converges to strict saddle points of506

the game on a set of measure zero.507

The proof follows directly from showing that (4.2) satisfies Theorem A.2, provided the assumptions508

of the theorem hold. The assumption that E[(wi,t · v)+|Fi,t] ≥ bi rules out degenerate cases where the509

noise forces the stochastic dynamics onto the stable manifold of strict saddle points.510

Theorem 4.3 implies that the dynamics of stochastic gradient-based learning defined in (4.2), have511

the same limiting properties as the deterministic dynamics vis-à-vis saddle points. Thus, the impli-512

cations described in Section 4.1.1 extend to the stochastic gradient setting. In particular, stochastic513

gradient-based algorithms will avoid a non-negligible subset of the Nash equilibria in general-sum514

and potential games. Further, in zero-sum and general-sum games, if the players fo converge to a515

critical point, that point may be a non-Nash equilibrium.516

4.2.3. Further Convergence Results for Stochastic Gradient-Play in Games. As we517

demonstrated in Section 4.1, outside of potential games, the dynamics of gradient-based learning al-518

gorithms in games are not gradient flows. As such, the players’ actions can converge to more complex519

sets than simple equilibria. A particularly prominent class of limiting behaviors for dynamical systems520

are known as limit cycles (see e.g [41]). Limit cycles (or periodic orbits) are sets of states S such that521

each state x ∈ S is visited at periodic intervals ad infinitum under the dynamics. Thus, if the gradient-522

based algorithms converge to a limit cycle they will cycle infinitely through the same sequence of523

actions. Like equilibria, limit cycles can be stable or unstable under the dynamics ẋ = −ω(x), mean-524

ing that the dynamics can either converge to or diverge from them depending on their initializations.525

We remark that the existence of oscillatory behaviors and limit cycles has been observed in the526

dynamics of of gradient-based learning in various settings like the training of Generative Adversarial527
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Networks [11], and multiplicative weights in finite action games [25]. We simply emphasize that the528

existence of such limiting behaviors is due to the fact that the dynamics are no longer gradient flows.529

This fact also allows for other complex limiting behaviors like chaos3 to exist in the dynamics of530

gradient-based learning in games. We also show in Appendix B.1 that gradient-based learning avoids531

some limit cycles.532

In Appendix B.1, we formalize the notion of a limit cycle and its stability in the stochastic setting.533

Using these concepts, we then provide an analogous theorem to Theorem 4.3 which states that compet-534

itive stochastic gradient-based learning converges to linearly unstable limit cycles—a parallel notion535

to strict saddle points but pertaining to more general limit sets—on a set of measure zero, provided536

that analogous assumptions to those in the statement of Theorem 4.3 hold. Providing such guaran-537

tees requires a bit more mathematical formalism, and as such we leave the details of these results to538

Appendix B.539

In pursuit of a more general class of games with desirable convergence properties, in Appendix B.2540

we also introduce a generalization of potential games, namely Morse-Smale games, for which the541

combined gradient dynamics correspond to a Morse-Smale vector field [18,31]. In such games players542

are guaranteed to converge to only (linearly stable) cycles or equilibria. In such games, however,543

players may still converge to non-Nash equilibria and avoid a subset of the Nash equilibria.544

5. Saddle Point LNE in LQ Dynamic Games. In this section, we present empirical results545

that show that a non-negligible subset of two-player LQ games have local Nash equilibria that are546

strict saddle points of the gradient dynamics. LQ games serve as good benchmarks for analyzing the547

limiting behavior of gradient-play in a non-trivial setting since they are known to admit global Nash548

equilibria that can be found be solving a coupled set of Riccati equations [2]. LQ games can also549

be cast as multi-agent reinforcement learning problems where each agent has a policy that is a linear550

function of the state and a quadratic reward function. Gradient-play in LQ games can therefore be551

seen as a form of policy gradient.552

The empirical results we now present imply that, even in the relatively straightforward case of lin-553

ear dynamics, linear feedback policies, and quadratic costs, policy gradient multi-agent reinforcement554

learning would be unable to find the local Nash equilibrium in a non-negligible subset of problems.555

LQ game setup. For simplicity, we consider two-player LQ games in R2. Consider a discrete556

time dynamical system defined by557

z(t+ 1) = Az(t) +B1u1(t) +B2u2(t)(5.1)558559

where z(t) ∈ R2 is the state at time t, u1(t) and u2(t) are the control inputs of players 1 and 2,560

respectively, and A, B1, and B2 are the system matrices. We assume that player i searches for a linear561

feedback policy of the form ui(t) = −Kiz(t) that minimizes their loss which is given by562

fi(z0, u1, u2) =
∑∞

t=0 z(t)
TQiz(t) + ui(t)

TRiui(t)563

where Qi � 0 and Ri � 0 are the cost matrices on the state and input, respectively. We note that the564

two players are coupled through the dynamics since z(t) is constrained to obey the update equation565

3A general term used to characterize dynamical systems where arbitrarily small perturbations in the initial conditions
lead to drastically different solutions to the differential equations
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(5.1). The vector of player derivatives is given by ω(K1,K2) = (D1f1(K1,K2), D2f2(K1,K2))566

where567

Difi(K1,K2) = (RiiKi +BT
i Pi(B1K1 +B2K2)−BT

i PiA)
∑∞

t=0 z(t)z(t)
T , i ∈ {1, 2}.568

Note that there is a slight abuse of notation here as we are treating Difi as a matrix and as the vector-569

ization of a matrix. The matrices P1 and P2 can be found by solving the Riccati equations570

Pi = (A−B1K1 −B2K2)TPi(A−B1K1 −B2K2) +KT
i RiKi +Qi, i ∈ {1, 2},571572

for a given (K1,K2). As shown in [2], global Nash equilibria of LQ games can be found by solving573

coupled Ricatti equations. Under the following assumption, this can be done using an analogous574

method to the method of Lyapunov iterations outlined in [24] for continuous time LQ games.575

Assumption 4. Either (A,B1,
√
Q1) or (A,B2,

√
Q2) is stabilizable-detectable.576

Further information on the uniqueness of Nash equilibria in LQ games and the method of Lya-577

punov iterations can be found in [2] and [24] respectively.578

Generating LQ games with strict saddle point Nash equilibria. Without loss of generality,579

we assume (A,B1,
√
Q1) is stabilizable-detectable. Given that we have a method of finding the global580

Nash equilibrium of the LQ game, we now present our experimental setup.581

We fix B1, B2, Q1, and R1 and parametrize Q2, and R2 by q and r respectively. The shared582

dynamics matrix A has entries that are sampled from the uniform distribution supported on (0, 1). For583

each value of the parameters b, q, and r, we randomly sample 1000 differentAmatrices. Then, for each584

LQ game defined in terms of each of the sets of parameters, we find the optimal feedback matrices585

(K∗1 ,K
∗
2 ) using the method of Lyapunov iterations, and we numerically approximate Dω(K∗1 ,K

∗
2 )586

using auto-differentiation tools and check its eigenvalues.587

The exact values of the matrices are defined as follows: A ∈ R2×2 with each of the entries aij588

sampled from the uniform distribution on (0, 1),589

B1 =

[
1
1

]
, B2 =

[
0
1

]
, Q1 =

[
0.01 0

0 1

]
, Q2 =

[
1 0
0 q

]
, R1 = 0.01, R2 = r.590

591

The results for various combinations of the parameters q and r are shown in Figure 2. For all of592

the different parameter configurations considered, we found that in anywhere from 0% − 25% of the593

randomly sampled LQ games, there was a global Nash equilibrium that was a strict saddle point of594

the gradient dynamics. Of particular interest is the fact that for all values of q and r we tested, at least595

5% of the LQ games had a global Nash equilibrium with the strict saddle property. In the worst case,596

around 25% of the LQ games for the given values of q and r admitted such Nash equilibria.597

Remark 5.1. These empirical observations imply that multi-agent policy gradient, even in the rel-598

atively straightforward setting of linear dynamics, linear policies, and quadratic costs, has no guar-599

antees of convergence to the global Nash equilibria in a non-negligible number of games. Further600

investigation is warranted to validate this fact theoretically. This in turn supports the idea that for more601

complicated cost functions, policy classes, and dynamics, local Nash equilibria with the strict saddle602

property are likely to be very common.603
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Figure 2: Frequency (out of 1000) of randomly sampled LQ games with global Nash equilibria that
are avoided by policy-gradient. The experiment was run 10 times and the average frequency is shown
by the solid line. The shaded region demarcates the 95% confidence interval of the experiment. (left)
r is varied in (0, 1), q = 0.01. (right) q is varied in (0, 1), r = 0.1.

6. Discussion and Future Directions. In this paper we provided answers to the following604

two questions for classes of gradient-based learning algorithms:605

Q1. Are all attractors of the learning algorithms employed by agents equilibria relevant to the under-606

lying game?607

Q2. Are all equilibria relevant to the game also attractors of the learning algorithms agents employ?608

We answered these questions in general-sum, zero-sum, and potential games without imposing609

structure on the game outside regularity conditions on the cost functions by exploiting the observation610

that gradient-based learning dynamics are not gradient flows. Our analysis, was shown in Section C to611

apply to a number of commonly used methods in multi-agent learning.612

6.1. Links with Prior Work. As we noted, previous work on learning in games in both the613

game theory literature, and more recently from the machine learning community, has largely focused614

on Q1, though some recent work has analyzed Q2 in the setting of zero-sum games.615

In the seminal work by Rosen [40], n–player concave or monotone games are shown to either616

admit a unique Nash equilibrium or a continuum of Nash equilibria, all of which are attracting under617

gradient-play. The structure present in these games rules out the existence of non-Nash equilibria.618

Two-player, finite-action bilinear games have also been extensively studied. In [44], the authors619

investigate the convergence of the gradient dynamics in such games. Additionally, the dynamics of620

other (non gradient-based) algorithms like multiplicative weights have been studied in [19] among621

many others. In such settings, the structure guarantees that there exists a unique global Nash equi-622

librium and no other critical points of the gradient dynamics. As such, non-Nash equilibria, cannot623

exist.624

In the study of learning dynamics in the class of zero-sum games, it has been shown that cycles can625

be attractors of the dynamics (see, e.g., [19, 25, 47]). Concurrently with our results, [12] also showed626

the existence of non-Nash attracting equilibria in this setting.627
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In more general settings, there has been some analysis of the limiting behavior of gradient-play628

though the focus has been for the most part, on giving sufficient conditions under which Nash equilibria629

are attracting under gradient-play. For example, [35–37], introduced the notion of a differential Nash630

equilibrium which is characterized by first and second order conditions on the players’ individual cost631

functions and which we made extensive use of. Following this body of work, [27] also investigated632

the local convergence of gradient-play in continuous games. They showed that if a Nash equilibrium633

satisfies a property known as variational stability, the equilibrium is attracting under gradient play.634

In twice continuously differentiable games, this condition coincides exactly with the definition of635

stable differential Nash equilibria. Though these works analyze a general class of games, the focus of636

the analysis is solely on the local characterization and computation (via gradient play) of local Nash637

equilibria. As such, the issues of non-convergence that we show in this paper were not discussed.638

6.2. Open Questions. Our results suggest that gradient-play in multi-agent settings has fun-639

damental problems. Depending on the players’ costs, in general games and even potential games,640

which have a particularly nice structure, a subset of the Nash equilibria will be almost surely avoided641

by gradient-based learning when the agents randomly initialize their first action. In zero-sum and642

general-sum games, even if the algorithms do converge, they may have converged to a point that has643

no game theoretic relevance, namely a non-Nash locally asymptotically stable equilibrium.644

Lastly, these results show that limit cycles persist even under a stochastic update scheme. This645

explains the empirical observations of limit cycles in gradient dynamics presented in [11, 19, 23]. It646

also implies that gradient-based learning in multi-agent reinforcement learning, multi-armed bandits,647

generative adversarial networks, and online optimization all admit limit cycles under certain loss func-648

tions. Our empirical results show that these problems are not merely of theoretical interest, but also649

have great relevance in practice.650

Which classes of games have all Nash being attracting for gradient-play and which classes pre-651

clude the existence of non-Nash equilibria is an open and particularly interesting question. Further, the652

question of whether gradient-based algorithms can be constructed for which only game-theoretically653

relevant equilibria are attracting is of particular importance as gradient-based learning is increasingly654

implemented in game theoretic settings. Indeed, more generally, as learning algorithms are increas-655

ingly deployed in markets and other competitive environments understanding and dealing with such656

theoretical issues will become increasingly important.657

Appendix A. Proofs of the Main Results. This appendix contains the full proofs of the658

results in the paper.659

A.1. Proofs on Links Between Dynamical Systems and Games. We begin with a proof660

of Proposition 3.4 that all differential Nash equilibria are either strict saddle points or asymptotically661

stable equilibria of the gradient dynamics. This relies mainly on the definitions of strict saddle points,662

locally asymptotically stable equilibria, and non-degenerate differential Nash equilibria and simple663

linear algebra.664

Proof of Proposition 3.4. Suppose that x ∈ X is a non-degenerate differential Nash equilibrium.665

We claim that tr(Dω(x)) > 0. Since x is a differential Nash equilibrium, D2
i fi(x) � 0 for each666

i ∈ I; these are the diagonal blocks of Dω(x). Further D2
i fi(x) � 0 implies that tr(D2

i fi(x)) > 0.667

Since tr(Dω) =
∑n

i=1 tr(D2
i fi(x)), tr(Dω(x)) > 0. Thus, it is not possible for all the eigenvalues668

to have negative real part. Since x is non-degenerate, det(Dω(x)) 6= 0 so that none of the eigenvalues669
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can have zero real part. Hence, at least one eigenvalue has strictly positive real part.670

To complete the proof, we show that the conditions for non-degenerate differential Nash equilib-671

rium are not sufficient to guarantee that x is locally asymptotically stable for the gradient dynamics—672

that is, not all eigenvalues of Dω(x) have strictly positive real part. We do this by constructing a class673

of games with the strict saddle point property. Consider a class of two player games G = (f1, f2) on674

R× R defined as follows:675

(f1(x1, x2), f2(x1, x2)) =
(a

2
x2

1 + bx1x2,
d

2
x2

2 + cx1x2

)
.676

In this game, the Jacobian of the gradient dynamics is given by677

(A.1) Dω(x) =

[
a b
c d

]
678

with a, b, c, d ∈ R. If x is a non-degenerate differential Nash equilibria, a, d > 0 and det(Dω(x)) 6= 0679

which implies that ad 6= cb. Choosing c, d such that ad < cbwill guarantee that one of the eigenvalues680

of Dω(x) is negative and the other is positive, making x a strict saddle point. This shows that non-681

degenerate differential Nash equilibria can be strict saddle points of the combined gradient dynamics.682

Hence, for any game (f1, . . . , fn), a non-degenerate differential Nash equilibrium is either a lo-683

cally asymptotically stable equilibrium or a strict saddle point, but it not strictly unstable or strictly684

marginally stable (i.e. having eigenvalues all on the imaginary axis).685

The proof of Proposition 3.7, which claims that all differential Nash equilibria in zero-sum games686

are locally asymptotically stable, again just relies on basic linear algebra and the definition of a differ-687

ential Nash equilibrium.688

Proof of Proposition 3.7. Consider a two player game (f,−f) onX1×X2 = Rm withXi = Rmi .689

For such a game,690

Dω(x) =

[
D2

1f(x) D21f(x)
−D12f(x) −D2

2f(x)

]
.691

Note that D21f(x) = (D12f(x))T . Suppose that x = (x1, x2) is a differential Nash equilibrium692

and let v = [v1, v2] ∈ Rm with v1 ∈ Rm1 and v2 ∈ Rm2 . Then, vTDω(x)v = vT1 D
2
1f(x)v1 −693

vT2 D
2
2f(x)v2 > 0 since D2

1f(x) � 0 and −D2
2f(x) � 0 for x, a differential Nash equilibrium. Since694

v is arbitrary, this implies that Dω(x) is positive definite and hence, clearly non-degenerate. Thus, for695

two-player zero-sum games, all differential Nash equilibria are both non-degenerate differential Nash696

equilibria and locally asymptotically stable equilibria of ẋ = −ω(x)697

The proof that all locally asymptotically stable equilibria in potential games are differential Nash698

equilibria relies on the symmetry of Dω in potential games.699

Proof of Proposition 3.9. The proof follows from the definition of a potential game. Since (f1,700

. . . , fn) is a potential game, it admits a potential function φ such that Difi(x) = Diφ(x) for all x.701

This, in turn, implies that at a locally asymptotically stable equilibrium of ẋ = −ω(x), Dω(x) =702

D2φ(x), where D2φ is the Hessian matrix of the function φ. Further D2φ(x) must have strictly703

positive eigenvalues for x to be a locally asymptotically stable equilibrium of ẋ = −ω(x). Since the704

Hessian matrix of a function must be symmetric, D2φ(x), must be positive definite, which through705

Sylvester’s criterion ensures that each of the diagonal blocks of D2φ(x) is positive definite. Thus, we706
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have that the existence of a potential function guarantees that the only locally asymptotically stable707

equilibria of ẋ = −ω(x), are differential Nash equilibria.708

A.2. Proofs for Deterministic Setting. We now present the proof of Theorem 4.1 and its709

corollaries. The proof of relies on the celebrated stable manifold theorem [43, Theorem III.7], [45].710

Given a map φ, we use the notation φt = φ ◦ · · · ◦ φ to denote the t–times composition of φ.711

Theorem A.1 (Center and Stable Manifolds [43, Theorem III.7], [45]). Let x0 be a fixed point712

for the Cr local diffeomorphism f : U → Rd where U ⊂ Rd is an open neighborhood of x0 in Rd713

and r ≥ 1. Let Es⊕Ec⊕Eu be the invariant splitting of Rd into generalized eigenspaces of Dφ(x0)714

corresponding to eigenvalues of absolute value less than one, equal to one, and greater than one. To715

the Dφ(x0) invariant subspace Es ⊕ Ec there is an associated local φ–invariant Cr embedded disc716

W cs
loc called the local stable center manifold of dimension dim(Es ⊕ Ec) and ball B around x0 such717

that φ(W cs
loc) ∩B ⊂W cs

loc, and if φt(x) ∈ B for all t ≥ 0, then x ∈W sc
loc.718

Some parts of the proof follow similar arguments to the proofs of results in [22, 32] which apply to719

(single-agent) gradient-based optimization. Due to the different learning rates employed by the agents720

and the introduction of the differential game form ω, the proof differs.721

Proof of Theorem 4.1. The proof is composed of two parts: (a) the map g is a diffeomorphism, and722

(b) application of the stable manifold theorem to conclude that the set of initial conditions is measure723

zero.724

(a) g is diffeomorphism. We claim the mapping g : Rm → Rm is a diffeomorphism. If we can725

show that g is invertible and a local diffeomorphism, then the claim follows. Consider x 6= y and726

suppose g(y) = g(x) so that y − x = γ · (ω(y) − ω(x)). The assumption supx∈Rm ‖Dω(x)‖2 ≤727

L <∞ implies that ω satisfies the Lipschitz condition on Rm. Hence, ‖ω(y)−ω(x)‖2 ≤ L‖y−x‖2.728

Let Γ = diag(Γ1, . . . ,Γn) where Γi = diag((γi)
mi
j=1)—that is, Γi is an mi × mi diagonal matrix729

with γi repeated on the diagonal mi times. Then, ‖x − y‖2 ≤ L‖Γ‖2‖y − x‖2 < ‖y − x‖2 since730

‖Γ‖2 = maxi |γi| < 1/L.731

Now, observe that Dg = I −ΓDω(x). If Dg is invertible, then the implicit function theorem [21,732

Theorem C.40] implies that g is a local diffeomorphism. Hence, it suffices to show that ΓDω(x)733

does not have an eigenvalue of 1. Indeed, letting ρ(A) be the spectral radius of a matrix A, we734

know in general that ρ(A) ≤ ‖A‖ for any square matrix A and induced operator norm ‖ · ‖ so that735

ρ(ΓDω(x)) ≤ ‖ΓDω(x)‖2 ≤ ‖Γ‖2 supx∈Rm ‖Dω(x)‖2 < maxi |γi|L < 1 Of course, the spectral736

radius is the maximum absolute value of the eigenvalues, so that the above implies that all eigenvalues737

of ΓDω(x) have absolute value less than 1.738

Since g is injective by the preceding argument, its inverse is well-defined and since g is a local739

diffeomorphism on Rm, it follows that g−1 is smooth on Rm. Thus, g is a diffeomorphism.740

(b) Application of the stable manifold theorem. Consider all critical points to the game—741

i.e. Xc = {x ∈ X| ω(x) = 0}. For each p ∈ Xc, let Bp be the open ball derived from Theorem A.1742

and let B = ∪pBp. Since X ⊆ Rm, Lindelõf’s lemma [20]—every open cover has a countable743

subcover—gives a countable subcover of B. That is, for a countable set of critical points {pi}∞i=1 with744

pi ∈ Xc, we have that B = ∪∞i=1Bpi .745

Starting from some point x0 ∈ X , if gradient-based learning converges to a strict saddle point, then746

there exists a t0 and index i such that gt(x0) ∈ Bpi for all t ≥ t0. Again, applying Theorem A.1 and747

using that g(X) ⊂ X—which we note is obviously true if X = Rm—we get that gt(x0) ∈W cs
loc ∩X .748
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Using the fact that g is invertible, we can iteratively construct the sequence of sets defined by749

W1(pi) = g−1(W cs
loc ∩X) and Wk+1(pi) = g−1(Wk(pi) ∩X). Then we have that x0 ∈ Wt(pi) for750

all t ≥ t0. The set X0 = ∪∞i=1 ∪∞t=0Wt(pi) contains all the initial points in X such that gradient-based751

learning converges to a strict saddle. Since pi is a strict saddle, I−ΓDω(pi) has an eigenvalue greater752

than 1. This implies that the co-dimension of Eu is strictly less than m. (i.e. dim(W cs
loc) < m). Hence,753

W cs
loc ∩X has Lebesgue measure zero in Rm.754

Using again that g is a diffeomorphism, g−1 ∈ C1 so that it is locally Lipschitz and locally755

Lipschitz maps are null set preserving. Hence, Wk(pi) has measure zero for all k by induction so that756

X0 is a measure zero set since it is a countable union of measure zero sets.757

The proof of Corollary 4.2 follows from the symmetry of Dω in potential games, and our obser-758

vations in Section 3.759

Proof of Corollary 4.2. Since the game admits a potential function φ, there is a transformation760

of coordinates such that agents following the dynamics xt+1 = xt − γ � ω(xt) converge to the761

same equilibria as the gradient dynamics xt+1 = xt − γ � Dφ(xt). Hence, the analysis of the762

gradient-based learning scheme reduces to analyzing gradient-based optimization of φ. Moreover,763

existence of a potential function also implies that Dijfj ≡ Djifi so that Dω is symmetric. Indeed,764

writing ω(x) as the differential form
∑n

i=1Difi(x)dxi and noting that d ◦ d = 0 for the differential765

operator d, we have that d(ω) =
∑

i d(Difi) ∧ dxi =
∑

i,j:j>i (Dijfj −Djifi) dxi ∧ dxj = 0766

where ∧ is the standard exterior product [21]. Symmetry of Dω implies that all periodic orbits are767

equilibria—i.e. the dynamics do not possess any limit cycles. By Theorem 4.1, the set of initial points768

that converge to strict saddle points is of measure zero. Since all the stable critical points of the769

dynamics are equilibria, with the assumption that limt→∞ g
t(x) exists for all x ∈ X , we have that770

Pν
[
limt→∞ g

t(x) = x∗
]

= 1 where x∗ is a non-degenerate differential Nash equilibrium which is771

generically a local Nash equilibrium [36].772

A.3. Classical Results from Dynamical Systems. The remaining results use the following773

classical result from dynamical systems theory. Consider a general stochastic approximation frame-774

work xt+1 = xt + γt(h(xt)) + εt for h : X → TX with h ∈ C2 and where X ⊂ Rd and where TX775

denotes the tangent space.776

Theorem A.2 (Theorem 1 [33]). Suppose γt is Ft–measurable and E[wt|Ft] = 0. Let the777

stochastic process {xt}t≥0 be defined as above for some sequence of random variables {εt} and {γt}.778

Let p ∈ X with h(p) = 0 and let W be a neighborhood of p. Assume that there are constants779

η ∈ (1/2, 1] and c1, c2, c3, c4 > 0 for which the following conditions are satisfied whenever xt ∈780

W and t sufficiently large: (i) p is a linear unstable critical point, (ii) c1/t
η ≤ γt ≤ c2/t

η, (iii)781

E[(wt ·v)+|Ft] ≥ c3/t
η for every unit vector v ∈ TX , and (iv) ‖wt‖2 ≤ c4/t

η. Then P (xt → p) = 0.782

783

Appendix B. Expanded Results in the Stochastic Setting. In this appendix , we provide784

extended results in the stochastic setting that require more mathematical formalism than the main body785

of the paper. In addition, we introduce a new class of games that generalize potential games and have786

stronger convergence guarantees than the broader class of general-sum continuous games.787

B.1. Avoidance of Repelling Sets. To show that stochastic gradient-based learning avoids788

of more general limiting behaviors than saddle points, we need further assumptions on our underlying789
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space—i.e. we need the underlying decision spaces of each agent—i.e. Xi for each i ∈ I—to be790

smooth, compact manifolds without boundary4. The stochastic process {xn} which follows (4.2) is791

defined onX—that is, xn ∈ X for all n ≥ 0. As before, it is natural to compare sample points {xn} to792

solutions of ẋ = −ω(x) where we think of (4.2) as a noisy approximation. The asymptotic behavior793

of {xn} can indeed be described by the asymptotic behavior of the flow generated by ω.794

We also need a formal notion of cycles. A non-stationary periodic orbit of ω is called a cycle.795

Let ξ ⊂ X be a cycle of period T > 0. Denote by ΦT the flow corresponding to ω. For any796

x ∈ ξ, spec(DΦT (x)) = {1} ∪ C(ξ) where C(ξ) is the set of characteristic multipliers. We say ξ is797

hyperbolic if no element ofC(ξ) is on the complex unit circle. Further, ifC(ξ) is strictly inside the unit798

circle, ξ is called linearly stable and, on the other hand, if C(ξ) has at least one element on the outside799

of the unit circle—that is, DΦT (x) for x ∈ ξ has an eigenvalue with real part strictly greater than800

1—then ξ is called linearly unstable. The latter is the analog of strict saddle points in the context of801

periodic orbits. We denote by {xt} sample paths of the process (4.2) and L({xt}) is the limit set of any802

sequence {xt}t≥0 which is defined in the usual way as all p ∈ X such that limk→∞ xtk = p for some803

sequence tk → ∞. It was shown in [3] that under less restrictive assumptions than Assumptions 2804

and 3, L({xt}) is contained in the chain recurrent set of ω and L({xt}) is a non-empty, compact and805

connected set invariant under the flow of ω.806

Theorem B.1. Consider a game (f1, . . . , fn) where eachXi is a smooth, compact manifold with-807

out boundary. Suppose each agent i ∈ I adopts a stochastic gradient-based learning algorithm that808

satisfies Assumptions 2 and 3 and is such that sample points xt ∈ X for all t ≥ 0. Further, suppose809

that for each i ∈ I, there exist a constant bi > 0 such that E[(wi,t ·v)+|Fi,t] ≥ bi for every unit vector810

v ∈ Rmi . Then competitive stochastic gradient-based learning converges to linearly unstable cycles811

on a set of measure zero—i.e. P (L(xt) = ξ) = 0 where {xt} is a sample path.812

As we noted, periodic orbits are not necessarily excluded from the limiting behavior of gradient-based813

learning in games. We leave out the proof of Theorem B.1 since after some algebraic manipulation, it814

is a direct application of [4, Theorem 2.1] which is stated below.815

Theorem B.2 (Theorem 2.1 [4]). Let ξ ⊂ X be a hyperbolic linearly unstable cycle of h.816

Assume the following (i) h ∈ C2; (ii) c1/t
η ≤ γt ≤ c2/t

η with 0 < c1 ≤ c2 and 0 < η ≤ 1;817

and (iii) there exists b ≥ 0 such that for all unit vectors v ∈ Rm, E[(wt · v)+|Ft] ≥ b. Then818

P (L({xt}) = ξ) = 0.819

B.2. Morse-Smale Games. For a class of games admitting gradient-like vector fields we can820

go beyond non-convergence results and give convergence guarantees. Following [4], we introduce a821

new class of games, which we call Morse-Smale games, that are a generalization of potential games.822

Such games represent an important class since the vector field of ω corresponds to Morse-Smale vector823

field which is known to be generic in R2 and are otherwise structurally stable [18, 31].824

Definition B.3. A game (f1, . . . , fn) with fi ∈ Cr for some r ≥ 3 and where strategy spaces Xi825

is a smooth, compact manifold without boundary for each i ∈ I is a Morse-Smale game if the vector826

field corresponding to the differential ω is Morse-Smale—that is, the following hold: (i) all periodic827

orbits ξ (i.e. equilibria and cycles) are hyperbolic and W s(ξ) t W u(ξ) (i.e. the stable and unstable828

4The torus T = S1 × S1 is an example. The interested reader can consult, e.g., [21] for more details on differential
geometry.
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manifolds of ξ intersect transversally), (ii) every forward and backward omega limit set is a periodic829

orbit, (iii) and ω has a global attractor.830

The conditions of Morse-Smale in the above definition ensure that there are only finitely many periodic831

orbits. The dynamics of games with more general vector fields, on the other hand, can admit chaos (e.g.832

the classic Lorentz attractor can be cast as gradient-play in a 3-player game). Hyperbolic equilibria and833

periodic orbits are the only types of limiting behavior that have been shown to correspond to strategies834

relevant to the underlying game [5]. The simplest example of a Morse-Smale vector field is a gradient835

flow. However, not all Morse-Smale vector fields are gradient flows and hence, not all Morse-Smale836

games are potential games.837

Example 1. Consider the n-player game with Xi = R for each i ∈ I and fn(x) = xn(x2
1 −838

1), fi(x) = xixi+1, ∀i ∈ I/{n} This is a Morse-Smale game that is not a potential game. Indeed,839

ẋ = −ω(x) where ω = [x2, x3, . . . , xn−1, x
2
1 − 1] is a dynamical system with a Morse-Smale vector840

field that is not a gradient vector field [10].841

Essentially, in a neighborhood of a critical point for a Morse-Smale game, the game behavior can842

be described by a Morse function φ such that near critical points ω can be written as Dφ and away843

from critical points ω points in the same direction as Dφ—i.e. ω ·Dφ > 0. Specializing the class of844

Morse-Smale games, we have stronger convergence guarantees.845

Theorem B.4. Consider a Morse-Smale game (f1, . . . , fn) on smooth boundaryless compact846

manifold X . Suppose Assumptions 2 and 3 hold and that {xt} is defined on X . Let {ξi, i = 1, . . . , l}847

denote the set of periodic orbits in X . Then
∑l

i=1 P (L({xt}) = ξi) = 1 and P (L({xt}) = ξi) > 0848

implies ξi is linearly stable. Moreover, if the periodic orbit ξi with P (L({xt}) = ξi) > 0 is an equi-849

librium, then it is either a non-degenerate differential Nash equilibrium—which is generically a local850

Nash—or a non-Nash locally asymptotically stable equilibrium.851

The proof of Theorem B.4 follows by invoking Corollary B.5 which is stated below.852

Corollary B.5 (Corollary 2.2 [4]). Assume that there exists δ ≥ 1 such that
∑

n≥0 γ
1+δ
n < ∞853

and that h is a Morse-Smale vector field. If we denote by {ξi, i = 1, . . . , l} the set of periodic orbits854

in X , then
∑l

i=1 P (L({xt}) = ξi) = 1. Further, if conditions (i)–(iii) of Theorem B.2 hold, then855

P (L({xt}) = ξi) > 0 implies ξi is linearly stable.856

Thus, in Morse-Smale games, with probability one, the limit sets of competitive gradient-based857

learning with stochastic updates are attractors (i.e., periodic orbits, which includes limit cyles and858

equilibria) of ẋ = −ω(x) and if any attractor has positive probability of being a limit set of the859

players’ collective update rule, then it is (linearly) stable. Moreover, attractors that are equilibria860

are either non-degenerate differential Nash equilibria (generically local Nash equilbiria) or non-Nash861

locally asymptotically stable equilibria, but not saddle points.862

If we further restrict the class of games to potential games, the results for Morse-Smale games863

imply convergence to Nash almost surely, a particularly strong convergence guarantee.864

Corollary B.6. Consider the game (f1, . . . , fn) on smooth boundaryless compact manifold X =865

X1×· · ·×Xn admitting potential function φ. Suppose each agent i ∈ I adopts a stochastic gradient-866

based learning algorithm that satisfies Assumptions 2 and 3 and such that {xt} evolves onX . Further,867

suppose that for each i ∈ I, there exist a constant bi > 0 such that E[(wi,t·v)+|Fi,t] ≥ bi for every unit868

vector v ∈ Rmi . Then, competitive stochastic gradient-based learning converges to a non-degenerate869
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differential Nash equilibrium almost surely.870

The proof of Corollary B.6 follows from the fact that potential games are trivially Morse-Smale871

games that admit no periodic cycles as we showed in the proof of Corollary 4.2.872

Proof of Corollary B.6. Consider a potential game (f1, . . . , fn) where each Xi is a smooth, com-873

pact boundaryless manifold. Then ω = Dφ for some φ ∈ Cr which implies that ω is a gradient flow874

and hence, does not admit limit cycles. Let {ξi, i = 1, . . . , l} be the set of equilibrium points in X .875

Under the assumptions of Theorem B.4,
∑l

i=1 P (L({xt}) = ξi) = 1 and, if P (L({xt}) = ξi) > 0,876

then ξi is a linearly stable equilibrium point which is a non-degenerate differential Nash equilibrium877

of the game due to the fact that Dω(x) is symmetric in potential games. Hence, a sample path {xt}878

converges to a non-degenerate differential Nash equilibrium with probability one. Moreover, by [36],879

we know it is generically a local Nash.880

We note, that even though a potential function is enough to guarantee convergence to a local Nash881

equilibrium, potential games can still admit local Nash equilibria that are strict saddle points as shown882

in Section 3. Thus, even this relatively well-behaved class of games has fundamental problems when883

applying a gradient-based learning scheme.884

Appendix C. Classes of Gradient-Based Learning Algorithms. In this section, we885

provide derivation of the gradient-based learning rules provided in Table 1. We note that the deriva-886

tion of gradient-based approaches for multi-armed bandits can be found in [46] among other classic887

references on reinforcement learning.888

C.1. Online Optimization: Gradient Play in Non-Cooperative Games. We first show889

that classical online optimization algorithms fit into the framework we describe. In this case, each890

agent is directly trying to minimize their own function fi(xi, x−i), which can depend on the current891

iterate of the other agents. There are many examples in the optimization literature of this type of892

setup. We note that in the full information case, the competitive gradient-based learning framework893

we describe here is simply gradient play [16], a very well-studied game-theoretic learning rule.894

Of more interest are some gradient-free online optimization algorithms that also fit into the frame-895

work we describe. The game can be described as follows. At each iteration, t of the game, every896

player publishes their current iterate xi,t. Player i, implementing this algorithm, then updates their897

iterate by taking a random unit vector u, and querying fi(xi + δiu, x−i). The update map is given898

by xi,t+1 = xi,t − γifi(xi + δiu, x−i)u. It is shown in [14] that fi(xi + δiu, x−i)u is an unbiased899

estimate of the gradient of a smoothed version of fi—i.e. f̂i(xi, x−i) = Ev[fi(x+ δv, x−i)]. Thus the900

loss function being minimized by the agent is f̂i. In this case, the results on characterizing limiting901

behavior presented in Section 4.2 apply.902

C.2. Generative Adversarial Networks. Generative adversarial networks take a game theo-903

retic approach to fitting a generative model in complex structured spaces. Specifically, they approach904

the problem of fitting a generative model from a data set of samples from some distributionQ ∈ ∆(Y )905

as a zero-sum game between a generator and a discriminator. In general, both the generator and906

the discriminator are modeled as deep neural networks. The generator network outputs a sample907

Gθ(z) ∈ Y in the same space Y as the sampled data set given a random noise signal z ∼ F as an908

input. The discriminator Dw(y) tries to discriminate between a true sample and a sample generated909

by the generator—that is, it takes as input a sample y drawn from Q or the generator and tries to de-910
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termine if its real or fake. The goal, is to find a Nash equilibrium of the zero-sum game under which911

the generator will learn to generate samples that are indistinguishable from the true samples—i.e. in912

equilibrium, the generator has learned the underlying distribution.913

To prevent instabilities in the training of GANs with zero-one discriminators, the Wasserstein914

GAN attempts to approximate the Wasserstein-1 metric between the true distribution and the distribu-915

tion of the generator. In this setting, Dw(·) is a 1-Lipschitz function leading to the problem916

infθ supw Ey∼Q[Dw(y)]− Ez∼F [Dw(Gθ(z))]917918

which has corresponding dynamics wt+1 = wt+γ∇wL(θt, wt) and θt+1 = θt−γ∇θL(θt, wt) where919

L(θ, w) = Ey∼Q[Dw(y)]− Ez∼F [Dw(Gθ(z))] and where γ is the learning rate.920

GANs are notoriously difficult to train. The typical approach is to allow each player to perform921

(stochastic) gradient descent on the derivative of their cost with respect to their own choice variable.922

There are two important observations about gradient-based learning approaches to GANs relevant to923

this paper. First, the equilibrium that is sought is generally a saddle point and second, the dynamics924

of GANs are complex enough to admit limit cycles [25]. None-the-less, training GANs with gradient925

descent is still very common. We note that our results suggest that, on top of periodic orbits and926

oscillations, training GANs with gradient descent can result in convergence to non-Nash equilibria.927

C.3. Multi-Agent Reinforcement Learning Algorithms. Consider a setting in which all928

agents are operating in an MDP. There is a shared state space S. Each agent, indexed by I =929

{1, . . . , n} has their own action space Ui and reward function Ri : S × U → ∆R where U =930

U1 × · · · × Un. We note the reward functions could themselves be random, but for illustrative pur-931

poses we suppose they are deterministic. Finally, the dynamics of the MDP are described by a state932

transition kernel P : S × U → ∆S and an initial state distribution P0. Each agent i also has a policy,933

πi, that returns a distribution over Ui for each state s ∈ S . We define a trajectory of the MDP, τ as934

τ = {(st, ui,t, u−i,u)}T−1
t=0 . Thus, a trajectory is a finite sequence of states, the actions of each player935

in that state, and the reward agent i received in that state, where T is the time horizon. Given fixed936

policies we can define a distribution over the space of all trajectories Γ, namely PΓ(π), by937

PΓ(τ ;π) = P0(s0)
∏
i∈I πi(ui,0|s0) · · ·P (st|st−1, ut−1)

∏
i∈I πi(ui,t|st) · · ·938939

The goal of each single agent in this setup is to maximize their cumulative expected reward over a940

time horizon T . That is, the agent is trying to find a policy πi so as to maximize some function,941

which in keeping with our general formulation in Section 2, we write as −fi since this problem is942

a maximization. When an agent is employing policy gradient in this MARL setup, we assume that943

their policy comes from a parametric class of policies parametrized by xi ∈ Xi ⊂ Rmi . To simplify944

notation, we write the parametric policy as πi(xi) where for each xi, given an state s, πi(xi) is a945

probability distribution on actions ui which we denote by πi(xi)(·|s).946

The policy gradient MARL algorithm can be reformulated in the competitive gradient-based learn-947

ing framework. An agent i using policy gradient is trying to tune the parameters xi of their policy to948

maximize their expected reward over a trajectory of length T . We define the reward of agent i over a949

trajectory of the MDP, τ ∈ Γ, to be Ri(τ) =
∑T−1

t=0 Ri(st,i,t , u−i,t). Thus, each agent’s loss function950

fi, in keeping with our notation, is given by fi(xi, x−i) = −Ji(πi(xi), π−i) = −Eτ∼PΓ(π)[Ri(τ))].951

The actions of agent i in the continuous game framework described in previous sections are the pa-952

rameters of their policy, and thus their action space is Xi ⊂ Rmi . We note that we have made no953
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assumptions on the other player’s actions x−i. That is, they do not need to be employing the same954

parameterized policy class or exactly the same gradient-based update procedure; the only requirement955

is that they also be using a gradient based multi-agent learning algorithm, and that their actions give956

rise to a set of policies π−i that govern the way they choose their actions in the MDP.957

In the full information case, at each round, t of the game, a player plays according to πi(xi,t) for958

a time horizon T , and then performs a gradient update on their parameters where Difi(xi, x−i) =959

DiJi(πi(xi), π−i,t) is given by960

DiJi(πi(xi), π−i) = Eτ∼PΓ(π)

[∑T−1
t=0 Ri(st, ut)

∑t
j=0∇xi log πi(xi)(ui,j |sj)

]
(C.1)961

962

The derivation of this gradient is exactly the same as that of classic policy gradient. From (C.1) it is963

clear that an unbiased estimate of the gradient can be constructed. At each time t in the policy gradient964

update procedure, agent i receives a T horizon roll-out, say zi,t = {(sk, ui,k, ri,k)}T−1
k=0 , and constructs965

the unbiased estimate of the gradient—i.e. D̂iJi =
∑T−1

k=0 ri,k
(∑k

j=0∇xi log πi(xi,t)(ui,j |sj)
)
. We966

note that in this case, the agent does not need to know the policies of the other agents, or anything967

about the dynamics of the MDP. The agent can construct the estimator solely from the sequence of968

states, the reward they received in those states, and their own actions. With these two derivations of969

the gradient for the full information and gradient-free cases, policy gradient for MARL conforms to970

the competitive gradient-based learning framework and hence, the results of Section 4 apply under971

appropriate assumptions.972
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