IGW Properties

Recall the dispersion relation

\[\omega^2 = f^2 m^2 + N^2 k \frac{k^2}{k^2} \]

\[k^2 = k_x^2 + k_y^2 + m^2 \]

For wave solutions we require real \(w, h, b, \) and \(m, \) which limits the possible frequencies

\(\sim 10^{-9} \text{ s}^{-1} \) \(\sim 10^{-4} \text{ s}^{-1} \)

\[\text{Internal Gravity Waves} \]

\(f \)

\(N \)

This is new! It is because we cannot have parcels oscillate vertically any faster than this.

We saw this before for Poincaré waves.

\[\text{Parcel motion} \]

\[\text{also moving out of the page ~ like an inertial circle} \]
the velocity solutions can be written as

\[u = \text{Re} \left\{ u_0 \exp i \varphi \right\} \]
\[v = \text{Re} \left\{ v_0 \exp i \varphi \right\} \]
\[w = \text{Re} \left\{ w_0 \exp i \varphi \right\} \]

where \(u_0, v_0, \) and \(w_0 \) are complex constants and phase \(\varphi = kx + ly + mz - \omega t \)

putting these into \(\nabla \cdot \mathbf{u} = 0 \Rightarrow i(ku + lv + mw) = 0 \)

and : \(k \cdot u = 0 \)

so the motion is \perp \) to \(\mathbf{k} \)

\(\varphi = \text{const} \)

\(C_p = \frac{\omega}{k} \frac{k}{|k|} \)

a \(v \)-velocity develops because of Coriolis
Exploring other fields \(u, v, w, e', p' \)

Easy place to start is using \(\bar{e}' \) \(e' \), and assume
\[p' = \text{Re} \left\{ K \exp(i\varphi) \right\}, \quad \varphi = kx + ly + mz - \omega t \]

\[-i\omega R = -\omega_0 \bar{p}_z \quad (+) \]

\[R = -i\omega_0 \bar{p}_z \quad \text{(note} \quad \frac{1}{i} = -i) \]

So if we assume \(\omega_0 = \omega \) (real) \(\Rightarrow \omega = \omega \cos \varphi \)

and
\[p' = \frac{\omega \bar{p}_z}{\omega} \text{Re} \left\{ (-i) \cos \varphi + (-i) i \sin \varphi \right\} \]

\[p' = \frac{\omega \bar{p}_z}{\omega} \sin \varphi \quad \text{(or} \quad b = -\frac{p'e'}{\omega} = \frac{\omega N}{\omega} \sin \varphi) \]

sign of \(p' \)

Note:

\(\bar{p}_z \) is negative

\(m, k \) positive as drawn

\(\varphi = \frac{3\pi}{4} \)
Physical interpretation: φ' reflects the sign of w that a fluid parcel experienced recently (look at greater φ)

Notes on the math:

- Working with $\exp i \varphi$ allows us to absorb changes of sine \leftrightarrow cosine into the complex coefficients (like u_0, R, u_0, etc.)

- Procedure (e.g. in (++) is to stay with complex numbers when working on coefficients, then take real part at the end.

This works (for linear systems) because e.g.

$$\frac{d}{dt} \varphi' = \frac{d}{dt} \text{Re}\{R \exp i \varphi\} = \text{Re}\{\frac{d}{dt} [R \exp i \varphi]\}$$