Perron Spectratopes and the Real Nonnegative Inverse Eigenvalue Problem UWB Mathematics Society

Pietro Paparella

Division of Engineering & Mathematics School of Science, Technology, Engineering, & Mathematics

14 April 2016

(日) (部) (注) (注) (三)

Overview

2 The Perron-Frobenius Theorem for Nonnegative Matrices

3 Nonnegative Inverse Eigenvalue Problem

Perron Spectracones & Spectratopes

5 Future Work

・ロト ・四ト ・ヨト ・ヨト

• \mathbb{N} denotes the set of natural numbers.

- \mathbb{N} denotes the set of natural numbers.
- For $n \in \mathbb{N}$, denote by $\langle n \rangle$ the set $\{1, \ldots, n\}$.

- $\ensuremath{\mathbb{N}}$ denotes the set of natural numbers.
- For $n \in \mathbb{N}$, denote by $\langle n \rangle$ the set $\{1, \ldots, n\}$.
- $\bullet~\mathbb{R}$ denotes the set of real numbers.

・ロン ・日 ・ ・ 日 ・ ・ 日 ・

- $\ensuremath{\mathbb{N}}$ denotes the set of natural numbers.
- For $n \in \mathbb{N}$, denote by $\langle n \rangle$ the set $\{1, \ldots, n\}$.
- $\bullet~\mathbb{R}$ denotes the set of real numbers.
- $\bullet \ \mathbb{C}$ denotes the set of complex numbers.

・ロト ・回 ト ・ヨト ・ヨト

- $\ensuremath{\mathbb{N}}$ denotes the set of natural numbers.
- For $n \in \mathbb{N}$, denote by $\langle n \rangle$ the set $\{1, \ldots, n\}$.
- $\bullet~\mathbb{R}$ denotes the set of real numbers.
- $\bullet \ \mathbb{C}$ denotes the set of complex numbers.
- \mathbb{F} denotes \mathbb{R} or \mathbb{C} .

Э

・ロト ・四ト ・ヨト ・ヨト

- $\ensuremath{\mathbb{N}}$ denotes the set of natural numbers.
- For $n \in \mathbb{N}$, denote by $\langle n \rangle$ the set $\{1, \ldots, n\}$.
- $\bullet~\mathbb{R}$ denotes the set of real numbers.
- $\bullet \ \mathbb{C}$ denotes the set of complex numbers.
- \mathbb{F} denotes \mathbb{R} or \mathbb{C} .
- A matrix is a rectangular array of numbers arranged in rows and columns.

・ロト ・回ト ・ヨト ・ヨト

- $\ensuremath{\mathbb{N}}$ denotes the set of natural numbers.
- For $n \in \mathbb{N}$, denote by $\langle n \rangle$ the set $\{1, \ldots, n\}$.
- $\bullet~\mathbb{R}$ denotes the set of real numbers.
- $\bullet \ \mathbb{C}$ denotes the set of complex numbers.
- \mathbb{F} denotes \mathbb{R} or \mathbb{C} .
- A matrix is a rectangular array of numbers arranged in rows and columns.
- If a matrix has *m* rows and *n* columns, then it is said to be an *m*-by-*n* matrix and its size is *m*-by-*n*.

- $\ensuremath{\mathbb{N}}$ denotes the set of natural numbers.
- For $n \in \mathbb{N}$, denote by $\langle n \rangle$ the set $\{1, \ldots, n\}$.
- $\bullet~\mathbb{R}$ denotes the set of real numbers.
- $\bullet \ \mathbb{C}$ denotes the set of complex numbers.
- \mathbb{F} denotes \mathbb{R} or \mathbb{C} .
- A matrix is a rectangular array of numbers arranged in rows and columns.
- If a matrix has *m* rows and *n* columns, then it is said to be an *m*-by-*n* matrix and its size is *m*-by-*n*.
 - E.g., the matrix

$$A = egin{bmatrix} 1 & 2 & 0 \ -1 & {
m i} & \pi \end{bmatrix}$$

is a two-by-three matrix.

- $\ensuremath{\mathbb{N}}$ denotes the set of natural numbers.
- For $n \in \mathbb{N}$, denote by $\langle n \rangle$ the set $\{1, \ldots, n\}$.
- $\bullet~\mathbb{R}$ denotes the set of real numbers.
- $\bullet \ \mathbb{C}$ denotes the set of complex numbers.
- \mathbb{F} denotes \mathbb{R} or \mathbb{C} .
- A matrix is a rectangular array of numbers arranged in rows and columns.
- If a matrix has *m* rows and *n* columns, then it is said to be an *m*-by-*n* matrix and its size is *m*-by-*n*.
 - E.g., the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & i & \pi \end{bmatrix}$$

is a two-by-three matrix.

• A square matrix is any matrix with the same number of rows and columns (unless otherwise noted, all matrices are considered to be square).

イロト イポト イモト イモト

• For any *m*-by-*n* matrix *A*:

- For any *m*-by-*n* matrix *A*:
 - a_{ij} denotes the (i, j)-entry of A (i.e., the entry in row *i*, column *j*).

(□) (@) (E) (E) E

- For any *m*-by-*n* matrix *A*:
 - a_{ij} denotes the (i, j)-entry of A (i.e., the entry in row i, column j).
 - A^{\top} denotes the transpose of A, i.e., A^{\top} is the *n*-by-*m* matrix whose (i, j)-entry is a_{ji} .

- For any *m*-by-*n* matrix *A*:
 - a_{ij} denotes the (i, j)-entry of A (i.e., the entry in row i, column j).
 - A^T denotes the transpose of A, i.e., A^T is the n-by-m matrix whose (i, j)-entry is a_{ji}.
- If A is an *n*-by-*n* matrix, then

- For any *m*-by-*n* matrix *A*:
 - a_{ij} denotes the (i, j)-entry of A (i.e., the entry in row i, column j).
 - A^T denotes the transpose of A, i.e., A^T is the n-by-m matrix whose (i, j)-entry is a_{ji}.
- If A is an *n*-by-*n* matrix, then
 - the scalar λ ∈ C is is called an eigenvalue of A if there is a nonzero vector x such that Ax = λx. The vector x is called an eigenvector of A associated with λ.

(□) < □) < □) < □) < □) < □)</p>

- For any *m*-by-*n* matrix *A*:
 - a_{ij} denotes the (i, j)-entry of A (i.e., the entry in row i, column j).
 - A^T denotes the transpose of A, i.e., A^T is the n-by-m matrix whose (i, j)-entry is a_{ji}.
- If A is an *n*-by-*n* matrix, then
 - the scalar λ ∈ C is is called an eigenvalue of A if there is a nonzero vector x such that Ax = λx. The vector x is called an eigenvector of A associated with λ.
 - $\sigma(A)$ denotes the spectrum of a A, i.e.,

$$\sigma(A) := \{\lambda \in \mathbb{C} : \det(A - \lambda I) = 0\} = \{\lambda_1, \dots, \lambda_n\}.$$

・ロト ・回 ト ・ヨ ト ・ ヨ ト

- For any *m*-by-*n* matrix *A*:
 - a_{ij} denotes the (i, j)-entry of A (i.e., the entry in row i, column j).
 - A^T denotes the transpose of A, i.e., A^T is the n-by-m matrix whose (i, j)-entry is a_{ji}.
- If A is an *n*-by-*n* matrix, then
 - the scalar λ ∈ C is is called an eigenvalue of A if there is a nonzero vector x such that Ax = λx. The vector x is called an eigenvector of A associated with λ.
 - $\sigma(A)$ denotes the spectrum of a A, i.e.,

$$\sigma(A) := \{\lambda \in \mathbb{C} : \det(A - \lambda I) = 0\} = \{\lambda_1, \dots, \lambda_n\}.$$

- For any *m*-by-*n* matrix *A*:
 - a_{ij} denotes the (i, j)-entry of A (i.e., the entry in row i, column j).
 - A^{\top} denotes the transpose of A, i.e., A^{\top} is the *n*-by-*m* matrix whose (i, j)-entry is a_{ji} .
- If A is an *n*-by-*n* matrix, then
 - the scalar λ ∈ C is is called an eigenvalue of A if there is a nonzero vector x such that Ax = λx. The vector x is called an eigenvector of A associated with λ.
 - $\sigma(A)$ denotes the spectrum of a A, i.e.,

$$\sigma(A) := \{\lambda \in \mathbb{C} : \det(A - \lambda I) = 0\} = \{\lambda_1, \dots, \lambda_n\}.$$

• For $x \in \mathbb{F}^n$, denote by D_x the diagonal matrix whose (i, i)-entry is x_i .

- For any *m*-by-*n* matrix *A*:
 - a_{ij} denotes the (i, j)-entry of A (i.e., the entry in row i, column j).
 - A^{\top} denotes the transpose of A, i.e., A^{\top} is the *n*-by-*m* matrix whose (i, j)-entry is a_{ji} .
- If A is an *n*-by-*n* matrix, then
 - the scalar λ ∈ C is is called an eigenvalue of A if there is a nonzero vector x such that Ax = λx. The vector x is called an eigenvector of A associated with λ.
 - $\sigma(A)$ denotes the spectrum of a A, i.e.,

$$\sigma(A) := \{\lambda \in \mathbb{C} : \det(A - \lambda I) = 0\} = \{\lambda_1, \dots, \lambda_n\}.$$

- For $x \in \mathbb{F}^n$, denote by D_x the diagonal matrix whose (i, i)-entry is x_i .
- Denote by e_i the i^{th} standard basis vector of \mathbb{R}^n .

イロト イポト イモト イモト

- For any *m*-by-*n* matrix *A*:
 - a_{ij} denotes the (i, j)-entry of A (i.e., the entry in row i, column j).
 - A^{\top} denotes the transpose of A, i.e., A^{\top} is the *n*-by-*m* matrix whose (i, j)-entry is a_{ji} .
- If A is an *n*-by-*n* matrix, then
 - the scalar λ ∈ C is is called an eigenvalue of A if there is a nonzero vector x such that Ax = λx. The vector x is called an eigenvector of A associated with λ.
 - $\sigma(A)$ denotes the spectrum of a A, i.e.,

$$\sigma(A) := \{\lambda \in \mathbb{C} : \det(A - \lambda I) = 0\} = \{\lambda_1, \dots, \lambda_n\}.$$

- For $x \in \mathbb{F}^n$, denote by D_x the diagonal matrix whose (i, i)-entry is x_i .
- Denote by e_i the i^{th} standard basis vector of \mathbb{R}^n .

• Let
$$e := [1 \cdots 1]^\top \in \mathbb{R}^n$$
.

A real matrix A is said to be nonnegative (A \geq 0) if $a_{ij} \geq$ 0 \forall (i,j) $\in \langle n \rangle \times \langle n \rangle$.

A real matrix A is said to be nonnegative $(A \ge 0)$ if $a_{ij} \ge 0$ $\forall (i,j) \in \langle n \rangle \times \langle n \rangle$.

Theorem (Perron-Frobenius [PFT])

If $A \ge 0$, then $\rho := \rho(A) \in \sigma(A)$, and there is a nonnegative vector x such that $Ax = \rho x$.

A real matrix A is said to be nonnegative (A \geq 0) if $a_{ij} \geq$ 0 \forall (i,j) $\in \langle n \rangle \times \langle n \rangle$.

Theorem (Perron-Frobenius [PFT])

If $A \ge 0$, then $\rho := \rho(A) \in \sigma(A)$, and there is a nonnegative vector x such that $Ax = \rho x$.

• ρ is called the Perron root (or eigenvalue) of A.

A real matrix A is said to be nonnegative (A \geq 0) if $a_{ij} \geq$ 0 \forall (i,j) $\in \langle n \rangle \times \langle n \rangle$.

Theorem (Perron-Frobenius [PFT])

If $A \ge 0$, then $\rho := \rho(A) \in \sigma(A)$, and there is a nonnegative vector x such that $Ax = \rho x$.

- ρ is called the Perron root (or eigenvalue) of A.
- If $\sum_{i} x_i = 1$, then x is called the Perron vector of A.

A real matrix A is said to be nonnegative (A \geq 0) if $a_{ij} \geq$ 0 \forall (i,j) $\in \langle n \rangle \times \langle n \rangle$.

Theorem (Perron-Frobenius [PFT])

If $A \ge 0$, then $\rho := \rho(A) \in \sigma(A)$, and there is a nonnegative vector x such that $Ax = \rho x$.

- ρ is called the Perron root (or eigenvalue) of A.
- If $\sum_{i} x_i = 1$, then x is called the Perron vector of A.
- (ρ, x) is called the Perron eigenpair of A.

Applications of PFT:

- Continued fractions.
- Internet search engines (e.g., Google Matrix).
- Resource-allocation in wireless networks.
- Probability theory (ergodicity of Markov chains).
- Symbolic dynamics/dynamical systems (subshifts of finite type).
- Economics (e.g., Okishio's theorem, Leontief's input-output model, Walrasian stability of competitive markets).
- Demography (Leslie model).
- Ranking methods (e.g., football teams).
- Low-dimensional topology.
- Statistical mechanics.
- Epidemiology (Kermack-McKendrick threshold).
- Matrix iterative analysis (Stein-Rosenberg theorem).

A real matrix A is called

< □ > < □ > < □ > < □ > < □ > < □ > = □

A real matrix A is called

• (row) stochastic if $A \ge 0$ and $\sum_j a_{ij} = 1, \ \forall \ i \in \langle n \rangle;$

A real matrix A is called

- (row) stochastic if $A \ge 0$ and $\sum_j a_{ij} = 1, \forall i \in \langle n \rangle$;
- column stochastic if $A \ge 0$ and $\sum_i a_{ij} = 1, \ \forall \ j \in \langle n \rangle$; and

A real matrix A is called

- (row) stochastic if $A \ge 0$ and $\sum_j a_{ij} = 1, \ \forall \ i \in \langle n \rangle$;
- column stochastic if $A \ge 0$ and $\sum_i a_{ij} = 1, \ \forall \ j \in \langle n \rangle$; and
- doubly stochastic if it is row stochastic and column stochastic.

A real matrix A is called

- (row) stochastic if $A \ge 0$ and $\sum_j a_{ij} = 1, \ \forall \ i \in \langle n \rangle$;
- column stochastic if $A \ge 0$ and $\sum_i a_{ij} = 1, \ \forall \ j \in \langle n \rangle$; and
- doubly stochastic if it is row stochastic and column stochastic.
- Stochastic matrices arise in the study of Markov Chains.

イロト 不得 とうせい イロト

A real matrix A is called

- (row) stochastic if $A \ge 0$ and $\sum_j a_{ij} = 1, \forall i \in \langle n \rangle$;
- column stochastic if $A \ge 0$ and $\sum_i a_{ij} = 1, \ \forall \ j \in \langle n \rangle$; and
- doubly stochastic if it is row stochastic and column stochastic.
- Stochastic matrices arise in the study of Markov Chains.
- Denote by Θ_n the set of all complex numbers λ such that λ is an eigenvalue of some n × n stochastic matrix.

A real matrix A is called

- (row) stochastic if $A \ge 0$ and $\sum_j a_{ij} = 1, \forall i \in \langle n \rangle$;
- column stochastic if $A \ge 0$ and $\sum_i a_{ij} = 1, \ \forall \ j \in \langle n \rangle$; and
- doubly stochastic if it is row stochastic and column stochastic.
- Stochastic matrices arise in the study of Markov Chains.
- Denote by Θ_n the set of all complex numbers λ such that λ is an eigenvalue of some $n \times n$ stochastic matrix.
 - Kolmogorov (1937) posed the problem of characterizing Θ_n .

A real matrix A is called

- (row) stochastic if $A \ge 0$ and $\sum_j a_{ij} = 1, \forall i \in \langle n \rangle$;
- column stochastic if $A \ge 0$ and $\sum_i a_{ij} = 1, \ \forall \ j \in \langle n \rangle$; and
- doubly stochastic if it is row stochastic and column stochastic.
- Stochastic matrices arise in the study of Markov Chains.
- Denote by Θ_n the set of all complex numbers λ such that λ is an eigenvalue of some $n \times n$ stochastic matrix.
 - Kolmogorov (1937) posed the problem of characterizing Θ_n .
 - Karpelevich (1951) gave an implicit, parametric description of Θ_n for every n ∈ N.

 The nonnegative inverse eigenvalue problem (NIEP) is to find necessary and sufficient conditions on σ = {λ₁,...,λ_n} ⊂ C so that σ is the spectrum of an n × n nonnegative matrix.

イロト 不良 とうせい うけん

- The nonnegative inverse eigenvalue problem (NIEP) is to find necessary and sufficient conditions on σ = {λ₁,...,λ_n} ⊂ C so that σ is the spectrum of an n × n nonnegative matrix.
- The set *σ* is said to be realizable if there is an *n* × *n* nonnegative matrix with spectrum *σ*.

- The nonnegative inverse eigenvalue problem (NIEP) is to find necessary and sufficient conditions on σ = {λ₁,...,λ_n} ⊂ C so that σ is the spectrum of an n × n nonnegative matrix.
- The set σ is said to be realizable if there is an n×n nonnegative matrix with spectrum σ.
- If σ is realizable, then:

$$\sigma = \bar{\sigma}$$
 (A real)

$$s_k := \sum_{i=1}^n \lambda_i^k \ge 0, \ \forall \ k \in \mathbb{N}$$
 $(A^k \ge 0)$

$$\rho(\sigma) := \max_{i \in \langle n \rangle} |\lambda_i| \in \sigma \tag{PFT}$$

$$s_k^m \leq n^{m-1}s_{km}, \forall \ m \in \mathbb{N}.$$
 (J-LL condition)

・ロト ・回ト ・ヨト ・ヨト

- The nonnegative inverse eigenvalue problem (NIEP) is to find necessary and sufficient conditions on σ = {λ₁,...,λ_n} ⊂ C so that σ is the spectrum of an n × n nonnegative matrix.
- The set σ is said to be realizable if there is an n × n nonnegative matrix with spectrum σ.
- If σ is realizable, then:

$$\sigma = \bar{\sigma}$$
 (A real)

$$s_k := \sum_{i=1}^n \lambda_i^k \ge 0, \ \forall \ k \in \mathbb{N}$$
 $(A^k \ge 0)$

$$\rho(\sigma) := \max_{i \in \langle n \rangle} |\lambda_i| \in \sigma$$
 (PFT)

$$s_k^m \leq n^{m-1}s_{km}, \forall \ m \in \mathbb{N}.$$
 (J-LL condition)

イロト イポト イモト イモト

 Holtz (2004) showed that if σ is realizable, where λ₁ = ρ(σ), then the shifted spectrum {0, λ₁ − λ₂,..., λ₁ − λ_n} satisfies Newton's inequalities. • Boyle & Handelman (1994) characterized the *nonzero* spectra of nonnegative matrices.

Э

ヘロト ヘアト ヘビト ヘビト

- Boyle & Handelman (1994) characterized the *nonzero* spectra of nonnegative matrices.
- Stochastic NIEP: Determine necessary and sufficient conditions for σ = {λ₁ = 1,...,λ_n} ⊂ C to be the spectrum of a stochastic matrix.

イロト 不良 とうせい うけん

- Boyle & Handelman (1994) characterized the *nonzero* spectra of nonnegative matrices.
- Stochastic NIEP: Determine necessary and sufficient conditions for σ = {λ₁ = 1,...,λ_n} ⊂ C to be the spectrum of a stochastic matrix.
 - The NIEP and the Stochastic NIEP are equivalent.

- Boyle & Handelman (1994) characterized the *nonzero* spectra of nonnegative matrices.
- Stochastic NIEP: Determine necessary and sufficient conditions for σ = {λ₁ = 1,...,λ_n} ⊂ C to be the spectrum of a stochastic matrix.
 - The NIEP and the Stochastic NIEP are equivalent.
- Real NIEP (RNIEP): Determine necessary and sufficient conditions for σ = {λ₁,...,λ_n} ⊂ ℝ to be the spectrum of a nonnegative matrix.

イロト 不良 とうせい うけん

- Boyle & Handelman (1994) characterized the *nonzero* spectra of nonnegative matrices.
- Stochastic NIEP: Determine necessary and sufficient conditions for σ = {λ₁ = 1,...,λ_n} ⊂ C to be the spectrum of a stochastic matrix.
 - The NIEP and the Stochastic NIEP are equivalent.
- Real NIEP (RNIEP): Determine necessary and sufficient conditions for σ = {λ₁,...,λ_n} ⊂ ℝ to be the spectrum of a nonnegative matrix.
 - RNIEP is unsolved for $n \ge 5$.

イロト 不良 とうせい うけん

- Boyle & Handelman (1994) characterized the *nonzero* spectra of nonnegative matrices.
- Stochastic NIEP: Determine necessary and sufficient conditions for σ = {λ₁ = 1,...,λ_n} ⊂ C to be the spectrum of a stochastic matrix.
 - The NIEP and the Stochastic NIEP are equivalent.
- Real NIEP (RNIEP): Determine necessary and sufficient conditions for σ = {λ₁,...,λ_n} ⊂ ℝ to be the spectrum of a nonnegative matrix.
 - RNIEP is unsolved for $n \ge 5$.
- Symmetric NIEP (SNIEP): Determine necessary and sufficient conditions for σ = {λ₁,...,λ_n} ∈ ℝ to be the spectrum of a symmetric, nonnegative matrix.

- Boyle & Handelman (1994) characterized the *nonzero* spectra of nonnegative matrices.
- Stochastic NIEP: Determine necessary and sufficient conditions for σ = {λ₁ = 1,...,λ_n} ⊂ C to be the spectrum of a stochastic matrix.
 - The NIEP and the Stochastic NIEP are equivalent.
- Real NIEP (RNIEP): Determine necessary and sufficient conditions for σ = {λ₁,...,λ_n} ⊂ ℝ to be the spectrum of a nonnegative matrix.
 - RNIEP is unsolved for $n \ge 5$.
- Symmetric NIEP (SNIEP): Determine necessary and sufficient conditions for σ = {λ₁,...,λ_n} ∈ ℝ to be the spectrum of a symmetric, nonnegative matrix.

P. Paparella

• SNIEP is unsolved for $n \ge 5$.

イロト 不良 とうせい うけん

- Boyle & Handelman (1994) characterized the *nonzero* spectra of nonnegative matrices.
- Stochastic NIEP: Determine necessary and sufficient conditions for σ = {λ₁ = 1,...,λ_n} ⊂ C to be the spectrum of a stochastic matrix.
 - The NIEP and the Stochastic NIEP are equivalent.
- Real NIEP (RNIEP): Determine necessary and sufficient conditions for σ = {λ₁,...,λ_n} ⊂ ℝ to be the spectrum of a nonnegative matrix.
 - RNIEP is unsolved for $n \ge 5$.
- Symmetric NIEP (SNIEP): Determine necessary and sufficient conditions for σ = {λ₁,...,λ_n} ∈ ℝ to be the spectrum of a symmetric, nonnegative matrix.
 - SNIEP is unsolved for $n \ge 5$.
- It is known that RNIEP and SNIEP are equivalent when n ≤ 4 but distinct otherwise (Johnson, Laffey, & Loewy 1996).

・ ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

• Herein S is a real, invertible, *n*-by-*n* matrix.

- Herein S is a real, invertible, *n*-by-*n* matrix.
- Let

$$\mathcal{C}(S) := \{x \in \mathbb{R}^n : SD_x S^{-1} \ge 0\}.$$

Э

・ロン ・四 と ・ ヨ と ・ ヨ と …

• Herein S is a real, invertible, *n*-by-*n* matrix.

Let

$$\mathcal{C}(S) := \{x \in \mathbb{R}^n : SD_xS^{-1} \ge 0\}.$$

Since SIS⁻¹ = I ≥ 0 for every invertible matrix, it follows that the set C (S) is always nonempty.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

• Herein S is a real, invertible, *n*-by-*n* matrix.

Let

$$\mathcal{C}(S) := \{x \in \mathbb{R}^n : SD_xS^{-1} \ge 0\}.$$

- Since SIS⁻¹ = I ≥ 0 for every invertible matrix, it follows that the set C (S) is always nonempty.
- If α , $\beta \geq 0$, $x, y \in C(S)$, then $\alpha x + \beta y \in C(S)$ so that C(S) is a convex cone.

• Herein S is a real, invertible, n-by-n matrix.

Let

$$\mathcal{C}(S) := \{x \in \mathbb{R}^n : SD_xS^{-1} \ge 0\}.$$

- Since SIS⁻¹ = I ≥ 0 for every invertible matrix, it follows that the set C (S) is always nonempty.
- If α , $\beta \geq 0$, $x, y \in C(S)$, then $\alpha x + \beta y \in C(S)$ so that C(S) is a convex cone.
 - Notice that $\operatorname{coni}(e) \subseteq \mathcal{C}(S)$.

• Herein S is a real, invertible, n-by-n matrix.

Let

$$\mathcal{C}(S) := \{x \in \mathbb{R}^n : SD_xS^{-1} \ge 0\}.$$

- Since SIS⁻¹ = I ≥ 0 for every invertible matrix, it follows that the set C (S) is always nonempty.
- If α , $\beta \geq 0$, $x, y \in C(S)$, then $\alpha x + \beta y \in C(S)$ so that C(S) is a convex cone.
 - Notice that $\operatorname{coni}(e) \subseteq \mathcal{C}(S)$.
 - We refer to $\mathcal{C}(S)$ as the (Perron) spectracone of S.

• Herein S is a real, invertible, n-by-n matrix.

Let

$$\mathcal{C}(S) := \{x \in \mathbb{R}^n : SD_xS^{-1} \ge 0\}.$$

- Since SIS⁻¹ = I ≥ 0 for every invertible matrix, it follows that the set C (S) is always nonempty.
- If α , $\beta \geq 0$, $x, y \in C(S)$, then $\alpha x + \beta y \in C(S)$ so that C(S) is a convex cone.
 - Notice that $\operatorname{coni}(e) \subseteq \mathcal{C}(S)$.
 - We refer to C(S) as the (Perron) spectracone of S.

Definition (Polyhedron & Polytope)

A polyhedron is any set of the form $\mathcal{P}(A, b) := \{x \in \mathbb{R}^n : Ax \le b\}$, where A is an *m*-by-*n* real matrix and $b \in \mathbb{R}^m$. A polyhedral cone is any polyhedron of the from $\mathcal{P}(A, 0)$. A polytope is a bounded polyhedron.

Sac

Э

Let

$$\mathcal{P}(S) := \{x \in \mathcal{C}(S) : x_1 = 1\}$$

and

$$\mathcal{P}^{1}(S) := \{ y \in \mathbb{R}^{n-1} : y = \pi_{1}(x), x \in \mathcal{P}(S) \}.$$

Э

ヘロン 人間 とく ボン・ヘロン

Let

$$\mathcal{P}(S) := \{x \in \mathcal{C}(S) : x_1 = 1\}$$

and

$$\mathcal{P}^1(S) := \{ y \in \mathbb{R}^{n-1} : y = \pi_1(x), x \in \mathcal{P}(S) \}.$$

• Since $SIS^{-1} = I \ge 0$ for every invertible matrix S, it follows that $\mathcal{P}(S)$ is always nonempty; if $n \ge 2$, then $\mathcal{P}^1(S)$ is always nonempty.

Let

$$\mathcal{P}(S) := \{x \in \mathcal{C}(S) : x_1 = 1\}$$

and

$$\mathcal{P}^{1}(S) := \{ y \in \mathbb{R}^{n-1} : y = \pi_{1}(x), x \in \mathcal{P}(S) \}.$$

- Since $SIS^{-1} = I \ge 0$ for every invertible matrix S, it follows that $\mathcal{P}(S)$ is always nonempty; if $n \ge 2$, then $\mathcal{P}^1(S)$ is always nonempty.
- The sets $\mathcal{P}(S)$ and $\mathcal{P}^1(S)$ are polytopes.

Let

$$\mathcal{P}(S) := \{x \in \mathcal{C}(S) : x_1 = 1\}$$

and

$$\mathcal{P}^1(S) := \{y \in \mathbb{R}^{n-1} : y = \pi_1(x), x \in \mathcal{P}(S)\}.$$

- Since $SIS^{-1} = I \ge 0$ for every invertible matrix S, it follows that $\mathcal{P}(S)$ is always nonempty; if $n \ge 2$, then $\mathcal{P}^1(S)$ is always nonempty.
- The sets $\mathcal{P}(S)$ and $\mathcal{P}^1(S)$ are polytopes.
- We refer to $\mathcal{P}(S)$ as the (Perron) spectratope of S and $\mathcal{P}^1(S)$ as the projected (Perron) spectratope of S.

イロト 不良 とうせい うけん

Given $v_1, \ldots, v_n \in \mathbb{R}^n$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, the linear combination $\sum \alpha_i v_i$ is said to be a

Given $v_1, \ldots, v_n \in \mathbb{R}^n$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, the linear combination $\sum \alpha_i v_i$ is said to be a

• conical combination if $\alpha_i \ge 0$ for all $i \in \langle n \rangle$; or a

Given $v_1, \ldots, v_n \in \mathbb{R}^n$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, the linear combination $\sum \alpha_i v_i$ is said to be a

- conical combination if $\alpha_i \ge 0$ for all $i \in \langle n \rangle$; or a
- convex combination if $\alpha_i \geq 0$ for all $i \in \langle n \rangle$ and $\sum \alpha_i = 1$.

Э

ヘロト ヘヨト ヘヨト

Given $v_1, \ldots, v_n \in \mathbb{R}^n$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, the linear combination $\sum \alpha_i v_i$ is said to be a

- conical combination if $\alpha_i \ge 0$ for all $i \in \langle n \rangle$; or a
- convex combination if $\alpha_i \ge 0$ for all $i \in \langle n \rangle$ and $\sum \alpha_i = 1$.
- The conical hull of the vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ is the set

$$\operatorname{coni}(v_1,\ldots,v_n) := \left\{ \sum \alpha_i v_i \in \mathbb{R}^n : \alpha_i \ge 0 \right\}.$$

Э

イロト 不良 とうせい うけん

Given $v_1, \ldots, v_n \in \mathbb{R}^n$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, the linear combination $\sum \alpha_i v_i$ is said to be a

- conical combination if $\alpha_i \ge 0$ for all $i \in \langle n \rangle$; or a
- convex combination if $\alpha_i \ge 0$ for all $i \in \langle n \rangle$ and $\sum \alpha_i = 1$.
- The conical hull of the vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ is the set

$$\operatorname{coni}(v_1,\ldots,v_n) := \left\{ \sum \alpha_i v_i \in \mathbb{R}^n : \alpha_i \ge 0 \right\}.$$

• The convex hull of the vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ is the set

$$\operatorname{coni}(v_1,\ldots,v_n) := \left\{ \sum \alpha_i v_i \in \mathbb{R}^n : \alpha_i \ge 0, \sum \alpha_i = 1 \right\}.$$

・ロ・・ 白・ ・ ヨ・ ・ ヨ・

A matrix S is a called Perron-similarity if $coni(e) \subset C(S)$.

A matrix S is a called Perron-similarity if $coni(e) \subset C(S)$.

Theorem

A matrix S is a Perron-similarity iff there is an $i \in \langle n \rangle$ such that Se_i and $e_i^\top S^{-1}$ are both nonnegative.

イロト 不良 とうせい うけん

A matrix S is a called Perron-similarity if $\operatorname{coni}(e) \subset C(S)$.

Theorem

A matrix S is a Perron-similarity iff there is an $i \in \langle n \rangle$ such that Se_i and $e_i^\top S^{-1}$ are both nonnegative.

Proof.

Necessity. If coni $(e) \subset C(S)$, then there is a vector $x \neq e$ such that $A := SD_xS^{-1} \ge 0$. Following the PFT, there is an $i \in \langle n \rangle$ such that Se_i and $e_i^{\top}S^{-1}$ are both nonnegative. *Sufficiency.* If $x := Se_i \ge 0$ and $y^{\top} := e_i^{\top}S^{-1} \ge 0$, then $SD_{e_i}S^{-1} = xy^{\top} \ge 0$. Thus, coni $(e) \subset C(S)$.

Theorem

Let

$$S = \left[\begin{array}{c} s_1^\top \\ \vdots \\ s_n^\top \end{array}
ight].$$

If $y^{\top} := e_i^{\top} S^{-1}$, then $y \ge 0$ if and only if $e_i \in \text{coni}(s_1, \ldots, s_n)$. Moreover, y > 0 iff $e_i \in \text{int}(\text{coni}(s_1, \ldots, s_n))$.

(□) (□) (□) (Ξ) (Ξ) (Ξ) Ξ

Theorem

Let

$$S = \begin{bmatrix} s_1^\top \\ \vdots \\ s_n^\top \end{bmatrix}.$$

If $y^{\top} := e_i^{\top} S^{-1}$, then $y \ge 0$ if and only if $e_i \in \text{coni}(s_1, \ldots, s_n)$. Moreover, y > 0 iff $e_i \in \text{int}(\text{coni}(s_1, \ldots, s_n))$.

Corollary

lf

$$S = \begin{bmatrix} s_1^\top \\ \vdots \\ s_n^\top \end{bmatrix} \text{ and } (S^{-1})^\top = \begin{bmatrix} t_1^\top \\ \vdots \\ t_n^\top \end{bmatrix},$$

then S is a Perron-similarity iff there is an $i \in \langle n \rangle$ such that $e_i \in \operatorname{coni}(s_1, \ldots, s_n)$ and $e_i \in \operatorname{coni}(t_1, \ldots, t_n)$.

Sac

• A Hadamard matrix (of order *n*) is an *n*-by-*n* matrix with entries in $\{\pm 1\}$ that satisfies the matricial equation $XX^{\top} = nI$.

Э

・ロン ・四 と ・ ヨ と ・ ヨ と …

- A Hadamard matrix (of order *n*) is an *n*-by-*n* matrix with entries in $\{\pm 1\}$ that satisfies the matricial equation $XX^{\top} = nI$.
- Let $H_0 = [1]$, and for $n \in \mathbb{N}$, let

$$H_{n} := \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}.$$
 (Sylvester construction)

Э

・ロト ・四ト ・ヨト ・ヨト

- A Hadamard matrix (of order *n*) is an *n*-by-*n* matrix with entries in $\{\pm 1\}$ that satisfies the matricial equation $XX^{\top} = nI$.
- Let $H_0 = [1]$, and for $n \in \mathbb{N}$, let

$$H_{n} := \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}.$$
 (Sylvester construction)

• It is well-known that H_n is a Hadamard matrix for every $n \in \mathbb{N}_0$.

・ロン ・四 と ・ ヨ と ・ ヨ と

- A Hadamard matrix (of order *n*) is an *n*-by-*n* matrix with entries in $\{\pm 1\}$ that satisfies the matricial equation $XX^{\top} = nI$.
- Let $H_0 = [1]$, and for $n \in \mathbb{N}$, let

$$H_{n} := \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}.$$
 (Sylvester construction)

- It is well-known that H_n is a Hadamard matrix for every $n \in \mathbb{N}_0$.
- The matrix H_n, n ∈ N₀ is called the Sylvester-Hadamard or Walsh matrix of order 2ⁿ.

- A Hadamard matrix (of order *n*) is an *n*-by-*n* matrix with entries in $\{\pm 1\}$ that satisfies the matricial equation $XX^{\top} = nI$.
- Let $H_0 = [1]$, and for $n \in \mathbb{N}$, let

$$H_{n} := \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}.$$
 (Sylvester construction)

- It is well-known that H_n is a Hadamard matrix for every $n \in \mathbb{N}_0$.
- The matrix H_n, n ∈ N₀ is called the Sylvester-Hadamard or Walsh matrix of order 2ⁿ.

Theorem

The spectracone of the Walsh matrix of order 2^n is the conical hull of its rows.

イロト イポト イモト イモト

- A Hadamard matrix (of order *n*) is an *n*-by-*n* matrix with entries in $\{\pm 1\}$ that satisfies the matricial equation $XX^{\top} = nI$.
- Let $H_0 = [1]$, and for $n \in \mathbb{N}$, let

$$H_{n} := \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}.$$
 (Sylvester construction)

- It is well-known that H_n is a Hadamard matrix for every $n \in \mathbb{N}_0$.
- The matrix H_n, n ∈ N₀ is called the Sylvester-Hadamard or Walsh matrix of order 2ⁿ.

Theorem

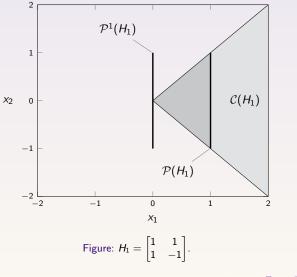
The spectracone of the Walsh matrix of order 2^n is the conical hull of its rows.

Corollary

The spectratope of the Walsh matrix of order 2^n is the convex hull of its rows.

イロト イポト イヨト イヨト

NIEP = RNIEP = SNIEP: n = 2



3

P. Paparella

Let

$$S := \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } P := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

For $a \in [0, 1]$, let b := 1 - a and

$$S_a := egin{bmatrix} 1 & 1 & 0 \ 1 & -a & 1 \ 1 & -a & -1 \end{bmatrix}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

B&N PFT NIEP SC/ST FW

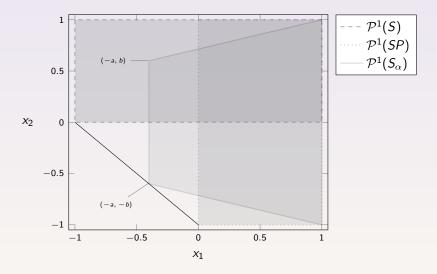
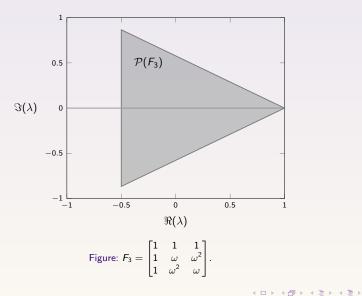


Figure: RNIEP & SNIEP for n = 3.

3

・ロト ・四ト ・ヨト ・ヨト



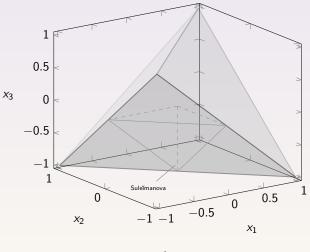


Figure: $\mathcal{P}^1(H_2)$.

3

・ロト ・回ト ・ヨト ・ヨト

• Egleston et al. (2004) posed the problem of finding a geometric representation in \mathbb{R}^3 of all sets of the form $\{1, \lambda, \alpha + i\omega, \alpha + i\omega\}$ which are solutions to the NIEP.

- Egleston et al. (2004) posed the problem of finding a geometric representation in \mathbb{R}^3 of all sets of the form $\{1, \lambda, \alpha + i\omega, \alpha + i\omega\}$ which are solutions to the NIEP.
- Torre-Mayo et al. (2007) posed the problem of finding necessary and sufficient conditions on a set $\{k_1, \ldots, k_n\} \subset \mathbb{R}$, so that

$$p(x) := x^n + k_1 x^{n-1} + k_2 x^{n-2} + \dots + k_n$$

is the characteristic polynomial of a nonnegative matrix of order n, and solved the problem for the case when n = 4 (44 pages).

イロト イポト イモト イモト

- Egleston et al. (2004) posed the problem of finding a geometric representation in \mathbb{R}^3 of all sets of the form $\{1, \lambda, \alpha + i\omega, \alpha + i\omega\}$ which are solutions to the NIEP.
- Torre-Mayo et al. (2007) posed the problem of finding necessary and sufficient conditions on a set $\{k_1, \ldots, k_n\} \subset \mathbb{R}$, so that

$$p(x) := x^n + k_1 x^{n-1} + k_2 x^{n-2} + \dots + k_n$$

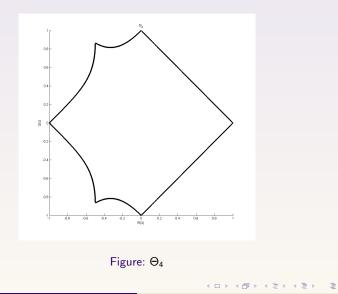
is the characteristic polynomial of a nonnegative matrix of order n, and solved the problem for the case when n = 4 (44 pages).

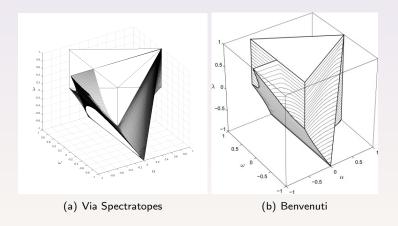
• Benvenuti (2014) solved the problem posed by Egleston et al. using the main result from Torre-Mayo et al (18 pages).

P. Paparella

B&N PFT NIEP SC/ST FW

$\underset{\Theta_4}{\mathsf{NIEP:}} n = 4$





3

・ロト ・回ト ・ヨト ・ヨト

Other work

• Generalize previous technique for $n \ge 5$.

Other work

- Generalize previous technique for $n \ge 5$.
- SNIEP: characterize the spectratopes of Householder transformations: H = I − 2(vv^T), v^Tv = 1.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで