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Summary. Frangakis and Rubin (2002, Biometrics) proposed a new definition of a

surrogate endpoint (a “principal” surrogate) based on causal effects. We introduce an

estimand for evaluating a principal surrogate, the causal effect predictiveness (CEP)

surface, which quantifies how well causal treatment effects on the biomarker predict

causal treatment effects on the clinical endpoint. While the CEP surface is not identifi-

able due to missing potential outcomes, it can be identified by incorporating a baseline

covariate that predicts the biomarker. Given case-cohort sampling of such a baseline

predictor and the biomarker in a single large blinded randomized clinical trial, we de-

velop an estimated likelihood method for estimating the CEP surface. This estimation

assesses the “surrogate value” of the biomarker for reliably predicting clinical treatment

effects for the same or similar setting as the trial. A CEP surface plot provides a way

to compare the surrogate value of multiple biomarkers. The approach is illustrated by

the problem of assessing an immune response to a vaccine as a surrogate endpoint for

infection.
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1. Introduction

Identifying biomarkers that can be used as approximate surrogates for clinical end-

points in randomized trials is useful for many reasons including shortening studies,

reducing costs, sparing study participants discomfort, and elucidating treatment ef-

fect mechanisms. As a motivating example, a central objective of placebo-controlled

preventive HIV vaccine efficacy trials is the evaluation of vaccine-induced immune re-

sponses as surrogate endpoints for HIV infection. An immunological surrogate would

be useful for several purposes including guiding iterative development of immunogens

between basic and clinical research, informing regulatory decisions and immunization

policies, and bridging efficacy of a vaccine observed in a trial to a new setting.

The surrogate evaluation field was catalyzed by Prentice’s (1989) definition of a

surrogate endpoint as a replacement endpoint that provides a valid test of the null

hypothesis of no treatment effect on the clinical endpoint. The two main criteria for

checking this definition are: (i) the distribution of the clinical endpoint conditional on

the surrogate is the same as the distribution of the clinical endpoint conditional on the

surrogate and treatment (i.e., all of the clinical treatment effect is “mediated” through

the surrogate); and (ii) the surrogate and clinical endpoints are correlated. Frangakis

and Rubin (2002) (henceforth FR) noted that this definition is based on observable

random variables, and named a biomarker satisfying criterion (i) a “statistical surro-

gate.” Since 1989, many surrogate-evaluation methods have been designed to check if

a biomarker is a statistical surrogate, including methods for estimating the proportion

of the treatment effect explained (Freedman et al., 1992). Notably some approaches

have not been based on (i); for example the adjusted association estimand is designed

for evaluating the correlation criterion (ii), and the relative effect estimand is based on

average causal effects (Buyse and Molenberghs, 1998).
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Treatment effects adjusted for a variable measured after randomization (called net

effects) are susceptible to post-randomization selection bias. Since candidate surro-

gates are measured after randomization, criterion (i) defining a statistical surrogate is

based on net effects. FR pointed out that this definition does not have a causal inter-

pretation, and proposed a new surrogate definition based on principal causal effects.

FR’s definition of a “principal surrogate” is based on the potential outcomes frame-

work for causal inference, which Robins (1995) also considered for studying treatment

effects subject to post-randomization selection bias. To date statistical methods for

evaluating principal surrogates have not been elaborated. A recent review paper noted

that FR “present a convincing case for the principal surrogate definition” and called

for such elaborations (Weir and Walley, 2006).

The literature on statistical methods for evaluating surrogate endpoints contains

approaches based on a single large clinical trial and on meta-analysis. Here we develop

an approach for evaluating a principal surrogate within the former setting. Following

Follmann (2006), our approach uses a baseline covariate to predict missing potential

biomarker outcomes. After defining statistical and principal surrogates in Section 2, in

Section 3 we introduce the causal effect predictiveness (CEP) surface and the marginal

CEP curve, plus associated summary causal estimands, which quantify how well a

biomarker predicts population-level causal effects of treatment. In Section 4 we develop

an estimated-likelihood approach for estimating the causal estimands based on case-

cohort sampling of the biomarker. In Section 5 we evaluate the method in simulations

based on an HIV vaccine trial, and in Section 6 we conclude with discussion.

2. Statistical and Principal Surrogates

Throughout we consider a randomized trial with treatment assignment Z (Z = 1 or

0), a baseline covariate W , a discrete or continuous biomarker S measured at fixed time
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t0 after treatment assignment, and a binary clinical endpoint Y (Y = 1 for disease, 0

otherwise) measured after t0. Because S must be measured prior to disease to evaluate

it as a candidate surrogate, the analysis is restricted to subjects disease free at t0;

denote this evaluability criterion by the indicator V = 1. The biomarker S is only

measured in those with V = 1, and otherwise is undefined (denoted by S = ∗).

2.1 Definition of a Statistical Surrogate

Following FR, methods for evaluating statistical surrogates are based on comparing

the risk distributions

risk(s|Z = 1) ≡ Pr(Y = 1|Z = 1, V = 1, S = s) and

risk(s|Z = 0) ≡ Pr(Y = 1|Z = 0, V = 1, S = s).

If S is continuous then these definitions abuse notation; however to avoid the distraction

of technical details the formal definitions are placed in Web Appendix A. FR defined

S to be a statistical surrogate if, for all values s of S, risk(s|Z = 1) = risk(s|Z = 0).

The full mediation criterion (i) requires that a treatment effect on S is necessary and

sufficient for a treatment effect on Y ; statistical surrogacy is the necessity part of (i).

Because S and V are measured after randomization, a comparison of risk(s|Z = 1)

and risk(s|Z = 0) measures the net effect of treatment, i.e., differences due to a

mixture of the causal treatment effect and any differences in characteristics between

treatment 1 subjects who have response level s, {Z = 1, V = 1, S = s}, and treatment

0 subjects who have response level s, {Z = 0, V = 1, S = s}. Consequently, application

of a method that evaluates a statistical surrogate may mislead about the capacity of a

biomarker to reliably predict causal clinical treatment effects.

2.2 Definition of a Principal Surrogate Endpoint

Let Y (Z) be the potential clinical endpoint after time t0 under assignment to treat-

ment Z. Similarly define potential outcomes S(Z) for the biomarker endpoint measured
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at t0, and let V (Z) be the potential indicators of whether the subject is disease free at

t0. Note that S(Z) and Y (Z) are undefined if V (Z) = 0; in this case S(Z) = Y (Z) = ∗.

We suppose that (Zi, Wi, Vi(1), Vi(0), Si(1), Si(0), Yi(1), Yi(0)), i = 1, . . . , n, are iid, and

for simplicity assume no drop-out. Further we assume A1, A2 (Rubin 1986), and A3:

A1 Stable Unit Treatment Value Assumption (SUTVA)

A2 Ignorable Treatment Assignments: Z is independent of

(V (1), V (0), S(1), S(0), Y (1), Y (0))

A3 Equal Individual Clinical Risk Up to Time t0: V (1) = 1 if and only if V (0) = 1

A1 states that the potential outcomes (Vi(1), Vi(0), Si(1), Si(0), Yi(1), Yi(0)) are in-

dependent of the treatment assignments of other subjects, which implies “consistency,”

(Vi(Zi), Si(Zi), Yi(Zi)) = (Vi, Si, Yi). A2 holds for blinded randomized trials. A3 will

be needed for identifying the causal estimand based on data from subjects observed to

be at risk for disease at t0. Inferences will be robust to A3 if t0 is near baseline relative

to the period of follow-up for clinical events and the vast majority of subjects are at

risk at t0, in which case Vi(1) = Vi(0) = 1 for almost all i.

With these preliminaries, we now define a principal surrogate endpoint. FR defined

the basic principal stratification P0 with respect to the post-randomization variable S

as the partition of units i = 1, . . . , n such that within any set of P0, all units have the

same vector (Si(1), Si(0)). A principal stratification is a partition of units whose sets

are unions of sets in P0. FR defined a biomarker S to be a principal surrogate endpoint

if the comparison between

risk(1)(s1, s0) ≡ Pr(Y (1) = 1|V (1) = 1, V (0) = 1, S(1) = s1, S(0) = s0) and

risk(0)(s1, s0) ≡ Pr(Y (0) = 1|V (1) = 1, V (0) = 1, S(1) = s1, S(0) = s0)

results in equality for all s1 = s0. FR did not explicitly condition on V (1) = V (0) = 1
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in their definition; however implicitly they must have, since (S(1), S(0)) is only defined

if V (1) = V (0) = 1. For notational simplicity henceforth all probability statements

involving Si(Z) implicitly condition on Vi(Z) = 1. A contrast in risk(1)(s1, s0) and

risk(0)(s1, s0) measures a population-level causal treatment effect on Y for subjects

with {Si(1) = s1, Si(0) = s0}. Such a contrast is causal because it conditions on a

principal stratification, which, by construction, is unaffected by treatment. Thus in

FR’s definition, S is a principal surrogate if groups of subjects with no causal effect

on the biomarker have no causal effect on the clinical endpoint. We call this property

Average Causal Necessity.

Average Causal Necessity: risk(1)(s1, s0) = risk(0)(s1, s0) for all s1 = s0.

Biomarkers with the greatest utility for predicting clinical treatment effects will

not only be necessary for a clinical effect, but also sufficient. For example, knowing

that an antibody titer > 1000 is sufficient for a vaccine to protect individuals against

HIV infection is exactly the information needed to use titer as a reliable predictor of

protection. We define Average Causal Sufficiency as

Average Causal Sufficiency: There exists a constant C ≥ 0 such that risk(1)(s1, s0)

6= risk(0)(s1, s0) for all |s1 − s0| > C.

For the 1-sided situation where interest is in assessing if higher treatment 1 biomarker

responses (S(1) > S(0)) predict clinical benefit of treatment 1 (Y (1) = 0 and Y (0) = 1)

(e.g., a placebo-controlled trial), a 1-sided version of Average Causal Sufficiency may

be more appropriate, defined as above with 6= replaced with < and |s1 − s0| replaced

with s1 − s0. In either case we suggest a refined definition of a principal surrogate

endpoint as a biomarker that satisfies both Average Causal Necessity and Average

Causal Sufficiency. Heretofore we use this definition of a principal surrogate endpoint.

3. Causal Effect Predictiveness Estimands
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3.1 Quantitation of Associative and Dissociative Effects

FR suggested that the quality of a surrogate be measured by its “associative effects”

relative to its “dissociative effects.” As defined in equations 5.3 and 5.4 of FR, an

associative effect is a comparison between the ordered sets

{Yi(1) : Si(1) 6= Si(0)} and {Yi(0) : Si(1) 6= Si(0)},

and a dissociative effect is a comparison between the ordered sets

{Yi(1) : Si(1) = Si(0)} and {Yi(0) : Si(1) = Si(0)}.

For the purpose of quantifying these effects, we introduce a causal effect predictive-

ness (CEP) surface. Let CE ≡ h(Pr(Y (1) = 1), Pr(Y (0) = 1)) be the overall causal

effect of treatment on the clinical endpoint, where h(·, ·) is a known contrast function

satisfying h(x, x) = 0, for example h(x, y) = x − y or log(x/y). Let

CEP risk(s1, s0) ≡ h(risk(1)(s1, s0), risk(0)(s1, s0))

be this contrast conditional on {S(1) = s1, S(0) = s0}. Note that CEP risk(s, s) = 0 for

all s is equivalent to Average Causal Necessity, whereas CEP risk(s1, s0) 6= 0 for all |s1−

s0| > C (or the 1-sided analog) is equivalent to Average Causal Sufficiency. Therefore

the criteria for a principal surrogate can be checked by estimating the CEP surface.

Moreover, biomarkers with capacity to predict clinical treatment effects will often have

|CEP risk(s1, s0)| increasing in |s1 − s0|, reflecting the situation that on average groups

of persons with a greater causal effect on the marker have a greater causal effect on

the clinical endpoint. We refer to the capacity of a biomarker to reliably predict the

population level causal effect of treatment on the clinical endpoint as the biomarkers’

surrogate value. This value can be quantified both by the nearness of |CEP risk(s1, s0)|

to 0 for s1 near s0 and by the extent to which |CEP risk(s1, s0)| increases with |s1−s0|,
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with a greater increase reflecting greater associative effects. Note that even if one

or both of Average Causal Necessity or Sufficiency fail, a biomarker can still have

surrogate value if |CEP risk(s1, s0)| increases with |s1 − s0|; Figure 2 (dashed line) will

illustrate this. Moreover, two principal surrogates can have different surrogate values

as reflected by different CEP surfaces.

If S is continuous, then the CEP surface can alternatively be defined in terms

of percentiles of the marker S. To formulate this, consider Huang, Pepe, and Feng’s

(2007) proposal to judge the value of a continuous marker S for predicting disease Y

by the predictiveness curve, R(v) ≡ Pr(Y = 1|S = F−1(v)), v ∈ [0, 1], where F is the

cdf of S. Note that R(v) = risk(S = F−1(v)), i.e., R(v) is risk as a function of the

quantiles of S, which provides a common scale for comparing multiple markers. The

predictiveness curve R(v) usefully informs about both absolute risks at different marker

quantiles and the frequency of these risks in the population. A predictive marker is

one with R(v) monotone (or approximately so) in v with large |R(1) − R(0)|.

Applying these ideas, we propose a scale-independent version of the causal effect

predictiveness surface, CEP R(v1, v0) ≡ h(R(1)(v1, v0), R(0)(v1, v0)), where

R(Z)(v1, v0) ≡ Pr(Y (Z) = 1|S(1) = F−1
(1) (v1), S(0) = F−1

(1) (v0)) for Z = 0, 1.

In this definition, S(1) and S(0) are standardized relative to the distribution F(1) of

S(1). Figure 1 illustrates two CEP surfaces for the 1-sided setting where interest is in

predicting clinical benefit of treatment 1 from higher treatment 1 biomarker responses.

For some studies, the marginal CEP curve is a related causal estimand of interest:

mCEP risk(s1) ≡ h(risk(1)(s1), risk(0)(s1)),

where risk(Z)(s1) ≡ Pr(Y (Z) = 1|S(1) = s1). Similarly mCEP R(v1) is defined as

h(R(1)(v1), R(0)(v1)) with R(Z)(v1) ≡ Pr(Y (Z) = 1|S(1) = F−1
(1) (v1)). With h(x, y) =
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x− y, if S is continuous and strictly increasing then the area between mCEP R(·) and

the zero-line equals CE = Pr(Y (1) = 1) − Pr(Y (0) = 1) (proof in Web Appendix A).

If Si(0) is constant across subjects, then the CEP surface (trivially) equals the

marginal CEP curve. We refer to this special case as Case CB:

Case CB Constant Biomarkers: Si(0) = c for all i for some constant c

HIV vaccine trials fit Case CB, with (almost) all subjects having no immune re-

sponse under placebo (Z = 0). This occurs because S is an HIV-specific immune

response, so that vaccine antigens must be presented to the immune system to in-

duce a response (Gilbert et al., 2005). The dissociative effect can be measured by

CEP risk(c, c) and the associative effects by CEP risk(s1, c) for s1 6= c. For example,

with c = L the lower bound of S, the nearer CEP risk(c, c) is to zero and the greater

the increase of |CEP risk(s1, c)| with s1 > c, the greater the surrogate value (Figure 2).

For placebo-controlled trials for which Case CB fails yet Si(0) has much less vari-

ability than Si(1), the marginal CEP curve has interpretation approximately equal to

that of CEP (s1, s0). In general, however, mCEP (s1) does not measure the associa-

tion between causal biomarker effects and causal clinical effects, and hence does not

measure principal surrogate value. Nevertheless, under A1 and A2 mCEP (s1) has a

different but useful interpretation as the population level causal treatment effect on Y

for subjects with S(1) = s1, where conditioning on S(1) is equivalent to conditioning

on a baseline covariate. As such, the marginal CEP curve can be used for predicting

how clinical efficacy varies with the biomarker S = S(1) observed in persons attending

a treatment/vaccine clinic.

3.2 Estimands for Summarizing Surrogate Value

We suggest functionals of the CEP surface that summarize the surrogate value of a

biomarker. We again consider the 1-sided setting where interest is in assessing whether
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S(1) > S(0) predicts clinical benefit of treatment 1 (Y (1) = 0 and Y (0) = 1). To

summarize the associative and dissociative effects, we consider the expected associative

effect (EAE) and the expected dissociative effect (EDE): EAE(w) ≡

E[w(S(1), S(0))CEP risk(S(1), S(0))|S(1) > S(0)]/E[w(S(1), S(0))|S(1) > S(0)] (1)

EDE ≡ E[CEP risk(S(1), S(0))|S(1) = S(0)], (2)

where w(·, ·) is a nonnegative weight function. For Case CB with c = L, EAE(w) =

{
∫
s1>c w(s1, c)dF(1)(s1)}

−1
∫
s1>c w(s1, c)CEP risk(s1, c)dF(1)(s1) and EDE = CEP risk(c, c).

We also define the proportion associative effect by

PAE(w) ≡ |EAE(w)|/ {|EDE| + |EAE(w)|} . (3)

Values of PAE(w) ∈ [0, 0.5] suggest the biomarker has no surrogate value, while values

in (0.5, 1] suggest some surrogate value.

A weight function is included in EAE(w) to reflect the idea that a biomarker with

high surrogate value should have large |CEP risk(s1, s0)| for large s1 − s0 > 0. For

example, weights w(s1, s0) = s1 − s0 or I(s1 = U, s0 = L) may be used, where L (U) is

the lower (upper) bound of S. With the latter weight, PAE(w) compares the clinical

effect among groups with the maximum surrogate effect and with no surrogate effect:

PAE(w) = |CEP risk(U, L)|/{|EDE|+ |CEP risk(U, L)|}.

If h(x, y) = x− y, Pr(S(1) > S(0)) = 0.5, and an additional monotonicity assump-

tion is made (that Yi(1) ≤ Yi(0) for all i, i.e., no one is harmed by treatment 1), then

PAE(w = 1) equals the proportion associative (PA), defined by

PA ≡ Pr(S(1) > S(0), Y (1) = 0, Y (0) = 1)/Pr(Y (1) = 0, Y (0) = 1)

(proof in Web Appendix A). This summary measure, proposed by Taylor, Wang, and

Thiebaut (2005), is interpreted as the proportion of the study population with a ben-

eficial causal clinical effect that also has a positive causal surrogate effect. The PA
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depends on the underlying principal strata distribution F(1),(0)(s1, s0) ≡ Pr(S(1) ≤

s1, S(0) ≤ s0); if Pr(S(1) > S(0)) is small (large) then the PA will tend to be small

(large), irrespective of the biomarker’s surrogate value. By conditioning on (S(1), S(0)),

the PAE(w) is designed to be robust to F(1),(0)(·, ·); the PAE(w) reflects the relative

magnitude of clinical effects for those with and without surrogate effects.

Biomarkers satisfying Average Causal Necessity have EDE = 0 and thus PAE(w) =

1, in which case EAE(w) contributes no information to the PAE(w). Therefore addi-

tional measures are needed for summarizing the magnitude of associative effects. One

such measure is the associative span (AS), defined by AS ≡ |CEP risk(U, L)| − |EDE|.

Figure 2 illustrates PAE(w = 1) and AS. While the summary parameters may be

useful, it is important to estimate the CEP estimands over the range of marker values

or quantiles to provide a full picture of the associative and disssociative effects.

4. Estimating the CEP Surface and Marginal CEP Curve

We consider one approach to identifying and estimating the CEP surface in the

practically important special Case CB. The same approach identifies and estimates the

marginal CEP curve in the general case that Si(0) has arbitrary variability. In case

CB it is difficult to evaluate a statistical surrogate, because it is not possible to study

the correlation of S with Y in arm Z = 0 subjects, and it is conceptually difficult to

evaluate whether S fully mediates clinical treatment effects (Chan et al., 2002).

4.1 Identifiability of the Causal Estimands

Due to missing potential outcomes the CEP surface and marginal CEP curve are

not identified without further assumptions. A1-A3 imply

risk(1)(s1, s0) = Pr(Y = 1|Z = 1, V = 1, S = s1, S(0) = s0) and

risk(0)(s1, s0) = Pr(Y = 1|Z = 0, V = 1, S(1) = s1, S = s0),

demonstrating that risk(Z)(s1, s0) would be identified if we knew the potential outcomes
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Si(1−Zi)’s for the treatment not assigned. Estimating the CEP surface will therefore

require a way to predict the missing potential biomarkers. This challenge is relatively

easy in Case CB, under which risk(1)(s1, c) = risk(s1|Z = 1), i.e., risk(1)(s1, c) is iden-

tified by the observed data in arm Z = 1. However, A1-A3 do not identify risk(0)(s1, c),

and the remaining task to identify the CEP surface entails determining values Si(1)

for arm Zi = 0 subjects. This same task will suffice to identify the marginal CEP

curve in the general case, because A1-A3 identify risk(1)(s1) by risk(s1|Z = 1).

4.2 Baseline Irrelevant Predictor Study Design and Likelihood

We consider estimation of the CEP surface under A1-A3 for the special Case CB,

with the constant value c for Si(0) equal to the realized lower bound L of the biomarker

S(1), c = L = min{Si(1)} = min{Si|Zi = 1}. The identical approach will provide

estimates of the marginal CEP curve in the general case. The method is based on

one of the augmented vaccine trial designs proposed by Follmann (2006), wherein a

baseline covariate W that is predictive of S(1) is measured in subjects in both treatment

arms. A model predicting S(1) from W fit from arm Z = 1 subjects is used to predict

S(1) for arm Z = 0 subjects. The predictions are unbiased because A1-A3 imply

S(1)|Z = 1, W =d S(1)|Z = 0, W , where =d denotes equality in distribution.

We assume the baseline predictor W is not a risk factor after accounting for S(1):

A4 Baseline Irrelevant Predictor: Y (Z)|W, S(1) =d Y (Z)|S(1) for Z = 0, 1.

In the discussion we consider an approach to relax A4.

Whereas Follmann (2006) considered complete sampling, we consider outcome-

dependent case-cohort sampling, wherein W is measured for all or almost all cases

(those with Y = 1) and for a random “sub-cohort” of controls (with Y = 0). The

biomarker S is measured for all arm Z = 1 subjects with W measured. Case-cohort

sampling is efficient when W or S is expensive (Prentice, 1986). For vaccine trials, W
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and S(1) can be measured after the trial using stored specimens (Gilbert et al., 2005).

Let δi indicate whether Wi is measured. We observe iid data Oi ≡ (Zi, Vi, Yi, δi,

δiWi, δiZiSi), i = 1, . . . , n. Only subjects i with Vi = 1 contribute terms to the like-

lihood. Subjects with Ziδi = 1 contribute risk(1)(Si, c; β)Yi(1 − risk(1)(Si, c; β))1−Yi,

where risk(1)(·, c; β) is modeled as a function of unknown parameters β. The likelihood

contribution for subjects with (1 − Zi)δi = 1 is obtained by integrating risk(0)(·, c; β)

over the conditional cdf F
S|W
(1) of S(1)|W , i.e.,

∫
risk(0)(s1, c; β)dF

S|W
(1) (s1|Wi) or one

minus this integral; note that A4 is used here. Subjects with δi = 0 contribute

∫
risk(Zi)(s1, c; β)dF(1)(s1) or one minus this integral. Thus, with ν ≡ (F

S|W
(1) , F(1)),

the conditional likelihood is L(β, ν) ≡
∏n

i=1 f(Yi|Zi, Vi, δi, δiWi, δiZiSi)
Vi, where

f(Y |Z, V, δ, δW, δZS) =
{
risk(1)(S, c; β)Y (1 − risk(1)(S, c; β))1−Y

}Zδ

×

{(∫
risk(0)(s1, c; β)dF

S|W
(1) (s1|W )

)Y (
1 −

∫
risk(0)(s1, c; β)dF

S|W
(1) (s1|W )

)1−Y
}(1−Z)δ

×

{(∫
risk(Z)(s1, c; β)dF(1)(s1)

)Y (
1 −

∫
risk(Z)(s1, c; β)dF(1)(s1)

)1−Y
}(1−δ)

. (4)

Since CEP risk(·, c; β) depends on β but not ν, the ν are nuisance parameters.

Although profile likelihood is a natural approach to pursue, it is difficult to implement

because the likelihood integrates over F
S|W
(1) and F(1). We use estimated likelihood

(Pepe and Fleming, 1991), also called pseudo-likelihood, wherein consistent estimates

of ν are obtained based on treatment arm 1 data, and then L(β, ν̂) is maximized in

β. The bootstrap is used to get standard errors for β̂. A re-sampling approach seems

to be required because there is no analytic expression for the asymptotic variance of β̂

that accounts for the variations in ν̂, and previously developed techniques for deriving

the variance do not apply because they would assume that all subjects have a non-zero

probability that S is observed (e.g., Pepe and Fleming 1991).

4.3 Models for risk(Z)(·, c) and ν = (F
S|W
(1) , F(1))
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The estimated likelihood approach can be used for a variety of models for risk(Z)(s1, c)

and the nuisance parameters ν. Here we consider two types of models. The first is

fully parametric, where we assume (W, S(1)) follows a particular distribution and the

risk functions have a generalized linear model form

risk(1)(s1, c; β1) = g(β10 + β11s1) and risk(0)(s1, c; β0) = g(β00 + β01s1), (5)

for s1 ≥ c and some known link function g(·). For example, similar to Follmann

(2006), we might assume (W, S(1)) is bivariate normal and (5) holds with g equal to

the standard normal cdf Φ. With h(x, y) = g−1(x) − g−1(y), model (5) implies

CEP risk(s1, c) = (β10 − β00) + (β11 − β01)s1.

Simple calculations yield EDE = (β10 −β00)+(β11 −β01)L, AS = |(β10 −β00)+(β11 −

β01)U | − |EDE|, and EAE(w = 1) = (β10 − β00) + (β11 − β01)E[S(1)|S(1) > c]. The

parametric approach can accommodate a general parametric model for (W, S(1)). If W

is high-dimensional, then assumptions alternative to A4 are desirable (see Discussion).

We also consider a nonparametric approach wherein S and W are treated as cate-

gorical variables with J and K levels, which may be discretized versions of continuous

measurements. Nonparametric models are specified by θjk ≡ Pr(S(1) = j, W = k),

f(1)(j) ≡ Pr(S(1) = j) =
∑K

k=1 θjk ≡ θj , f
S|W
(1) (j|k) ≡ Pr(S(1) = j|W = k) = θjk/

∑J
l=1 θlk, and risk(Z)(j, 1; β) = βZj, for Z = 0, 1; j = 1, . . . , J ; k = 1, . . . , K. Then

CEP risk(j, 1; β) = h(β1j , β0j), AS = |h(β1J , β0J)| − |h(β11, β01)|, EDE = h(β11, β01),

and EAE(w) =
∑J

j=2 w̃(j, 1)h(β1j , β0j) with w̃(j, 1) = w(j, 1)θj/
∑J

l=2 w(l, 1)θl.

For both the parametric and nonparametric approaches, Web Appendix B describes

consistent estimators of ν̂ and algorithms for maximizing L(β, ν̂) in β.

4.4 Tests for Whether a Biomarker has Any Surrogate Value

Since PAE(w) = 0.5 supports that S has no surrogate value, Wald tests for any

surrogate value can be based on the maximum estimated likelihood estimator (MELE)

14



̂PAE(w) minus 0.5 divided by its bootstrap standard error. Similarly Wald tests of

AS = 0 can be implemented based on ÂS. For categorical (W, S(1)) we also consider a

test statistic T =
∑J

j=2(j−1){β̂0j − (β̂0j + β̂1j)(µ̂0/(µ̂0 + µ̂1))} divided by its bootstrap

standard error, where µ̂Z = 1
J

∑J
j=1 β̂Zj. This test evaluates H0: CEP risk(j, 1) = CE

for all j versus the monotone alternative that CEP risk(j, 1) increases in j, similar to the

Breslow-Day trend test (Breslow and Day, 1980). The null and alternative hypotheses

indicate that Average Causal Sufficiency does not and does hold, respectively.

5. Simulation Study

Based on data from the first preventive HIV vaccine efficacy trial (Gilbert et al.,

2005), we conducted a simulation study to evaluate performance of the MELE meth-

ods. The vaccine trial was double-blind with 2:1 randomization to vaccine:placebo. A

biomarker of interest S was the 50% neutralization titers against the HIV recombinant

gp120 molecule measured from a serum sample drawn at the month 1.5 visit, and Y

was HIV infection during the time period t0 = 1.5 months to 36 months. The lower

quantification limit of the neutralization assay was 1.65, and 44 of 47 placebo recipients

with S measured at 1.5 months had left-censored values; thus the data essentially fit

Case CB. The range of Si was [1.65, 4.09], which we rescaled to [0, 1], so that c = L = 0.

We simulated vaccine trials with the following steps. Step 1: For all 3598 (1805)

subjects in the vaccine (placebo) arm, (Wi, Si(1)) was generated from a bivariate normal

distribution with mean 0.41, standard deviation 0.55, and correlation ρ = 0.5, 0.7, and

0.9; the standard deviation was chosen such that 23% of Si(1) values were less than

0 on average. Simulated values of Si(1) and Wi less than 0 (greater than 1) were set

equal to 0 (1). Step 2: The Wi and Si(1) were binned into quartiles. For subjects i

with quartile j value of Si(1), Yi(Z) was generated from Bernoulli(βZj), with βZj set

to achieve the infection rate Pr(Y (1) = 1) = 0.067 that was observed in the vaccine
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arm of the trial and overall vaccine efficacy of 50% (Pr(Y (0) = 1) = 2×Pr(Y (1) = 1)),

and to reflect a biomarker with either (i) no or (ii) high surrogate value. In scenario (i)

CEP risk(j, 1; β) ≡ log(risk(1)(j, 1; β1)/risk(0)(j, 1; β0)) = −0.69 for j = 1, . . . , 4, and

in scenario (ii) CEP risk(j, 1; β) = −0.22,−0.51,−0.92,−1.61 for j = 1, . . . , 4. With

vaccine efficacy V E(j, 1) ≡ 1 − exp(CEP risk(j, 1; β)), scenario (i) specifies constant

V E(j, 1) = 0.5 and scenario (ii) specifies V E(j, 1) = 0.2, 0.4, 0.6, 0.8 for j = 1, . . . , 4.

Step 3: To achieve case-cohort sampling, (Wi, Si(1)) was retained only for all infected

vaccine recipients and a sub-cohort of uninfected vaccine recipients. For the placebo

arm Si(1) was set to missing for everyone and Wi was retained only for all infected

placebo recipients and for a sub-cohort of uninfected placebo recipients. For each arm,

the ratio of controls to cases was 3:1. The simulated data sets satisfied A1-A4.

For each of 1000 simulated data sets the MELE β̂ was computed using the non-

parametric approach described in Section 4.3. Then, with h(x, y) = log(x/y), β̂ was

used to compute the MELEs of CEP risk(j, 1), AS, and PAE(w) for w(j, 1) = 1, j, and

I(j = J = 4). Wald tests (with bootstrap standard errors) based on P̂AE(w) − 0.5,

ÂS, and T were used to test for any surrogate value.

The MELEs of CEP risk(j, 1), PAE(w) and AS performed well (Tables 1 and 2).

The MELEs exhibited negligible bias and the confidence intervals (CIs) about them had

nominal coverage, with coverage improving for higher ρ. The tests for any surrogate

value had approximately nominal size and showed high power to detect surrogate value;

the nonparametric trend test had power 0.88, 0.99, and 1.00 for ρ = 0.5, 0.7, and 0.9.

Additional simulations were conducted to evaluate the performance of the MELE

method with binned (quartilized) covariates when the data are generated from a con-

tinuous model. Specifically, Step 2 described above was replaced with Step 2′: For

vaccine arm subjects, Yi(1) was generated using probit model (5) for risk(1)(s1, c; β)
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with β11 = −0.73 and β10 = −1.23, set to fit the real vaccine arm data with infection

rate 0.067. For the placebo arm, we supposed overall vaccine efficacy of 50% and gen-

erated Yi(0) assuming probit model (5) with either (i) β01 = β11 or (ii) β01 = 0. In (i)

CEP risk(s1, c; β) = β10−β00 = −1.23−(−0.825) = −0.405, so that S has no surrogate

value (with AS = 0); in (ii) CEP risk(s1, c; β) = −0.405 − 0.73s1 so that S has high

surrogate value (with AS = 0.73). Using h(x, y) = Φ−1(x) − Φ−1(y), the MELEs and

CIs for CEP risk(j, 1) performed well (results not shown), as did the MELEs and CIs for

PAE(w) and AS (Table 3). Tests for any surrogate value had approximately nominal

size, with power only slightly lower than in the previous set of simulations. This sim-

ulation study provides a “proof-of-principle” that the proposed methods can reliably

estimate the CEP surface and distinguish biomarkers with no or high surrogate value.

6. Discussion

A main use of a surrogate endpoint is predicting treatment effects on a clinical end-

point. Within the principal surrogate framework, we have introduced the causal effect

predictiveness (CEP ) surface and the marginal CEP curve as appropriate estimands

for measuring the predictive capacity of a candidate surrogate. We developed estima-

tion and testing methods under case-cohort sampling from a single large clinical trial;

such inferences apply for measuring surrogate predictiveness for the same or similar

setting as the trial. Thus the inferences do not form an empirical basis for bridging

information about clinical efficacy to a new setting (e.g., to a new human population

or treatment formulation); for this additional experiments (such as mechanistic studies

and studies that deliberately manipulate the biomarker) and meta-analysis are needed.

Since the definition of the CEP surface involves unobservable potential outcomes,

strong untestable assumptions may be needed to identify it, possibly precluding its re-

liable estimation. The estimation method we developed requires A1-A4, a reasonably
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good model predicting S from W in treatment arm 1, and models for risk(Z)(s1, c)

or its marginal counterpart risk(Z)(s1), for Z = 0, 1. A1-A2 are standard in blinded

randomized trials. A1 (SUTVA) is potentially dubious in the infectious disease setting

where dependent happenings are possible (Halloran and Struchiner, 1995), but should

approximately hold in trials with a small study population relative to the total popula-

tion of at risk individuals. While A3 is untestable, violations of it will not significantly

influence the results if the vast majority of participants are at-risk when the biomarker

is measured, since in this case A3 will hold for almost all subjects. Otherwise it will be

important to extend the methods to facilitate sensitivity analyses to departures from

A3. Models for S given W can be directly checked using arm Z = 1 data, and under

A1-A4 parametric modeling assumptions placed on risk(Z)(s1, c) can be tested.

Assumption A4 is testable for treatment arm Z = 1 but not for Z = 0. A4 can be

very strong, because it requires that after accounting for S(1) the baseline predictor

W of S(1) does not predict clinical risk. If W is a vector containing multiple clinical

risk factors then A4 will likely be implausible, so that in practice a well-chosen low

dimensional W is desired. For example, a study that vaccinated 75 individuals simul-

taneously with hepatitis A and B vaccines showed a linear correlation of 0.85 among

A- and B-specific antibody titers (Czeschinski, Binding, and Witting, 2000). Given

there is little cross-reactivity among the hepatitis A and B proteins, W = hepatitis A

titer may be an excellent baseline predictor for S(1) = hepatitis B titer that satisfies

A4. For HIV vaccine trials, two available scalar W ’s may plausibly satisfy A4. First,

Follmann (2006) considered as W the antibody titer to a rabies glycoprotein vaccine.

Because rabies is not acquired sexually, it is plausible that anti-rabies antibodies are

independent of risk of HIV infection given S(1). Second, in the ongoing HIV vaccine

efficacy trials, a current leading candidate W is the titer of antibodies that neutralize
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the Adenovirus serotype 5 vector that carries the HIV genes in the vaccine. This W

has been shown to inversely correlate with the S(1) of primary interest (T cell re-

sponse levels measured by ELISpot) (Catanzaro et al., 2006), and since Adenovirus 5

is a respiratory infection virus, A4 may plausibly hold. In general detailed biological

knowledge may help identify a suitable W .

Additionally, A4 may be replaced with other assumptions that may be more plausi-

ble. For example, consider the fully parametric approach, expanded to allow a vector-

valued W and a vector X of baseline covariates measured on all subjects. Substitute

for A4 and the risk models (5) the modeling assumption

risk(Z)(s1, c, w, x; βZ) = g(βZ0 + βZ1s1 + β ′
Z2w + β ′

Z3x) for Z = 0, 1, (6)

where risk(Z)(s1, c, w, x; βZ) ≡ Pr(Y (Z) = 1|S(1) = s1, S(0) = c, W = w, X = x) and

g(·) is a known link function. With h(x, y) = g−1(x)− g−1(y), (6) implies (β10 −β00)+

(β11 −β01)s1 is the CEP risk surface controlling for W and X. For the case that g = Φ

and (S(1), W ′, X ′)′ has a multivariate normal distribution, Web Appendix C provides

a proof, adapted from a proof by Dean Follmann, that β1 = (β10, β11, β
′
12, β

′
13)

′ and

β0 = (β00, β01, β
′
02, β

′
03)

′ are identified under the constraint that one of the components

of (β ′
12, β

′
13)

′ is supposed equal to the corresponding component of (β ′
02, β

′
03)

′. This

approach allows clinical risk to depend on W and X, alleviating the “irrelevancy”

condition in A4. The MELE (β̂, θ̂) may be calculated as described in Section 4 and

Web Appendix B, with minor modifications to the estimated likelihood (4).

The estimands and estimation techniques developed here for a binary clinical end-

point Y also apply for a quantitative clinical endpoint Y , with all expressions Pr(Y (Z) =

1|·) replaced with E(Y (Z)|·). In either case the CEP estimands describe how the aver-

age or population level causal effect on Y depends on the causal effect on S. R code for

the nonparametric methods with Y binary is available at the second author’s website.
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Supplementary Materials

Web Appendices referenced in Sections 2.1, 3.1, 3.2, 4.3, and 6 are available under the

Paper Information link at the Biometrics website http://www.tibs.org/biometrics.
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Table 1

Bernoulli model simulation results for the nonparametric MELEs ĈEP
risk

(j, 1) = log(β̂1j/β̂0j) for j = 1, · · · , 4a

Cor. No Surrogate Value Scenario High Surrogate Value Scenario
ρ Parameter Bias SE SEE CP Power Parameter Bias SE SEE CP Power
0.5 CEP risk(1, 1) = −0.69 -0.03 0.39 0.38 0.98 0.48 CEP risk(1, 1) = −0.22 0.04 0.54 0.62 0.98 0.05

CEP risk(2, 1) = −0.69 0.09 0.51 0.62 0.98 0.14 CEP risk(2, 1) = −0.51 0.01 0.54 0.64 0.98 0.10
CEP risk(3, 1) = −0.69 0.09 0.54 0.74 1.00 0.08 CEP risk(3, 1) = −0.92 0.02 0.52 0.65 0.99 0.23
CEP risk(4, 1) = −0.69 -0.10 1.23 1.24 0.97 0.14 CEP risk(4, 1) = −1.61 0.01 0.60 0.63 0.98 0.64

0.7 CEP risk(1, 1) = −0.69 0.01 0.27 0.27 0.97 0.65 CEP risk(1, 1) = −0.22 -0.01 0.35 0.39 0.97 0.11
CEP risk(2, 1) = −0.69 0.00 0.41 0.48 0.98 0.27 CEP risk(2, 1) = −0.51 0.02 0.45 0.52 0.98 0.14
CEP risk(3, 1) = −0.69 0.05 0.45 0.55 0.99 0.19 CEP risk(3, 1) = −0.92 0.01 0.46 0.52 0.98 0.42
CEP risk(4, 1) = −0.69 -0.01 0.89 1.03 0.97 0.17 CEP risk(4, 1) = −1.61 0.02 0.43 0.44 0.98 0.82

0.9 CEP risk(1, 1) = −0.69 0.00 0.18 0.18 0.96 0.93 CEP risk(1, 1) = −0.22 0.00 0.23 0.23 0.97 0.18
CEP risk(2, 1) = −0.69 -0.01 0.37 0.39 0.97 0.45 CEP risk(2, 1) = −0.51 0.00 0.45 0.45 0.97 0.26
CEP risk(3, 1) = −0.69 0.03 0.49 0.53 0.96 0.32 CEP risk(3, 1) = −0.92 0.00 0.47 0.47 0.95 0.51
CEP risk(4, 1) = −0.69 -0.02 0.56 0.54 0.96 0.32 CEP risk(4, 1) = −1.61 0.02 0.31 0.30 0.96 0.98

a ρ is the linear correlation of the simulated bivariate normal variables latent to the quartilized variables W and S(1).

Bias is the median bias. SE is the empirical standard error of ĈEP
risk

(j, 1). SEE is the median of the bootstrap standard
error estimates based on 200 bootstrap replicates. CP is the empirical coverage of standard normal 95% confidence

intervals for ĈEP
risk

(j, 1) using bootstrap standard error estimates. Power refers to power of the Wald test to reject
H0 : CEP risk(j, 1) = 0. 1000 simulations were done to compute the table elements for each model.



Table 2

Bernoulli model simulation results for the nonparametric MELEs ̂PAE(w) and ÂSa

Cor. No Surrogate Value Scenario High Surrogate Value Scenario
ρ Parameter Bias SE SEE CP Power Parameter Bias SE SEE CP Power
0.5 PAE(w1) = 0.50 -0.03 0.18 0.20 0.94 0.03 PAE(w1) = 0.82 -0.07 0.18 0.21 0.96 0.29

PAE(w2) = 0.50 -0.02 0.18 0.20 0.97 0.02 PAE(w2) = 0.85 -0.08 0.17 0.19 0.96 0.39
PAE(w3) = 0.50 0.06 0.20 0.20 0.96 0.07 PAE(w3) = 0.88 -0.06 0.17 0.18 0.95 0.63
AS = 0.00 0.21 0.93 0.91 0.97 0.05 AS = 1.39 -0.14 0.66 0.74 0.99 0.53

0.7 PAE(w1) = 0.50 -0.02 0.15 0.17 0.97 0.02 PAE(w1) = 0.82 -0.05 0.14 0.17 0.97 0.46
PAE(w2) = 0.50 -0.02 0.15 0.17 0.98 0.01 PAE(w2) = 0.85 -0.06 0.13 0.15 0.96 0.61
PAE(w3) = 0.50 0.04 0.19 0.19 0.97 0.05 PAE(w3) = 0.88 -0.04 0.12 0.13 0.96 0.83
AS = 0.00 0.09 0.63 0.75 0.98 0.05 AS = 1.39 -0.11 0.45 0.50 0.98 0.79

0.9 PAE(w1) = 0.50 -0.02 0.12 0.13 0.97 0.01 PAE(w1) = 0.82 -0.01 0.12 0.13 0.98 0.71
PAE(w2) = 0.50 -0.02 0.12 0.14 0.98 0.01 PAE(w2) = 0.85 -0.02 0.10 0.11 0.97 0.86
PAE(w3) = 0.50 0.02 0.17 0.17 0.93 0.06 PAE(w3) = 0.88 -0.01 0.09 0.09 0.98 0.96
AS = 0.00 0.04 0.46 0.46 0.96 0.06 AS = 1.39 -0.05 0.37 0.37 0.95 0.96

a ρ is the linear correlation of the simulated bivariate normal variables latent to the quartilized variables W and S(1). Bias
is the median bias. SE is the empirical standard error of ̂PAE(w) and ÂS. SEE is the median of the bootstrap standard
error estimates based on 200 bootstrap replicates. CP is the empirical coverage of standard normal 95% confidence
intervals for PAE(w) and AS using bootstrap standard error estimates. Power is for 1-sided tests of H0 : PAE(w) = 0.5
versus H1 : PAE(w) > 0.5 or H0 : AS = 0 versus H1 : AS > 0 at level α = 0.05. For the PAE weights, w1(j, 1) = 1,
w2(j, 1) = j, and w3(j, 1) = I[j = J = 4]. 1000 simulations were done to compute the table elements for each model.



Table 3

Probit model simulation results for the nonparametric MELEs ̂PAE(w) and ÂSa

Cor. No Surrogate Value Scenario High Surrogate Value Scenario
ρ Parameter Bias SE SEE CP Power Parameter Bias SE SEE CP Power
0.5 PAE(w1) = 0.50 -0.06 0.19 0.19 0.92 0.04 PAE(w1) = 0.82 -0.09 0.17 0.20 0.96 0.29

PAE(w2) = 0.50 -0.05 0.18 0.19 0.95 0.04 PAE(w2) = 0.85 -0.10 0.16 0.19 0.95 0.37
PAE(w3) = 0.50 0.00 0.20 0.20 0.96 0.03 PAE(w3) = 0.87 -0.08 0.17 0.19 0.94 0.53
AS = 0.00 0.01 0.35 0.36 0.98 0.03 AS = 0.73 -0.13 0.34 0.37 0.97 0.48

0.7 PAE(w1) = 0.50 -0.03 0.15 0.17 0.95 0.03 PAE(w1) = 0.82 -0.04 0.15 0.17 0.96 0.49
PAE(w2) = 0.50 -0.03 0.15 0.16 0.96 0.02 PAE(w2) = 0.85 -0.05 0.13 0.15 0.95 0.60
PAE(w3) = 0.50 -0.02 0.18 0.19 0.96 0.03 PAE(w3) = 0.87 -0.04 0.12 0.14 0.96 0.78
AS = 0.00 -0.03 0.28 0.29 0.99 0.03 AS = 0.73 -0.09 0.24 0.27 0.98 0.75

0.9 PAE(w1) = 0.50 -0.02 0.12 0.13 0.96 0.02 PAE(w1) = 0.82 -0.02 0.13 0.13 0.97 0.69
PAE(w2) = 0.50 -0.02 0.12 0.13 0.97 0.02 PAE(w2) = 0.85 -0.02 0.11 0.11 0.95 0.82
PAE(w3) = 0.50 -0.02 0.17 0.16 0.93 0.04 PAE(w3) = 0.87 -0.02 0.10 0.10 0.97 0.93
AS = 0.00 -0.04 0.23 0.23 0.96 0.05 AS = 0.73 -0.04 0.20 0.20 0.95 0.94

a ρ is the linear correlation of the simulated bivariate normal variables W and S(1). Bias is the median bias. SE is the
empirical standard error of ̂PAE(w) and ÂS. SEE is the median of the bootstrap standard error estimates based on
200 bootstrap replicates. CP is the empirical coverage of standard normal 95% confidence intervals for PAE(w) and AS
using bootstrap standard error estimates. Power is for 1-sided tests of H0 : PAE(w) = 0.5 versus H1 : PAE(w) > 0.5
or H0 : AS = 0 versus H1 : AS > 0 at level α = 0.05. For the PAE weights, w1(j, 1) = 1, w2(j, 1) = j, and
w3(j, 1) = I[j = J = 4]. 1000 simulations were done to compute the table elements for each model.



Figure Legends

Figure 1. Example CEP R(v1, v0) = h(R(1)(v1, v0), R(0)(v1, v0)) surfaces, with h(x, y) =

x−y or 1−x/y. The surface in (i) reflects a biomarker with no surrogate value, wherein

the clinical treatment effect is the same for all treatment effects on the biomarker. The

surface in (ii) reflects a biomarker with high surrogate value, wherein the average causal

effect on the clinical endpoint is zero for v1 = v0 and has a large increase in v1 − v0

for v1 > v0. Because CEP R(v1, v0) = 0 for v1 = v0, both biomarkers satisfy Aver-

age Causal Necessity. Furthermore, because CEP R(v1, v0) > 0 for all v1 > v0, the

biomarker in (ii) satisfies 1-sided Average Causal Sufficiency.

Figure 2. For Case CB with Si(0) = c for all i with c = L the lower bound of

S, biomarkers S that have no (horizontal solid line), modest (dashed line), moderate

(dotted line), and high (hatched line) surrogate value. Because CEP risk(c, c) = 0 and

CEP risk(s1, c) > 0 for all s1 > c, the latter two S’s satisfy Average Causal Necessity

and Average Causal Sufficiency, and hence are principal surrogates.
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