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Abstract

Cluster randomized trials (CRT) are often used to evaluate therapies or interventions in situations where individual
randomization is not possible or not desirable for logistic, financial or ethical reasons. While a significant and rapidly growing
body of literature exists on CRTs utilizing a “parallel” design (i.e. I clusters randomized to each treatment), only a few examples
of CRTs using crossover designs have been described. In this article we discuss the design and analysis of a particular type of
crossover CRT – the stepped wedge – and provide an example of its use.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Cluster (or community, or group) randomized trials (CRT) are distinguished by the fact that individuals are
randomized in groups rather than individually. CRTs have been used to evaluate antismoking interventions [1,2],
methods of preventing human immunodeficiency virus (HIV) and other sexually transmitted diseases (STDs) [3,4], and
in a number of other contexts [5,6]. Cluster designs may be chosen because the intervention can only be administered
on a community-wide scale (e.g. [7]), or to minimize contamination ([8]), or for other logistic, financial or ethical
reasons. From a statistical viewpoint, the key characteristic of CRTs is that the individual units within a cluster are
correlated and this feature must be incorporated into power calculations and the trial analysis.

CRTs often employ a parallel design: for a two-arm study with 2I independent clusters, I clusters are randomly
assigned to each intervention at a single time point. If the cluster sizes are all equal, a two-sample t-test may be used to
compare cluster-level mean responses between the intervention groups. If there are more than 2 treatment arms, a one-
way analysis of variance may be used. Sometimes the communities are matched and randomization is done within the
matched sets. In that case, a paired analysis (e.g. paired t-test) is used. When cluster sizes vary, individual level
analyses using generalized estimating equations [17] or random effects models [16] may be used. Statistical aspects of
the design and analysis of parallel CRTs have been widely discussed (e.g. [9,10]).

In contrast, crossover designs are less commonly used in CRTs (three examples are [6,11,12]). A crossover CRT
requires fewer clusters than a parallel design but may take twice as long (or longer) to complete (since each cluster
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Fig. 1. Treatment schedules for parallel, crossover, and stepped wedge designs. “0” represents control or existing treatment; “1” represents an
intervention.
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receives both the treatment and control interventions). If the intervention requires a lengthy follow up period, then this
fact alone might make a crossover design impractical. In a standard crossover design the order of the interventions is
randomized for each cluster and a time period (called the “washout” period) is often included between the two
interventions so that the first intervention does not affect the second. Analysis of a standard crossover design focuses on
within-cluster comparisons using a paired t-test.

A stepped wedge design [13] is a type of crossover design in which different clusters cross over (switch treatments)
at different time points. In addition, the clusters cross over in one direction only—typically, from control to
intervention. The first time point usually corresponds to a baseline measurement where none of the clusters receive the
intervention of interest. At subsequent time points, clusters initiate the intervention of interest and the response to the
intervention is measured. More than one cluster may start the intervention at a time point, but the time at which a cluster
begins the intervention is randomized. Fig. 1 illustrates the differences between the parallel, traditional crossover and
stepped wedge designs.

Although the stepped wedge design extends the length of a randomized trial due to the presence of multiple time
intervals, the nature of the design may be beneficial in certain settings. In a parallel or traditional crossover design, the
intervention must be implemented in half of the total clusters simultaneously. However, limited resources or
geographical constraints may make this logistically impossible (e.g. [13]). The stepped wedge design allows the
researcher to implement the intervention in a smaller fraction of the clusters at each time point. Another unique feature
of the stepped wedge design is that the crossover is unidirectional. All clusters eventually receive the intervention and,
in particular, the intervention is never removed once it has been implemented (at least over the course of the trial) which
may alleviate ethical and/or community concerns. This makes the stepped wedge design particularly useful for
evaluating the population-level impact of an intervention that has been shown to be effective in an individually
randomized trial. The unidirectional aspect of the crossover does, however, complicate the analysis since the treatment
effect can no longer be estimated exclusively from within-cluster comparisons. More details on the analysis of such
trials are provided below.

In Section 2 we describe a trial being conducted in Washington state that uses a stepped wedge design. This
motivating example provides a context for the theoretical and simulation results shown in Section 3 where we describe
statistical aspects of the design and analysis of stepped wedge CRTs. In Section 4 we summarize our findings and
discuss future areas of research.

2. Example — partner notification

Partner notification is the process by which sex partners of patients with sexually transmitted infections (STIs) are
notified of potential exposure to infection and encouraged to seek treatment. Standard practice for partner notification
in most states in the US involves contact of partners by public health authorities. However, the high costs associated
with this practice have influenced investigators to seek alternative partner treatment methods. One alternative strategy
is patient delivered partner therapy (PDPT) in which infected persons are given drugs or drug vouchers to give to their
sex partners. In the case of vouchers, these can be redeemed for appropriate drugs at local pharmacies.

An individually randomized trial conducted by Golden et al. [14] in King County, Washington between 1998 and
2003 evaluated the effectiveness of a PDPT-based partner notification strategy dubbed EPT (expedited partner therapy)



184 M.A. Hussey, J.P. Hughes / Contemporary Clinical Trials 28 (2007) 182–191
versus standard partner notification for the treatment of chlamydia and/or gonnorrhea infection. The primary outcome
was the presence of persistent or recurrent infection in the original index patient 3–19 weeks after treatment. Overall,
the trial showed a significantly increased proportion of partners treated (per participant report) and a decreased risk of
recurrent or persistent infection among participants in the EPT group compared to the control.

Based on the success of this individually randomized trial, the county health commissioners of Washington state
have agreed to implement EPT in all the counties in Washington. Support for a CRT to evaluate the population-level
effect of the intervention has been received from the National Institutes of Health. Using a stepped wedge design,
twenty-four county health districts in Washington state will be randomized to EPT at one of four possible times (six
counties at a time). Cross-sectional surveys will be conducted in each county in each time interval (and at baseline) to
measure the prevalence of gonorrhea and chlamydia (with different people in each time interval). The randomization
times will be separated by 6 months to allow implementation and assessment of the intervention within each time
period. The primary outcomes are the prevalence of chlamydial infection among women tested in family planning
clinics and the number of reported gonorrhea infections in women in each county. This design will allow the evaluation
of the population-level effectiveness of the EPT intervention.

Preliminary data suggest that overall baseline prevalence of chlamydial infection will be 0.05 and the coefficient of
variation (CV) for county to county variation [15] is 0.30, where CV is defined to be the ratio of the between-county
standard deviation over the mean prevalence. Gonorrhea infection is much rarer and incidence rates in the 10–44 year
old female population average 79 per 100,000 person years. However, there is substantial variation from county to
county and the estimated CV is 0.90.

3. Statistical issues

In this section we examine a number of issues related to the design and analysis of stepped wedge CRTs.

3.1. Model

Random effects are commonly used to model the correlation between individuals within the same cluster in CRT's.
For a design with I clusters, T time points, and N individuals sampled per cluster per time interval, let Yijk be the
response corresponding to individual k at time j from cluster i (i in 1, …, I; j in 1, …, T; k in 1, …, N) and let Yij be the
mean for cluster i at time j. Define

lij ¼ lþ ai þ bj þ Xijh ð1Þ
where αi is a random effect for cluster i such that αi∼N(0, τ2), βj is a fixed effect corresponding to time interval j (j in
1, …, T−1, βT=0 for identifiability), Xij is an indicator of the treatment mode in cluster i at time j (1= intervention;
0=control), and θ is the treatment effect.

Individual level responses may be modelled as

Yijk ¼ lij þ eijk ð2Þ
where eijk fiid Nð0; r2eÞ (individual level covariates may be added to this model by defining μijk in an analogous manner).
A model for the cluster means is obtained by summing over the individuals in a cluster to obtain:

Yij ¼ lij þ eij ð3Þ
where eij ¼

P
k eijk=N fiid Nð0; r2Þ and σ2 =σe

2/N. We also assume that the eijk (and, hence, eij) are independent of αi.
The variance of an individual-level response is

VarðYijkÞ ¼ s2 þ r2e

and the variance of the cluster-level response is

Var Yij
� � ¼ s2 þ r2 ¼ s2 þ r2e

N
1þ N � 1ð Þq½ �

where ρ=τ2/(τ2 +σe
2 ) is referred to as the intraclass correlation and characterizes the correlation between individuals

from the same cluster. The increase in the variance of Yij due to the clustering (relative to independent data) is given by
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the “variance inflation factor” 1+(N−1)ρ. Alternatively, some authors characterize the cluster effect on the variance in
terms of the coefficient of variation, τ /μ [15].

If the individual level responses are binary then the cluster level response Yij is a proportion and it is reasonable to
assume that σe

2 =μ⁎(1−μ). The model (3) is easily adapted to handle different numbers of individuals sampled per
cluster per time interval by substituting Nij for N.

3.2. Approaches to data analysis

In the following we discuss approaches to analysis of data from a study employing the stepped wedge design.
Initially, we focus on equal cluster sizes and the analysis of cluster-level means. We then extend the discussion to the
unequal cluster size situation and individual-level analyses.

3.2.1. τ2 and σ2 known
Model (3) is an example of a linear mixed model (LMM). If the values of the variance components τ2 and σ2 are

known, then estimates of the fixed effects can be obtained using weighted least squares (WLS). Specifically, let Z be
the IT×(T+1) design matrix corresponding to the parameter vector η=(μ, β1, β2, …, βT−1, θ) for a stepped wedge
design.

Then η̂ = (Z′V−1Z)−1(Z′V−1Y) (so θ̂ is the T+1st element of η̂ ) and the covariance matrix of η̂ is (Z′V−1Z)−1,
where V is an IT× IT block diagonal matrix. Each T×T block within V describes the correlation structure between the
repeated (in time) cluster means and has the structure

r2 þ s2 s2 N s2

s2 O v
v O s2

s2 : : : s2 r2 þ s2

2
664

3
775:

Since τ2 and σ2 are seldom known this approach is generally not applicable for data analysis, but provides a useful
approach to pre-trial power analyses.

3.2.2. τ2 and σ2 unknown
When the variance components are unknown, Laird and Ware [16] describe an empirical Bayes approach to

estimating the fixed effect parameters and variance components of LMM when the response is continuous and
normally distributed. In addition, this approach can be used even with non-normal individual-level data (e.g. binary
responses) if the cluster sizes are approximately equal, since the analysis can then be done at the cluster mean level.
However, if the responses are non-normal and the cluster sizes vary then an efficient analysis at the cluster mean level
requires weights that depend on the unknown parameters, τ2 and σ2. In this case an analysis at the individual level
using generalized linear mixed models (GLMM) or generalized estimating equations (GEE) is preferred.

GLMM is an extension to the LMM procedure for non-normal data [24]. The expected value of the outcome, which
may be binary, a count or a continuous response, is linked to the linear predictor (1) via a (possibly) nonlinear
transformation. The underlying distribution of the outcome can follow any distribution in the exponential family. Use
of a GLMM facilitates modeling of individual level binary responses since a logit link can be used to analyze
individual-level data. Also, an individual-level GLMM-based analysis automatically provides proper weighting when
cluster sizes vary. Software to fit such models has recently been incorporated into many general statistical packages.

Alternatively, generalized estimating equations (GEE) [17], which can flexibly handle normal or non-normal
endpoints, are sometimes used to analyze CRT data. GEE tends to be more robust to misspecification of the variance
structure than LMM or GLMM since “sandwich” type variance estimates are used [18]. As with GLMM, GEE is more
natural than LMM for individual-level binary outcomes since a logit link can be used to analyze the individual-level
data and the individual-level analysis automatically accounts for variable cluster sizes. However, Sharples and Breslow
[23] show that the GEE procedure tends to give inflated type I error rates when the number of clusters is small.

The above methods (LMM, GEE, GLMM) should be used with care if the number of clusters and time points is
small since theoretical results for these methods are based on asymptotics. Feng et al. [19] contrast GEE and LMM
approaches for parallel design CRTs. Section 3.7 uses simulations to compare these three approaches in the context of
the stepped wedge design.
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3.2.3. Within-cluster analysis
The methods discussed above use both within-cluster and between-cluster information to estimate the

treatment effect. This approach is necessary to avoid confounding the treatment effect with changes over time.
However, if there are no temporal effects on the outcome (i.e. βj=0 for all j in (1)), then a within-cluster
analysis can be used to estimate the treatment effect.

Consider a design with I clusters and T time points. Let wi be the number of time points in cluster i that receive the
control. Consequently, T−wi is the number of time points in cluster i that receive the intervention. Furthermore, let Ci

and Ti be the sets of time points receiving control and intervention in cluster i, respectively. Then, a within-cluster
estimate of θ is given by

f
h ¼ 1

I

X
i

X
jasi

Yij:

T � wi
�
X

jaCi
Yij:

wi

2
4

3
5 ð4Þ

and under model (3) (assuming all βj=0), the variance is given by

Var
�f
h Þ ¼ r2

I2
X
i

1
wi

þ 1
T � wi

� �
ð5Þ

Notice that this variance formula does not depend on τ2 since the cluster effect, αi, cancels out in the
computation of θ̃. In this scenario, the paired t-test is an appropriate method for testing the hypothesis of no
treatment effect.

The drawback of a within-cluster analysis is the potential for bias. If the time effects, β1, …, βT are not all 0, then the
estimated treatment effect (4) will, in general, be biased. The bias is a linear combination of β1, …, βT−1:

b
�f
h; h

� ¼ 1
I

X
i

X
jasi

bj

T � wi
�
X

jaCi
bj

wi

2
4

3
5 ¼

X
j

bj
X
i

wi � Tð1� XijÞ
IwiðT � wiÞ ð6Þ

Thus, failure to model time effects will result in a biased estimate of the treatment effect unless β1, …, βT=0. Even a
WLS analysis that utilizes both within and between cluster information in estimating θ will be biased if time effects are
not included in (1) [20]. Note, however, that the bias in θ̃ is independent of the true value of θ. Furthermore, the
coefficients of the β's in (6) can be calculated once the treatment schedule is determined. Thus, understanding of each
β's contribution to the bias can occur during the design phase of the trial.

3.3. Power calculations

Suppose the goal is to test the hypothesis Ho: θ=0 versus Ha: θ=θA in model (3) using a stepped wedge design with I
sites and T time points. AWald test may be based on Z ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðhÞp

, where θ̂ is the estimated treatment effect from a
weighted least squares analysis (Section 3.2.1). The approximate power for conducting a two-tailed test of size α is
given as

power ¼ U
hAffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðh ̂Þ

q � Z1�a=2

0
B@

1
CA ð7Þ

where Φ is the cumulative standard Normal distribution function and Z1−α/2 is the (1−α/2)th quantile of the standard
Normal distribution function. In general, Var(θ̂) is the appropriate element of (Z′V− 1Z)− 1 from the weighted least
squares analysis. However, for models of the form (3) (which includes parallel and crossover as well as stepped wedge
designs), and assuming Xij is coded 0 or 1, it is possible to express Var(θ̂) in closed form. As before, let Xij=0 if cluster i
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receives the control at time j and Xij=1 if cluster i receives the intervention at time j. Assuming equal N per cluster per
time interval it can be shown that

Var h ̂
� � ¼ Ir2ðr2 þ Ts2Þ

ðIU �W Þr2 þ ðU 2 þ ITU � TW � IV Þs2 ð8Þ

where U=∑ij Xij, W=∑j(∑iXij)
2, and V=∑i(∑jXij)

2 [21].
In the Washington EPT trial, the baseline prevalence of Chlamydia is approximately 0.05 and we plan to test 100

individuals per cluster per time interval. For the power calculations, therefore, we use r2 ð0:05Þð0:95Þ
100 ¼ 0:000475. The 24

counties will be randomized 6 at a time, so that T=5. Fig. 2 shows the power of the trial as a function of effect size
(expressed as a relative risk) for a coefficient of variation ( sl) of 0.3 and 0.5. Because the stepped wedge design uses
both within-cluster and between-cluster information, power is relatively insensitive to variations in the CV. For a CVof
0.3 the plot shows that the trial has about 80% power to detect a decrease in prevalence of roughly 36% (from 0.05 to
0.032).

3.4. Effect of number of steps

An important choice in the stepped wedge design is the number of clusters randomized at each time step. Fig. 3
illustrates the effect of varying the number of clusters randomized at each time step (so that there are fewer time steps
and fewer measurement times) for the Washington State EPT trial, assuming a relative risk of 0.7 (other alternatives
give similar results).

Not surprisingly, the optimal power is achieved when each cluster is randomized to the intervention at its own
randomization step. However, this may be infeasible for logistic reasons, especially if the design calls for the steps
to be separated by a period of months. From Fig. 3 we see that randomizing multiple clusters at each time point
and thereby reducing the overall number of measurement times significantly reduces power. Separate analyses (not
shown) indicate that the loss of power is primarily due to the loss of measurement times rather than the loss of
randomization times (in other words, if groups of clusters are randomized to begin the intervention simultaneously
but the number of measurement times is not decreased, there is little loss of power; it is not clear why one would
design a trial in this manner, however, since the trial would not be shortened). Note that the lines in Fig. 3 stay
approximately “parallel” across a wide range of the CVs indicating that the loss in power is relatively independent
of the coefficient of variation.
Fig. 2. Theoretical power for theWashington EPT trial. The overall prevalence is assumed to be 5%, with 100 individuals sampled per cluster per time
point. Power is displayed versus effect size for two coefficients of variation.



Fig. 3. Power curves when 24 clusters are randomized and number of randomization steps is varied. The number of measurement times (tp) varies
from 8 (3 clusters randomized at each time) to 2 (12 clusters randomized at each time). The baseline event prevalence is 0.05 and the intervention
effect corresponds to an risk ratio of 0.7.
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3.5. Efficacy of WLS relative to a within-cluster analysis

The relative efficiency of the WLS estimator, θ̂ (Section 3.2.1), versus the within-cluster estimate, θ̃ (Section
3.2.3), can be determined by taking the (inverse of the) ratio of the respective variances. If there are no time effects,
this ratio is

effic h ̂;
f
h

� �
¼

X
i

1
wi

þ 1
T � wi

� �
ITU � U2
� �

r2 þ IT TU � Vð Þs2	 

I3ðr2 þ Ts2Þ ð9Þ

(note that the WLS variance here is different from (8) since this comparison is developed under the assumption that
there are no time effects). It can be shown that the WLS estimator always exceeds the within-cluster estimate in
efficiency unless τ2 =0 [20]. However, if time effects are included in the WLS model (so that the variance (8) is used)
then θ̂ is less efficient than θ̃ but, as described in Section 3.2.3, θ̃ is likely biased.

3.6. Delayed treatment effect

The results presented in the previous sections assume that the full effect of the intervention is realized in the same
time interval that the intervention is introduced. In some situations, however, the full effect of the intervention may not
be realized until several time intervals following implementation. This section explores changes in power due to such a
delay.

Suppose we expect that the intervention will be 50% effective after one time interval, 80% effective after two time
intervals and 100% effective after three time intervals. We may continue to parameterize the treatment effect in terms of
a single parameter, θ, which can be interpreted as the maximum or full treatment effect. The delay may be modelled by
allowing the Xij in (1) to be fractional. Power may then be calculated as outlined in Section 3.3 although the closed form
expression (8) is not valid when the Xij are fractional.

The overall effect of such a delay is to reduce power. Power can be partly, but not completely, recovered by adding
additional measurement periods onto the end of the trial. The greater the delay in the intervention effect, the greater is
the effect on power. Fig. 4 shows the effect of a minor delay (80%, 90%, and 100% at 1, 2, and 3 time units
postintervention, respectively) and major delay (50%, 80%, and 100% at 1, 2, and 3 time units post-intervention,
respectively) on power in the Washington state EPT trial as well as the potential for recovery of power through the
addition of extra measurement periods. Although inclusion of additional monitoring periods at the end of the study



Fig. 4. Theoretical power vs. CV comparing situations in the Washington EPT trial where a minor treatment effect delay is assumed and when a major
delay is assumed. Figures are shown for a risk ratio of 0.7. Plots have lines corresponding to situations with no delay, delay and no additional
monitoring, delay and 3 additional measurement times, and delay and 6 additional measurement times.
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increases power, it is difficult to recover the full power that was seen with no delay. It is important, therefore, to make
the time intervals sufficiently long so that the full intervention effect is realized in a single interval.

3.7. A simulation comparing analysis methods

We did a small simulation experiment to compare the size and power of the hypothesis test, Ho: θ=0 vs. Ha: θ≠0,
using LMM, GEE, and GLMM methods in the context of the stepped wedge design. Individual level data were
simulated using (2). LMM analyses were conducted at the cluster mean level, while GEE and GLMM analyses were
done at the individual level. Analyses were done in R. LME was implemented using the R function lme() [22], GEE
was implemented using gee() and GLMM was implemented using glmmPQL(). Algorithms for fitting LMM and GEE
models have been fairly standardized; however, algorithms for fitting GLMM models are more variable between
software packages so our results may not reflect other implementations. We evaluated two situations: where equal
sample sizes are available for each cluster and where variable sample sizes are available for each cluster. These two
situations correspond to sampling plans for comparing chlamydial and gonorrheal rates (respectively) in the
Washington state EPT trial described in Section 2. A trial with 24 clusters and 4 randomization steps was considered.
The baseline prevalence of disease was 0.05 and the between-cluster variance τ2 was assumed to be 0.000225, which
corresponds to a coefficient of variation of 0.3. We used 100 individuals per cluster per time interval for the simulations
with equal sample sizes per cluster. For the simulations with different cluster sizes we randomly assigned a total of 2400
individuals to 24 clusters using a multinomial distribution with parameters selected from a flat prior Dirichlet
distribution (parameters (1,1,1)). Using this distribution, the interquartile range for the number of individuals per
cluster was (32,168).
Table 1
Estimated power to test the hypothesis Ho: θ=0 for designs with clusters that have the same sample size (N=100) and clusters with different sample
sizes (24 clusters, 5 time points, τ2=0.000225, μ=0.05, 1000 simulations)

Risk ratio Same cluster sizes Different cluster sizes

LMM GEE GLMM LMM GEE GLMM

1.0 0.056 (0.057) 0.084 (0.052) 0.076 (0.053) 0.048 (0.038) 0.095 (0.053) 0.069 (0.049)
0.7 0.697 (0.658) 0.719 (0.644) 0.716 (0.580) 0.307 (0.307) 0.703 (0.577) 0.697 (0.559)
0.6 0.907 (0.884) 0.907 (0.866) 0.917 (0.820) 0.487 (0.503) 0.879 (0.807) 0.906 (0.805)
0.5 0.988 (0.984) 0.990 (0.981) 0.992 (0.948) 0.625 (0.653) 0.982 (0.946) 0.986 (0.942)

For all methods the power using both the standard variance and a jackknife estimate of variance (in parentheses) is given.
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The estimated power based on the simulations is given in Table 1. For both equal and unequal cluster sizes a
jackknife estimate of the variance is needed to maintain the size of the test for both GEE and GLMM. For equal cluster
sizes LMM has slightly higher power than GEE which, in turn, has greater power than GLMM (assuming jackknife
variance estimates are used). The differences are not great, however. When cluster sizes vary, power is much better for
GEE and GLMM compared to LMM. This is because the LMM approach analyzes the results at the cluster level and
weights must be used to account for the different cluster sizes. However, the correct weights depend on the variance
components. Since these are unknown prior to an analysis we tried using weights proportional to the cluster size
(results shown in the table) and equal weights (not shown but results similar to those given in the table). Both
approaches are inefficient relative to a correctly weighted analysis and this is manifest as low power in the table. In
contrast, GEE and GLMM analyze these binary data at the individual level and thereby provide the correct weighting
for each cluster. For this reason, we recommend using individual level analyses when cluster sizes vary significantly. A
jackknife estimate of the variance is recommended to maintain the size of the test in GEE and GLMM analyses.

4. Discussion

Using theoretical calculations and simulation we have investigated statistical characteristics of the stepped wedge
design for cluster randomized trials. In particular, we have outlined a procedure for computing power in such trials and
investigated the effect of varying intercluster correlation, number of randomization steps and treatment delay on trial
power. The design is relatively insensitive to variations in the intercluster correlation. We also found that, for a fixed
number of clusters, power decreases as the number of randomization steps decreases. Most of the power loss is due to a
reduction in the number of measurement times rather than the reduction in randomization steps, per se. However, in
practice, the optimal situation of having one cluster randomized to the intervention at each time point may be infeasible.
A practical strategy is simply to maximize the number of time intervals given constraints on the number of clusters that
can logistically be started at one time point and the desired length of the trial.

We found that a delay in the treatment effect (i.e. where the full treatment effect is not realized until one or more time
intervals after the intervention is introduced) significantly reduces power. Delays can be incorporated into the power
calculations by using fractional values for the treatment covariate in the design matrix Z. Explicit modeling of the delay
in this manner recovers a small portion of the power. Adding additional monitoring periods at the end of the trial results
in additional power recovery. However, the loss in power due to a delay in the treatment effect generally cannot be fully
recovered. Therefore, it is desirable to make each monitoring period long enough so that the effect of the treatment is
fully realized before the next period begins.

Analyses that rely on within-cluster information only (e.g. paired t-test) provide a valid analysis of the stepped
wedge design only if there are no time effects. Otherwise, a within-cluster analysis provides a biased estimate of the
treatment effect. A formula for the bias was derived based on the treatment schedule and the true values of time effect
parameters β1,…, βT−1. Within-cluster analyses should only be used if no significant temporal trends or fluctuations are
expected over the course of the trial. However, if external or a priori information suggests that there are no time effects
then an analysis based on model (3) without parameters for time still provides a more efficient analysis than the paired
t-test.

An anonymous reviewer suggested modifying (1) by including time as a random effect. We felt that this approach
did not reflect our interest in controlling for temporal trends and fluctuations in disease prevalence over the course of a
particular trial (and a relatively complex model for the time effect might be required since – for infectious disease
studies – adjacent time periods are unlikely to be independent). Nonetheless, we found this idea interesting and
potentially applicable in some circumstances. Such an approach might be particularly appropriate if temporal variations
in the outcome were thought to be due to factors unrelated to changes in the underlying disease prevalence (e.g.
changes in personnel doing outcome surveys). Further development of this idea is warranted.

Using simulations, we compared LMM, GLMM, and GEE with respect to size and power for a trial with 24 clusters
and 5 time intervals (to mimic the Washington state EPT trial). The simulation results agreed well with predictions
based on asymptotics—LMM maintained the nominal test size and had power close to that predicted by Eq. (7) for the
case of equal cluster sizes. GEE and GLMM showed evidence of inflated size that could be resolved using a jackknife
variance estimate. This phenomenon may be due to the limited number of clusters [23]. Although LMM had a slight
power advantage when cluster sizes were equal, GEE and GLMM were substantially more efficient than LMM when
cluster sizes varied.
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Model (3) assumes that there are no cluster by time interactions. Including such interactions would result in an
overparameterized model, however. If a cluster by time interaction is expected then one possible strategy is to create
strata of clusters with similar expected time trends. Then a stratum by time interaction could be included as a factor in
the model.

The stepped wedge design provides an innovative choice for a cluster randomized crossover trial that is subject to
constraints that limit the use more conventional designs. The stepped wedge seems particularly suited to investigations
of community level public health interventions that have been proven effective in individual level trials and so-called
“phase IV” effectiveness trials.
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