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Testing for Baseline Bias in Longitudinal Studies

Abstract.

If a survey sample is not representative of the population of interest, findings from that sample may not be generalizable.   When longitudinal data are available, we propose to use data from the first 2 survey waves to test whether the sample was at equilibrium at baseline.    Under the assumption that the population was at equilibrium when the sample was drawn, this is also a test of whether the observed data are consistent with being a simple random sample of the population; that is, whether the sample is biased for a particular variable.   Data from the Cardiovascular Health Study were used to illustrate these methods.  The primary sample showed meaningful positive bias in activities of daily living, cognition, and depression.
Testing for Baseline Bias in Longitudinal Studies

1. Introduction
There is often concern that a research sample is biased, in the sense of not being a simple random sample of the population of interest.  Results from such samples may not generalize to the population as a whole.  Eligibility exclusions and the sampling design create explicit biases that may be accounted for in the analysis.  But self-selection biases such as healthy volunteer bias are also likely, and their existence and size are usually unknown.    Unless there are relevant population-based data for comparison, it is usually not possible to determine whether a particular sample is biased.

Additional information is available, however, if there are 2 (or more) waves of data.  In that case, the probabilities of transition from state to state may be estimated.  Consider Figure 1, where the population is conceptualized  as a system with three states:  healthy, sick, and (over time) dead.  The one-year transition probabilities (explained later on), are shown; e.g., the probability that a healthy person is sick a year later is 0.092.  One feature of this system is that, over time, the prevalence of the healthy state (the number healthy divided by the number alive) eventually reaches and remains at an equilibrium prevalence, no matter what the initial distribution of states was.
  For example, the equilibrium prevalence of the system in Figure 1 will be shown to be 0.82.   If a hypothetical population consists of 8200 healthy persons and 1800 sick (prevalence = 0.82), the number healthy one year later is 0.898*8200 + 0.390*1800 = 8066, and the number sick is 0.576*1800+.092*8200 = 1791. (The remainder are dead). The prevalence of the healthy state a year later is thus 8066/(8066+1791) = 0.82; that is, the prevalence remained at the equilibrium prevalence.  



[Figure 1 about here]

It is likely that the population from which the sample was drawn was at equilibrium.  Even if there had been an earlier event, such as an epidemic, that changed the number healthy in the short run, the population would tend to return to its equilibrium prevalence.   If the sample is a simple random sample of this population, it, too should be at equilibrium.  
We propose to test for selection bias by assuming the population was at equilibrium and testing whether the observed prevalence of the healthy state in the sample (Prev:Obs) is significantly different from the equilibrium prevalence of the healthy state (Prev:Equil).   We illustrate this method using nine variables from the Cardiovascular Health Study.  The numbers in Figure 1 came from a survey variable rating one’s health as excellent, very good, good, fair, or poor (EVGGFP).  Healthy was defined as being in excellent, very good, or good self-rated health, and sick as having fair or poor health.  
2 Methods

2.1 Prevalence at equilibrium (Prev:Equil) for a system with 3 states
Diehr and Yanez [1]  showed that the equilibrium prevalence of the healthy state for a time-homogeneous system  with 3 states including one absorbing state  is K/(1+K), where 



[image: image1.wmf]2

2

()()[()()]()

2()[2()]()

PHtoHPStoSPHtoHPStoSPStoH

K

PHtoSPHtoSPHtoS

--

=++

.
 {1}

Substituting the probabilities from Figure 1 into the equation, we find that K = 4.475, and Prev:Equil is .817.  That is, assuming the probabilities are time-homogeneous, and after a few years to overcome any initial imbalance, about 82% of the living will be healthy and 18% will be sick every year, until eventually all are dead. The variance of Prev:Equil for a 3-state system can be calculated in closed form.[1]   The solution is indeterminate if P(S to H) is zero.   Additional assumptions will be addressed in the discussion section.
2.2  Transition Probabilities


We estimated the transition probabilities by crosstabulating the baseline by the 1-year data.  Note that transition probabilities are calculated conditional on the original state.  For example, P(S to H) is calculated only from persons who were sick at baseline.  Consider that even if the sample had twice as many healthy persons at baseline, the transition probability estimates would not change.  That is, the probabilities may be estimated even if the sample is biased.  (See the discussion section for further nuances).  The estimated probabilities of transition from time t to t+1 are thus independent of (Prev:Obst).  Since Prev:Equilt is calculated from those transition probabilities, it follows that Prev:Equilt is statistically independent of Prev:Obst.
2.3  Testing whether a sample is at equilibrium

We tested for bias by  (1) comparing Prev:Obs to Prev:Equil.  For comparison,  we also (2) compared Prev:Obs to an age-sex adjusted estimate of the prevalence (Prev:Expected); and (3) compared Prev:Obs to the prevalence estimated using a system with more than 3 states.

2.3.1  Prev:Obs vs Prev:Equil
We first develop a test for whether a sample is “at equilibrium”, defined here as the situation where Prev:Obs = Prev:Equil.   Prev:Obs is statistically independent of Prev:Equil.  The variance of Prev:Obs  is the variance of a proportion, and the variance of Prev:Equil  can be calculated in closed form from the transition probabilities and sample sizes.[1]  Therefore, an approximate z-statistic can be calculated:   
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2.3.2 Age/sex standardized expected prevalence 


For comparison, we tested for bias in a different way.  We used all available waves of data to estimate the prevalence of the healthy state for each age and sex combination.  The prevalences were used to calculate the expected prevalence at baseline (Prev:Expected) for a hypothetical population with the same age and sex distribution as the baseline sample.  If Prev:Obs is different from Prev:Expected, and assuming that data from later waves was unbiased, this is also evidence of baseline bias.  The numerator of the test statistic was Prev:Obs minus Prev:Expected.  For the denominator we used the sample standard error of the difference between the two prevalences. Ideally the two numerator terms would be statistically independent, but that is not the case because data used to calculate Prev:Obs were also needed to calculate Prev:Expected.  Since the minimum age was 65,  the only observations at age 65 were made at baseline, meaning that the observed and expected prevalences at age 65 will be identical.  Prevalences at other ages were calculated using data from the same persons, suggesting further lack of independence.  We ignore these shortcomings, for simplicity, because this test is intended only for comparison with the test based on Prev:Equil. 
2.3.3 Eigenvector Prevalence 

Prev:Equil can be shown to be a special case of an eigenvector of a partition of the matrix of transition probabilities.  (See appendix).  This formulation permits estimation of  Prev:Equil for systems with more than 3 states, and is referred to here as Prev:Eigen.  For example, self-rated health (EVGGFP) has 6 levels (excellent, very good, good, fair, poor, and dead).  In the 3-state model in Figure 1, we dichotomized EVGGFP to healthy (excellent, very good, or good) and sick (fair or poor). We also estimated the 6-state transition probabilities of EVGGFP, and calculated the equilibrium prevalences.  The sum of the eigenvector prevalences for excellent, very good, and good is another estimate of the equilibrium prevalence of the healthy state, for comparison.   Because the variance of the 6-state estimated prevalences are unknown, these comparisons are merely descriptive.  For this reason, they were performed only for EVGGFP.  The eigenvectors were calculated using the R statistical package (see appendix).  

2.4  Data


 Data came from the Cardiovascular Health Study (CHS).  CHS is a population-based longitudinal study of 5,888 adults aged 65 and older at baseline, designed to identify factors related to the occurrence of coronary heart disease and stroke. 
  Subjects were recruited from a random sample of the Medicare eligibility lists in four U.S. counties.   Persons who did not expect to remain in the area for the next three years, or who were institutionalized, using a wheelchair at home, or receiving treatment  for cancer at baseline were ineligible. About 70% of the targeted eligibles were eventually enrolled.   Extensive baseline data were collected for all subjects, including a home interview and clinic examination. After baseline, subjects had an annual clinic visit, and provided additional information by mail and telephone.  At baseline the mean age was 73 (range 65 to 100), 58% were women, and 84% were white.  Two cohorts were followed, one with 10 annual waves of data (beginning in 1990, n=5201) and the second (all African American, beginning in 1993, n=687) with 7 waves.  The 2 cohorts will be analyzed separately.    Followup is ongoing for events and a few self-reported measures. 
  

In the following example we assume that the population of interest (all Medicare enrollees in 4 counties in 1990) was at equilibrium with respect to the variable of interest (EVGGFP in the primary example).  However, because of the exclusions and probable self-selection, the CHS sample may have been out of equilibrium.  We chose nine health-related variables that were measured every year in CHS and have been described elsewhere. 
    Because of the exclusion criteria, and the likelihood of healthy volunteer bias, we hypothesized that the CHS sample would be “too healthy” at baseline on all of the variables.  

All variables were dichotomized to healthy/not healthy.  For EVGGFP, Healthy was defined as being in excellent, very good, or good self-reported health.  Definitions of “healthy”  for the other variables are as follows:  having a Modified Mini Mental State Examination score above 89 (MMSE);
  no difficulties with activities of daily living - walking, transferring, eating, dressing, bathing, toileting (ADL); no difficulties with instrumental activities of daily living—heavy or light housework, shopping, meal preparation, money management, telephoning (IADL);  a Center for Epidemiologic Studies Short Depression score < 10 (CESD);
 
  no days in bed in the previous two weeks; able to walk 15 feet in less than 10 seconds (measured); not hospitalized in the previous year; and having had a flu shot in the previous year.  Data missing between a person’s first and last observed measures (about 5%) were imputed from a person-specific regression of the variable on the log of time from the last known measure.  
3 Results

For all variables, transition probabilities were calculated and used to calculate Prev:Equil, which was compared to Prev:Obs and Prev:Expected for all variables.   For EVGGFPD only, we compared Prev:Equil (calculated from equation 1) to  Prev:Eigen (calculated from the 6-state model).
3.1 Transition Probabilities


Table 1 shows the one-year transition probabilities for healthy, sick, and dead (based on EVGGFP) for the two cohorts.  For example, in cohort 1, 3987 persons were healthy at baseline (1990) and 89.8% of them were still healthy in 1991, while 9.2% were sick and 1.0% were dead in 1991 (as also shown in Figure 1).  The lower part of the table shows data for cohort 2.  The two cohorts had similar mortality rates, about 1% for the healthy state and 3.5% for the sick state.  But cohort 2 was nearly twice as likely to become sick as cohort 1, and was also a little less likely to recover from sick to healthy.  Unexpectedly, the prevalences of the healthy state increased from .77 to .79 in cohort 1, and from .59 to .64 in cohort 2 (calculations not shown).   

 [Table 1 about here]

3.2 Prev:Obs vs Prev:Equil
To test for baseline bias in Cohort 1, we compared Prev:Obs to Prev:Equil.   For EVGGFP, Prev:Obs  = 3987/5281 = 0.767, with standard error = .0058.  Prev:Equil = .816 (from equation {1}) with standard error .0092 (calculated from the equation in reference [1]).  Their difference is .767-.816 = - 0.050, the standard error of the difference is .0109, and from equation {2}, z = -.05/.0109 = -4.57, indicating a statistically significant negative bias.   For cohort 2, z = -2.77, which is also significant but smaller, perhaps because of the much lower sample size in cohort 2.   
 
Table 2 shows similar information for all nine variables, ordered by the difference between Prev:Obs and Prev:Equil.  (Line 8 gives the numbers just calculated for EVGGFP).  The first column shows Prev:Obs for each variable.  In tests not shown here, the prevalences were significantly higher in cohort 1 than in cohort 2 for every variable but IADL (not different) and flu shot (significantly lower).   The z statistics are in column 4.  For cohort 1, the first 5 variables showed significant positive bias (sample healthier than equilibrium) and the last 3 were significantly less healthy than equilibrium.   

[Table 2 about here]

 
To facilitate comparisons, the z-statistics for cohort 1 are shown as the dark bars in Figure 2, with horizontal lines indicating significance thresholds of +2 and -2.  In cohort 1, as expected, ADL showed significant positive bias, as did MMSE, CESD, IADL, and hospitalization.  Contrary to our expectation, the bias was negative for EVGGFP, flu shots, and timed walk. In further exploration, we found that Prev:Obs for EVGGFP actually increased from baseline to year 1, after which it declined over time in a regular manner.   We also found that the prevalence of having a flu shot increased steadily over time.   Results were somewhat different for cohort 2, where the absolute values of the z-statistics were considerably smaller in part because the sample size was one ninth as large.  As in cohort 1, there was a significant positive bias for ADL and a negative bias for EVGGFP.  There was a significant positive bias for bed days only in cohort 2.  And the two cohorts had significant differences in the opposite direction for hospitalization.

[Figure 2 about here]

3.3 Prev:Obs vs Prev:Expected



Because CHS had up to 10 waves of data, we were able to test for bias in a different way, for comparison.  We calculated the age-sex-specific prevalences of the healthy state, separately by cohort, from all waves of data.  Then, we calculated the expected prevalence at baseline (Prev:Expected) for a hypothetical sample with the same age and sex distribution as cohort 1.  If the observed prevalence is different from the expected prevalence, this is suggestive of baseline bias.     The last 2 columns of Table 2 show Prev:Expected and the associated z-statistic for all variables.  For example, Prev:Expected for cohort 1 was 0.787, Prev:Obs minus Prev:Expected = -0.021 (not shown),  and the associated z statistic was -3.53. The z-statistics are shown as the white bars in Figure 2.   There is good agreement in sign and significance between the two tests (the black and white bars).  Each cohort had one sign discrepancy and 3 significance discrepancies.
3.4 Prev:Obs vs. Prev:Eigen

As shown in the appendix, Prev:Equil can be calculated for a system with more than 3 states, as an eigenvector of a partition of the matrix of transition probabilities.  The observed and equilibrium prevalences for each living state in the 6-state model are in the Table 3. In both cohorts, when compared with the eigenvector prevalence, the observed data contain “too many” excellent, fair, and poor persons but “too few” very good and good.  Within the sick state, the poor state seemed to be over-sampled.  Thus, there is evidence of heterogeneity bias within the stages. The sum of Prev:Eigen for excellent, very good, and good  is .8006, which is lower than the equilibrium value from the 3-state model, .8173.  Both Prev:Equil and Prev:Eigen were higher than Prev:Obs (.767), meaning that the substantive effect of this heterogeneity bias on the hypothesis tests was probably not large.   In cohort 2, Prev:Equil and Prev:Eigen were 0.681 and 0.682, respectively, indicating no net heterogeneity bias.  As there is no known variance for Prev:Eigen, the heterogeneity bias could not be tested for statistical significance.
[Table 3 about here] 
4 Summary and  Discussion  

4.1 Summary 


We proposed a test of whether the observed prevalence of the healthy state in a baseline sample (Prev:Obs) was at its equilibrium value (Prev:Equil).  This test used data from the first two survey waves to estimate the transition probabilities, and from them to estimate Prev:Equil.  A test of 9 different variables detected significant positive bias for some variables and significant negative bias for others.  An alternate method of testing for bias, based on different assumptions, showed consistent results. For EVGGFPD, there was evidence of heterogeneity bias in both cohorts, with an excess of extreme responses (excellent, fair, and poor).  
4.2 Assumptions

The z-test based on Prev:Equil is exact if the estimated transition probabilities are unbiased, if the system is homogeneous in time (probabilities do not change over time), homogeneous within state (all  persons in the same state have the same transition probabilities), and if the population was at its equilibrium prevalence when the sample was drawn.  The test requires that there is a meaningful probability of transitioning from sick to healthy.  A further assumption is that the variable was measured consistently over time.  These assumptions will be discussed in turn.
4.2.1 Time homogeneity


Under the assumption of time homogeneity, the transition probabilities do not change 

over time.  It is likely, however, that probabilities become less optimistic over time, 
because of aging.  If so, Prev:Equil can still be calculated, but it is unclear which 
equilibrium  prevalence is being estimated --- at baseline, a year later, or some other 
time.  Empirically,  Prev:Equil has been closer to the prevalence a year later than at 
baseline.[1]  
   The z-test thus compares Prev:Obs to a standard that may 
itself be biased.  Because the prevalence of the healthy state usually declines with age, Prev:Equil will tend to be too small, making Prev:Obs appear to be too large.  Fortunately, in all of our examples, transition probabilities and prevalences  changed slowly over time,
  and violation of this assumption had no practical  consequences here. 
4.2.2 Homogeneity within states


The assumption that all people in a state have the same transition probabilities is likely violated.  But this may not be a problem, because only the average transition probabilities are needed for the calculations.  Heterogeneity does, however, afford the possibility that selection bias may have affected the different subgroups within the healthy (or sick) states differently, which could affect the average transition probabilities.   
4.2.3 Transition probabilities
Transition probabilities are rarely known, but can be estimated accurately from a large random sample if there is low attrition.   Under the null hypothesis of no bias, the sample probabilities are unbiased estimates of the population probabilities.  If the bias takes the form that there are “too many” in the healthy state, the estimates remain unbiased  because transition probabilities are conditionally independent of Prev:Obs.  However, if the bias has a more complex form, such as “too many excellent within the healthy state”, the estimated probabilities for the healthy group might be too optimistic, compared to that of the population, which would tend to give a higher Prev:Equil.   But by the same reasoning, the probabilities for the sick state were likely pessimistic because there were too many fair and not enough poor in the sick state, which could counteract the bias in the healthy state.  For EVGGFP, the net effect of these biases was that Prev:Equil was about 2 points too high (assuming that Prev:Eigen is correct).  
4.2.4 Power

These methods require a sample size large enough to estimate the transition probabilities accurately, a need that increases with the number of states in the system.  The alternative test requires a large enough sample to provide approximately independent estimates of the age-sex specific prevalences.  We have not formally studied the power of this test, but the sample sizes for both cohorts were sufficient to detect some significant differences.   
4.2.5 Population at equilibrium


We have assumed that the population was at equilibrium, but other circumstances, such as data collected following an epidemic, are possible.  Flu shot appeared to be negatively biased.  But during the 10-year study period, there was a secular trend in the proportion who received a flu shot, which increased every year, perhaps due to intensified public health campaigns for older adults to be vaccinated.  That is, the underlying population was not at equilibrium with respect to flu shots, violating the assumption.  This trend may also explain why the baseline prevalence of flu shots for cohort 2 (in 1993) was higher than the baseline prevalence for cohort 1 (in 1990).
4.2.6
Testing and instrumentation bias
It is important that variables be measured consistently over time, but for EVGGFP, there were some changes. At baseline, EVGGFP was one of many measures elicited as part of a day-long clinical examination, while in 1991 a questionnaire was sent by mail to be filled out at home prior to the clinic visit.  This difference in settings suggests that an “instrumentation” bias might have caused the discrepancies.
  EVGGFP was elicited again in a phone call half way between the other assessments, suggesting the potential for learning or “testing” effects that changed the manner in which persons evaluated their health over time.[9]  As mentioned above, Prev:Obs increased from baseline to the following year (in spite of the sample being one year older), but later declined monotonically.  We believe that the low baseline prevalence was an anomaly. For some reason, there was a tendency to give more extreme responses at baseline.  It is important to consider plausible alternative explanations for significant test results, which could be due to something other than baseline selection bias.  
4.2.7
Attrition 

High sample attrition from baseline to the following year could create a bias in the transition probabilities if, for example, originally healthy persons who became sick were less likely to respond the second time.  Fortunately the one-year attrition was low in our example (about 5%).

4.2.8 Limitations


The assumptions were probably violated in several ways, but in our examples the effect of the violations appeared to be small.  Further, although the assumptions were different for the two z-tests, the results were generally consistent,  suggesting that the substantive results are defensible.
4.3 Substantive Results

Keeping in mind the likely violation of the assumptions noted above, we now summarize the substantive results of this study.
4.3.1 Cohort differences in Prev:Obs


The observed prevalences were usually significantly higher (better) in cohort 1 than in cohort 2.  This is consistent with the literature finding poorer health in African Americans, and can be explained technically by the finding that persons in cohort 2 were more likely to get sick and less likely to recover than those in cohort 1. The higher prevalence of flu shots in cohort 2 is probably due to the secular trend for more flu shots over time.
4.3.2 Biases at baseline

We expected that there would be positive selection bias for all variables, because of exclusions and the likelihood that healthier persons would be more likely to choose to enroll.

Nine variables were compared.  Because of probable violations of the assumptions, noted above, and the likelihood of multiple comparisons issues, we will discuss only findings where the bias was significantly greater than zero and also was greater than 5 percentage points, and will emphasize the much larger cohort 1.  
The largest bias was expected for ADL, because some persons with limited mobility were ineligible for CHS.  As shown in Table 2, the estimated percentage with no ADL difficulties was 92.8%-86.4% =  6.5 percentage points higher in the sample than in the population at equilibrium (13.8 points higher in cohort 2).   This difference was about 4 points (6.5 points) under the alternative test.  Both tests in both cohorts were highly significant.  The null hypothesis of no bias was thus rejected for ADL.
With respect to cognition, the sample was about 10 percentage points more likely to have a MMSE score of 90 or higher, than was the population.  The association between cognition and response has been noted elsewhere. 
 There was also a significant bias for depression, with the sample being about 6 percentage points more likely to have a CESD score below 10.  This type of bias has also been noted elsewhere. 
   These biases were highly significant for cohort 1, but were not significant for cohort 2.   There was a large significant bias in IADL for cohort 2 only.  Cohort differences may be a function of sample size, calendar year, or that cohort 2 was all African American.

Two variables showed large and significant negative bias.    The negative result for flu shot, in cohort 1 only, may be explained by the population not being at equilibrium with respect to flu shots.    As discussed above, we believe the apparent bias in EVGGFP was caused by a response shift between baseline and the following year, rather than by selection bias.   Given the ubiquity of the EVGGFP measure in survey research, it would be valuable to study this possible sensitivity in other settings. 

4.4 Discussion

A test for the existence and extent of selection bias in a sample could improve the interpretation of results from datasets that are not population based or where selection bias is expected for some other reason.  We proposed a test for baseline selection bias that compared Prev:Obs with Prev:Equil at baseline.   Under the assumptions discussed above, the proposed test provides evidence about selection bias, as well as an estimate of the size of the bias.  Since the assumptions will usually be violated, this test should be used only as one piece of evidence.  Comparable prevalence data should be examined, where available. A recent analysis found that mortality in CHS from 1993 to 1994 was lower than mortality in similar Medicare enrollees for that period, suggesting that the CHS sample was positively biased several years after baseline.
  The alternative z-test could be used if there are many waves of data from which to calculate approximately independent estimates of the age-sex-specific prevalences.  If the sample had been collected by sampling within existing clusters, as in the Waksberg method of  random-digit dialing,  comparison of the cluster-level prevalence to the cluster-level response rate could also identify selection bias.
  
Although there is a large literature on response bias, specific examples have usually been limited to bias in demographic factors.
   Note that demographic variables cannot be examined by the method of this paper, because they either do not change (race and sex) or there is no possibility of improvement (age); that is their transition probabilities do not contain useful information.

4.5 Conclusion

The proposed test can be useful to suggest whether a sample is significantly different from the population of interest.  It can be performed on large datasets with as few as 2 waves of data.  Future work could develop a test for systems with more than 3 states, which will require an estimate of the variance of Prev:Eigen.  Evaluation of these methods in different settings is needed.  
Figure 1
Transitions Among Three Health States

(Healthy = E/VG/G; Sick = F/P)  1990 to 1991, Cohort 1
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Transition probabilities are shown for 1990-1991, estimated from the CHS data, cohort 1.  In this example, healthy is defined as self-rated health of excellent, very good, or good; sick is defined as self-rated health of fair or poor.  
Figure 2
Two “z-tests” for baseline selection bias

(9 different variables)
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Table 1
One-year transition probabilities among health states for two cohorts* 
	
	Cohort 1 (1990-1991)
	
	

	
	
	
	
	

	
	H2
	S2
	D2
	N

	H1
	0.898
	0.092
	0.010
	3987

	S1
	0.390
	0.576
	0.034
	1214

	
	
	
	
	

	Total
	0.780
	0.205
	0.016
	5201

	
	
	
	
	

	
	Cohort 2 (1993-1994)
	
	

	
	
	
	
	

	
	H2
	S2
	D2
	N

	H1
	0.814
	0.174
	0.012
	403

	S1
	0.366
	0.599
	0.035
	284

	
	
	
	
	

	Total
	0.629
	0.349
	0.022
	687

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	


*H, S, and D stand for Healthy, Sick, and Dead, respectively.  Healthy is defined as excellent, very good, or good self-rated health.  Sick is defined as fair or poor self-rated health.   

Table 2
	Baseline Prevalence:  Observed, Equilibrium, Expected, and Test Statistics


	
	

	Cohort
	Variable
	Prev:Obs*
	Prev:Equil
	Obs - Equil
	z(Equil)
	Prev(Expect)
	z(Expect)

	
	
	
	
	
	
	
	

	1
	MMSE
	0.941
	0.842
	0.100
	7.070
	0.920
	6.132

	
	ADL
	0.928
	0.864
	0.065
	6.500
	0.885
	11.521

	
	CESD
	0.900
	0.839
	0.061
	5.722
	0.872
	6.654

	
	IADL
	0.744
	0.719
	0.026
	2.060
	0.747
	-0.425

	
	Hosp
	0.908
	0.884
	0.024
	3.122
	0.905
	0.733

	
	Bed Days
	0.968
	0.962
	0.006
	1.529
	0.961
	2.775

	
	Timed Walk
	0.970
	0.979
	-0.009
	-2.158
	0.972
	-0.664

	
	EVGGFP
	0.767
	0.816
	-0.050
	-4.568
	0.787
	-3.534

	
	Flu Shot
	0.451
	0.579
	-0.127
	-7.240
	0.549
	-13.790

	
	
	
	
	
	
	
	

	2
	MMSE
	0.703
	0.754
	-0.051
	-1.161
	0.749
	-2.773

	
	ADL
	0.850
	0.712
	0.138
	3.507
	0.785
	4.909

	
	CESD
	0.815
	0.831
	-0.016
	-0.581
	0.799
	1.120

	
	IADL
	0.729
	0.698
	0.032
	0.889
	0.671
	3.538

	
	Hosp
	0.852
	0.917
	-0.065
	-3.659
	0.888
	-2.738

	
	Bed Days
	0.949
	0.912
	0.037
	2.262
	0.922
	3.259

	
	Timed Walk
	0.942
	0.888
	0.054
	1.527
	0.938
	0.475

	
	EVGGFP
	0.587
	0.682
	-0.096
	-2.774
	0.618
	-1.663

	
	Flu Shot
	0.487
	0.432
	0.055
	1.373
	0.463
	1.269


* Cohort 1 (n=5201) is significantly higher (healthier) than cohort 2 (n=687) for every variable but IADL (n.s.) and flu shot.

Table 3
Eigenvectors (equilibrium prevalence) of 5 living states for EVGGFP.

	
	Cohort 1 

(1990-1991)
	Cohort 2

(1993-1994)

	State:
	Prev:Obs 
	Prev:Eigen 
	Prev:Obs
	Prev:Eigen

	Excellent
	.1427
	.0431
	.0728
	.0489

	Very Good
	.2496
	.2927
	.1732
	.2097

	Good
	.3744
	.4648
	.3406
	.4227

	Fair
	.1994
	.1797
	.3231
	.2679

	Poor
	.0340
	.0197
	.0902
	.0508


Prev:Eigen is the equilibrium prevalence calculated from the 6-state model, using the eigenvector method (see appendix).
Appendix   
Matrix Notation for the Equilibrium Prevalence 
Let A be the (d+1)*(d+1) matrix of transition probabilities.  For example, in Table 1, A is the 3*3 transition matrix.  Partition A so that the upper (d)*(d) submatrix includes only the probabilities for transitions among the living states, Bd*d = A11. For example, in Table 1, B is the 2x2 matrix B=.898, .092/.390, .576.  If zt is a d*1 vector representing the number of people in each living state at time t, then  zt+1 = B*zt .  (Although the number of deaths is not calculated specifically, the number who died between t and t+1 can be calculated from zt  and zt+1).  Once equilibrium is reached, the prevalence of the states does not change from year to year, by definition.  That is, 
zt+1 = B*zt = λ zt  , 

which is the familiar eigenvalue/eigenvector equation.  Thus, the equilibrium distribution of the system is an eigenvector of B.  The eigenvalue is a number less than 1 that represents the proportion of the original population that survived to the following year (the 1-year survival rate).  To be an appropriate equilibrium vector, all elements of the eigenvector must have the same sign, the usual characteristic of the principle eigenvector.  Additional detail is given elsewhere. [8]

The attractive feature of the eigenvector formulation of the equilibrium prevalence is that the dimensions of B are not restricted.  For a system with any number of states (and one absorbing state), we can calculate the matrix of transition probabilities and strip off the row and column for death to yield B.  The principal eigenvector (associated with the largest eigenvalue) is Prev:Equil.   
We calculated the eigenvectors of the partitioned transition matrix for the 6-state model (excellent, very good, good, fair, poor, dead) using the R code shown below.  The first command creates a column vector.  The next command creates B, the 5x5 submatrix of transition probabilities (shown as percentages).  For example, the probability of transitioning from Excellent to Very Good is .467655.   Y is the set of eigenvectors of the transpose of B.  The remaining commands standardize the principal (first) eigenvector so that the elements sum to 1.  The output is Prev:Equil for cohort 1, as shown in Table 3.  The first 3 lines of code, altered for the system with 3 states in Table 1, are also shown.

R CODE TO COMPUTE EIGENVECTORS
*The R commands to calculate the eigenvectors for the 6-state model, reported in Table 3. 
Dim <- 5
dprime <- matrix(c( 1,0,0,0,0  ), nrow = 5, ncol=1, byrow=TRUE)

B <- matrix(c(

30.05391, 46.7655,  20.75472,  2.021563, 0.134771,

                             
6.317411, 51.46379,34.8228,   5.624037, 0.770416,

2.105804, 22.65023, 60.24653, 12.89163, 0.770416,

0.675024, 6.364513, 35.48698, 50.81967, 4.243009,

0,               3.389831, 15.25424, 42.37288, 29.9435 ), 

nrow = 5, ncol=5, byrow=TRUE,

               dimnames = list(c("E", "VG", "G", "F", "P"),    c("E", "VG", "G" , "F" , "P")))  
Bprime = t(B)

y <- eigen(Bprime, symmetric = FALSE) 

C <- y$vectors

colsum <- colMeans(C)*Dim
H <-  1/colsum

Prev_equil <- H[1]*C%*%dprime

Prev_equil  

*R commands to use probabilities in Table 1 to calculate eigenvector from the 3-state model, for cohort 1, using probabilities in Table 1.  (the remaining code is the same as above)

Dim <- 2 

dprime <- matrix(c( 1,0), nrow = 2, ncol=1, byrow=TRUE)  
B <- matrix(c(.898,.092, .390,.576  ), 

nrow = 2, ncol=2, byrow=TRUE,

               dimnames = list(c("H", "S"  ),    c("H", "S")))
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