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1.1 INTRODUCTION

Ant algorithms [18, 14, 19] are a recently developed, population-based ap-
proach which has been successfully applied to several NP-hard combinatorial
optimization problems [6, 13, 17, 23, 34, 40, 49]. As the name suggests, ant
algorithms have been inspired by the behavior of real ant colonies, in particu-
lar, by their foraging behavior. One of the main ideas of ant algorithms is the
indirect communication of a colony of agents, called (artificial) ants, based on
pheromone trails (pheromones are also used by real ants for communication).
The (artificial) pheromone trails are a kind of distributed numeric informa-
tion which is modified by the ants to reflect their experience while solving
a particular problem. Recently, the Ant Colony Optimization (ACO) meta-
heuristic has been proposed which provides a unifying framework for most
applications of ant algorithms [15, 16] to combinatorial optimization prob-
lems. In particular, all the ant algorithms applied to the TSP fit perfectly
into the ACO meta-heuristic and, therefore, we will call these algorithms also
ACO algorithms.

The first ACO algorithm, called Ant System (AS) [18, 14, 19], has been
applied to the Traveling Salesman Problem (TSP). Starting from Ant System,
several improvements of the basic algorithm have been proposed [21, 22, 17,
51, 53, 7]. Typically, these improved algorithms have been tested again on the
TSP. All these improved versions of AS have in common a stronger exploita-
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tion of the best solutions found to direct the ants’ search process; they mainly
differ in some aspects of the search control. Additionally, the best performing
ACO algorithms for the TSP [17, 49] improve the solutions generated by the
ants using local search algorithms.

In this paper we give an overview on the available ACO algorithms for the
TSP. We first introduce, in Section 1.2, the TSP. In Section 1.3 we outline
how ACO algorithms can be applied to that problem and present the available
ACO algorithms for the TSP. Section 1.4 briefly discusses local search for
the TSP, while Section 1.5 presents experimental results which have been
obtained with MAX–MIN Ant System, one of the improved versions of
Ant System. Since the first application of ACO algorithms to the TSP, they
have been applied to several other combinatorial optimization problems. On
many important problems ACO algorithms have proved to be among the best
available algorithms. In Section 1.6 we give a concise overview of these other
applications of ACO algorithms.

1.2 THE TRAVELING SALESMAN PROBLEM

The TSP is extensively studied in literature [29, 31, 45] and has attracted since
a long time a considerable amount of research effort. The TSP also plays an
important role in Ant Colony Optimization since the first ACO algorithm,
called Ant System [18, 14, 19], as well as many of the subsequently proposed
ACO algorithms [21, 17, 52, 53, 7] have initially been applied to the TSP. The
TSP was chosen for many reasons: (i) it is a problem to which ACO algorithms
are easily applied, (ii) it is an NP-hard [26] optimization problem, (iii) it is
a standard test-bed for new algorithmic ideas and a good performance on
the TSP is often taken as a proof of their usefulness, and (iv) it is easily
understandable, so that the algorithm behavior is not obscured by too many
technicalities.

Intuitively, the TSP is the problem of a salesman who wants to find, starting
from his home town, a shortest possible trip through a given set of customer
cities and to return to its home town. More formally, it can be represented
by a complete weighted graph G = (N,A) with N being the set of nodes,
representing the cities, and A the set of arcs fully connecting the nodes N .
Each arc is assigned a value dij , which is the length of arc (i, j) ∈ A, that is,
the distance between cities i and j, with i, j ∈ N . The TSP is the problem of
finding a minimal length Hamiltonian circuit of the graph, where an Hamilto-
nian circuit is a closed tour visiting exactly once each of the n = |N | nodes of
G. For symmetric TSPs, the distances between the cities are independent of
the direction of traversing the arcs, that is, dij = dji for every pair of nodes.
In the more general asymmetric TSP (ATSP) at least for one pair of nodes
i, j we have dij 6= dji.
In case of symmetric TSPs, we will use Euclidean TSP instances in which
the cities are points in the Euclidean space and the inter-city distances are
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calculated using the Euclidean norm. All the TSP instances we use are taken
from the TSPLIB Benchmark library [44] which contains a large collection of
instances; these have been used in many other studies or stem from practi-
cal applications of the TSP. TSPLIB is accessible on the WWW at the address
http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html
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Fig. 1.1 TSP instance att532 from TSPLIB; it comprises 532 cities in the USA.
The given tour is of length 27686, which in fact is an optimal tour.

1.3 AVAILABLE ACO ALGORITHMS FOR THE TSP

1.3.1 Applying ACO algorithms to the TSP

In ACO algorithms ants are simple agents which, in the TSP case, construct
tours by moving from city to city on the problem graph. The ants’ solu-
tion construction is guided by (artificial) pheromone trails and an a priori
available heuristic information. When applying ACO algorithm to the TSP,
a pheromone strength τij(t) is associated to each arc (i, j), where τij(t) is a
numerical information which is modified during the run of the algorithm and
t is the iteration counter. If an ACO algorithm is applied to symmetric TSP
instances, we always have τij(t) = τji(t); in applications to asymmetric TSPs
(ATSPs), we will possibly have τij(t) 6= τji(t).
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Initially, each of the m ants is placed on a randomly chosen city and then
iteratively applies at each city a state transition rule. An ant constructs a tour
as follows. At a city i, the ant chooses a still unvisited city j probabilistically,
biased by the pheromone trail strength τij(t) on the arc between city i and city
j and a locally available heuristic information, which is a function of the arc
length. Ants probabilistically prefer cities which are close and are connected
by arcs with a high pheromone trail strength. To construct a feasible solution
each ant has a limited form of memory, called tabu list , in which the current
partial tour is stored. The memory is used to determine at each construction
step the set of cities which still has to be visited and to guarantee that a
feasible solution is built. Additionally, it allows the ant to retrace its tour,
once it is completed.

After all ants have constructed a tour, the pheromones are updated. This
is typically done by first lowering the pheromone trail strengths by a con-
stant factor and then the ants are allowed to deposit pheromone on the arcs
they have visited. The trail update is done in such a form that arcs con-
tained in shorter tours and/or visited by many ants receive a higher amount
of pheromone and are therefore chosen with a higher probability in the follow-
ing iterations of the algorithm. In this sense the amount of pheromone τij(t)
represents the learned desirability of choosing next city j when an ant is at
city i.

The best performing ACO algorithms for the TSP improve the tours con-
structed by the ants applying a local search algorithm [17, 49, 53]. Hence,
these algorithms are in fact hybrid algorithms combining probabilistic solu-
tion construction by a colony of ants with standard local search algorithms.
Such a combination may be very useful since constructive algorithms for the
TSP often result in a relatively poor solution quality compared to local search
algorithms [29]. Yet, it has been noted that repeating local search from ran-
domly generated initial solutions results in a considerable gap to the optimal
solution [29]. Consequently, on the one hand local search algorithms may
improve the tours constructed by the ants, while on the other hand the ants
may guide the local search by constructing promising initial solutions. The
initial solutions generated by the ants are promising because the ants use with
higher probability those arcs which, according to the search experience, have
more often been contained in shorter tours.

In general, all the ACO algorithms for the TSP follow a specific algorith-
mic scheme, which is outlined in Figure 1.2. After the initialization of the
pheromone trails and some parameters a main loop is repeated until a termi-
nation condition, which may be a certain number of solution constructions or
a given CPU-time limit, is met. In the main loop, first, the ants construct
feasible tours, then the generated tours are improved by applying local search,
and finally the pheromone trails are updated. In fact, most of the best per-
forming ACO algorithms for NP-hard combinatorial optimization problems
follow this algorithmic scheme [17, 23, 34, 49, 53]. It must be noted that
the ACO meta-heuristic [15, 16] is more general than the algorithmic scheme
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given above. For example, the later does not capture the application of ACO
algorithms to network routing problems.

procedure ACO algorithm for TSPs
Set parameters, initialize pheromone trails
while (termination condition not met) do

ConstructSolutions
ApplyLocalSearch % optional
UpdateTrails

end
end ACO algorithm for TSPs

Fig. 1.2 Algorithmic skeleton for ACO algorithm applied to the TSP.

1.3.2 Ant System

When Ant System (AS) was first introduced, it was applied to the TSP.
Initially, three different versions of AS were proposed [14, 9, 18]; these were
called ant-density , ant-quantity , and ant-cycle. While in ant-density and ant-
quantity the ants updated the pheromone directly after a move from a city to
an adjacent one, in ant-cycle the pheromone update was only done after all
the ants had constructed the tours and the amount of pheromone deposited
by each ant was set to be a function of the tour quality. Because ant-cycle
performed much better than the other two variants, here we only present the
ant-cycle algorithm, referring to it as Ant System in the following. In AS each
of m (artificial) ants builds a solution (tour) of the TSP, as described before.
In AS no local search is applied. (Obviously, it would be straightforward to
add local search to AS.)

Tour construction. Initially, each ant is put on some randomly chosen city.
At each construction step, ant k applies a probabilistic action choice rule. In
particular, the probability with which ant k, currently at city i, chooses to go
to city j at the tth iteration of the algorithm is:

pkij(t) =
[τij(t)]α · [ηij ]β∑
l∈Nk

i
[τil(t)]α · [ηil]β

if j ∈ N k
i (1.1)

where ηij = 1/dij is an a priori available heuristic value, α and β are two
parameters which determine the relative influence of the pheromone trail and
the heuristic information, and N k

i is the feasible neighborhood of ant k, that
is, the set of cities which ant k has not yet visited. The role of the parameters
α and β is the following. If α = 0, the closest cities are more likely to be
selected: this corresponds to a classical stochastic greedy algorithm (with
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multiple starting points since ants are initially randomly distributed on the
cities). If β = 0, only pheromone amplification is at work: this method will
lead to the rapid emergence of a stagnation situation with the corresponding
generation of tours which, in general, are strongly suboptimal [14]. Search
stagnation is defined in [19] as the situation where all the ants follow the
same path and construct the same solution. Hence, a tradeoff between the
influence of the heuristic information and the pheromone trails exists.

Pheromone update. After all ants have constructed their tours, the phero-
mone trails are updated. This is done by first lowering the pheromone strength
on all arcs by a constant factor and then allowing each ant to add pheromone
on the arcs it has visited:

τij(t+ 1) = (1− ρ) · τij(t) +
m∑
k=1

∆τkij(t) (1.2)

where 0 < ρ ≤ 1 is the pheromone trail evaporation. The parameter ρ is used
to avoid unlimited accumulation of the pheromone trails and it enables the
algorithm to “forget” previously done bad decisions. If an arc is not chosen by
the ants, its associated pheromone strength decreases exponentially. ∆τkij(t)
is the amount of pheromone ant k puts on the arcs it has visited; it is defined
as follows:

∆τkij(t) =

 1/Lk(t) if arc (i, j) is used by ant k

0 otherwise
(1.3)

where Lk(t) is the length of the kth ant’s tour. By Equation 1.3, the better
the ant’s tour is, the more pheromone is received by arcs belonging to the
tour. In general, arcs which are used by many ants and which are contained
in shorter tours will receive more pheromone and therefore are also more likely
to be chosen in future iterations of the algorithm.

AS has been compared with other general purpose heuristics on some rel-
atively small TSP instances with maximally 75 cities. Despite encouraging
initial results, for larger instances AS gives a rather poor solution quality.
Therefore, a substantial amount of recent research in ACO has focused on
improvements over AS. A first improvement on the initial form of AS, called
the elitist strategy for Ant System, has been introduced in [14, 19]. The idea is
to give a strong additional reinforcement to the arcs belonging to the best tour
found since the start of the algorithm; this tour is denoted as T gb (global-best
tour) in the following. This is achieved by adding to the arcs of tour T gb a
quantity e · 1/Lgb, where e is the number of elitist ants, when the pheromone
trails are updated according to Equation 1.2. Some limited results presented
in [14, 19] suggest that the use of the elitist strategy with an appropriate
number of elitist ants allows AS: (i) to find better tours, and (ii) to find them
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earlier in the run. Yet, for too many elitist ants the search concentrates early
around suboptimal solutions leading to an early stagnation of the search.

1.3.3 Ant Colony System

Ant Colony System (ACS) has been introduced in [17, 22] to improve the
performance of AS. ACS is based on an earlier algorithm proposed by the
same authors, called Ant-Q, which exploited connections of ACO algorithms
with Q-learning [55], a specific type of reinforcement learning algorithm. ACS
and Ant-Q differ only in one specific aspect, which is described below. We
concentrate on ACS, since it is somewhat simpler and it is preferred by its
authors.

ACS differs in three main aspects from ant system. First, ACS uses a more
aggressive action choice rule than AS. Second, the pheromone is added only
to arcs belonging to the global-best solution. Third, each time an ant uses an
arc (i, j) to move from city i to city j it removes some pheromone from the
arc. In the following we present these modifications in more detail.

Tour construction. In ACS ants choose the next city using the pseudo-
random-proportional action choice rule: When located at city i, ant k moves,
with probability q0, to city l for which τil(t) · [ηil]β is maximal, that is, with
probability q0 the best possible move as indicated by the learned pheromone
trails and the heuristic information is made (exploitation of learned knowl-
edge). With probability (1− q0) an ant performs a biased exploration of the
arcs according to Equation 1.1.

Global pheromone trail update. In ACS only the global best ant is allowed
to add pheromone after each iteration. Thus, the update according to Equa-
tion 1.2 is modified to

τij(t+ 1) = (1− ρ) · τij(t) + ρ ·∆τgbij (t), (1.4)

where ∆τgbij (t) = 1/Lgb. It is important to note that the trail update only
applies to the arcs of the global-best tour, not to all the arcs like in AS.
The parameter ρ again represents the pheromone evaporation. In ACS only
the global best solution receives feedback. Initially, also using the iteration
best solution was considered for the pheromone update. Although for smaller
TSP instances the difference in solution quality between using the global-best
solution or the iteration-best solution is minimal, for larger instances the use
of the global-best tour gives by far better results.

Local pheromone trail update. Additionally to the global updating rule, in
ACS the ants use a local update rule that they apply immediately after having
crossed an arc during the tour construction:
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τij = (1− ξ) · τij + ξ · τ0 (1.5)

where ξ, 0 < ξ < 1, and τ0 are two parameters. The effect of the local
updating rule is to make an already chosen arc less desirable for a following
ant. In this way the exploration of not yet visited arcs is increased.

The only difference between ACS and Ant-Q is the definition of the term
τ0. Ant-Q uses a formula for τ0 which was inspired by Q-learning [55]. In
Ant-Q the term τ0 corresponds to the discounted evaluation of the next state
and is set to γ ·maxl∈Nk

j
{τjl} [21]. It was found that replacing the discounted

evaluation of the next state by a small constant resulted in approximately the
same performance and therefore, due to its simplicity, ACS is preferably used.

1.3.4 MAX–MIN Ant System

MAX–MIN Ant System (MMAS) [52, 51] is a direct improvement over AS.
The solutions in MMAS are constructed in exactly the same way as in AS,
that is, the selection probabilities are calculated as in Equation 1.1. Addition-
ally, in [53] a variant ofMMAS is considered which uses the pseudo-random-
proportional action choice rule of ACS. Using that action choice rule, very
good solutions could be found faster, but the final solution quality achieved
was worse.

The main modifications introduced byMMAS with respect to AS are the
following. First, to exploit the best solutions found, after each iteration only
one ant (like in ACS) is allowed to add pheromone. Second, to avoid search
stagnation, the allowed range of the pheromone trail strengths is limited to
the interval [τmin, τmax], that is, ∀τij τmin ≤ τij ≤ τmax. Last, the pheromone
trails are initialized to the upper trail limit, which causes a higher exploration
at the start of the algorithm [49].

Update of pheromone trails. After all ants have constructed a solution, the
pheromone trails are updated according to

τij(t+ 1) = (1− ρ) · τij(t) + ∆τbest
ij (1.6)

where ∆τbest
ij = 1/Lbest. The ant which is allowed to add pheromone may be

the iteration-best solution T ib, or the global-best solution T gb. Hence, if spe-
cific arcs are often used in the best solutions, they will receive a larger amount
of pheromone. Experimental results have shown that the best performance is
obtained by gradually increasing the frequency of choosing T gb for the trail
update [49].

Trail limits. In MMAS lower and upper limits on the possible pheromone
strengths on any arc are imposed to avoid search stagnation. In particular,
the imposed trail limits have the effect of indirectly limiting the probability
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pij of selecting a city j when an ant is in city i to an interval [pmin, pmax],
with 0 < pmin ≤ pij ≤ pmax ≤ 1. Only if an ant has one single possible choice
for the next city, then pmin = pmax = 1. Experimental results [49] suggest
that the lower trail limits used inMMAS are the more important ones, since
the maximum possible trail strength on arcs is limited in the long run due to
pheromone evaporation.

Trail initialization. The pheromone trails inMMAS are initialized to their
upper pheromone trail limits. Doing so the exploration of tours at the start of
the algorithms is increased, since the relative differences between the phero-
mone trail strengths are less pronounced.

1.3.5 Rank-Based Version of Ant System

Another improvement over Ant System is the rank-based version of Ant Sys-
tem (ASrank) [7]. In ASrank, always the global-best tour is used to update the
pheromone trails, similar to the elitist strategy of AS. Additionally, a number
of the best ants of the current iteration are allowed to add pheromone. To
this aim the ants are sorted by tour length (L1(t) ≤ L2(t) ≤ . . . ≤ Lm(t)),
and the quantity of pheromone an ant may deposit is weighted according to
the rank r of the ant. Only the (w− 1) best ants of each iteration are allowed
to deposit pheromone. The global best solution, which gives the strongest
feedback, is given weight w. The rth best ant of the current iteration con-
tributes to pheromone updating with a weight given by max{0, w− r}. Thus
the modified update rule is:

τij(t+ 1) = (1− ρ) · τij(t) +
w−1∑
r=1

(w − r) ·∆τ rij(t) + w ·∆τgbij (t), (1.7)

where ∆τ rij(t) = 1/Lr(t) and ∆τgbij (t) = 1/Lgb.
In [7] ASrank has been compared to AS, AS with elitist strategy, to a

genetic algorithm, and to a simulated annealing algorithm. For the larger
TSP instances (the largest instance considered had 132 cities) the AS-based
approaches showed to be superior to the genetic algorithm and the simulated
annealing procedure. Among the AS-based algorithms, both, ASrank and
elitist AS performed significantly better than AS, with ASrank giving slightly
better results than elitist AS.

1.3.6 Synopsis

Obviously, the proposed ACO algorithms for the TSP share many common
features. Ant System can mainly be seen as a first study to demonstrate the
viability of ACO algorithms to attack NP-hard combinatorial optimization
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problems, but its performance compared to other approaches is rather poor.
Therefore, several ACO algorithms have been proposed which strongly in-
crease the performance of Ant System. The main common feature among the
proposed improvements is that they exploit more strongly the best solutions
found during the ants’ search. This is typically achieved by giving a higher
weight to better solutions for the pheromone update and often allowing to
deposit additional pheromone trail on the arcs of the global-best solution. In
particular, in elitist AS and in ASrank the global best solution adds a strong
additional reinforcement (in ASrank additionally some of the best ants of an
iteration add pheromone); in ACS and MMAS only one single ant, either
the global-best or the iteration-best ant, deposit pheromone. Obviously, by
exploiting the best solutions more strongly, arcs contained in the best tours
receive a strong additional feedback and therefore are chosen with higher
probability in subsequent algorithm iterations.

Yet, a problem associated with the stronger exploitation of search experi-
ence may be search stagnation, that is, the situation in which all ants follow
the same path. Hence, some of the proposed ACO algorithms, in particular
ACS and MMAS, introduce additional features to avoid search stagnation.
In ACS stagnation is avoided by the local updating rule which decreases the
amount of pheromone on an arc and makes this arc less and less attractive for
following ants. In this way the exploration of not yet visited arcs is favored.
In MMAS search stagnation is avoided by imposing limits on the allowed
pheromone strength associated with an arc. Hence, since the pheromone trail
limits influence directly the selection probabilities given by Equation 1.1, the
selection probability for an arc cannot fall below some lower value. By appro-
priate choices for the trail limits, it is very unlikely that all ants follow the
same path.

All proposed improvements over AS show significantly better performance
on the TSP [19, 7, 21, 49] and they all make use of a stronger exploitation of
the best solutions found by the ants. It is therefore reasonable to think that
the concentration of the search around the best solutions found during the
search is the key to the improved performance shown by these algorithms.

The characteristics of the TSP search space may explain this phenomenon.
In particular, recent research has addressed the issue of the correlation be-
tween the solution cost and the distance from very good or from the optimal
solution [4, 3] (an obvious distance measure for the TSP is given by the num-
ber of different arcs in two tours). Similarly, the Fitness-Distance Correlation
(FDC) has been introduced in the context of genetic algorithm research [30].
The FDC measures the correlation between the distance of a solution from
the closest optimal solution and the solution costs. Plots of the solution cost
versus the distance from optimal solutions have been particularly useful to
visualize the correlation. In Figure 1.3 we present such a plot for a randomly
generated Euclidean TSP instance with 500 cities. The plot is based on 5000
local optima which have been obtained by a 3-opt local search algorithm (see
next section). The x-axis gives the distance from the optimal solution, while
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on the y-axis the tour length is given. Obviously, a significant correlation
between the solution cost and the distance from the global optimum exists
(the correlation coefficient is 0.52); the closer a local optimum is to the known
global optimum, the better, on average, is the solution.

The task of algorithms like ACO algorithms is to guide the search towards
regions of the search space containing high quality solutions and, possibly, the
global optimum. Clearly, the notion of search space region is tightly coupled
to the notion of distance, defined by an appropriate distance measure, between
solutions. The most important guiding mechanism of ACO algorithms is the
objective function value of solutions; the better a solution the more feedback it
is allowed to give. This guiding mechanism relies on the general intuition that
the better a solution is, the more likely it is to find even better solutions close
to it. The fitness-distance correlation describes this intuitive relation between
the fitness (cost) of solutions and their distance from very good solutions or
from the global best solution. Since for the TSP such a correlation obviously
exists, it appears to be a good idea to concentrate the search around the best
solutions found.
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Fig. 1.3 Fitness distance plot for a Euclidean TSP instances with 500 cities dis-
tributed randomly according to an uniform distribution on a square. The plot is based
on 5000 3-opt tours. The distance from the optimal tour is measured by the number
of different arcs.
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1.4 LOCAL SEARCH FOR THE TSP

Local Search starts from some initial assignment and repeatedly tries to im-
prove the current assignment by local changes. If in the neighborhood of the
current tour T a better tour T ′ is found, it replaces the current tour and the
local search is continued from T ′. The most widely known iterative improve-
ment algorithms for the TSP are certainly 2-opt [12] and 3-opt [32]. They
proceed by systematically testing whether the current tour can be improved
by replacing 2 or at most 3 arcs, respectively. Both local search algorithms
are widely studied in the literature [45, 29] and have been shown empirically
to yield good solution quality. Local search algorithms using k > 3 arcs to
be exchanged are not used commonly, due to the high computation times in-
volved and the low additional increase in solution quality. Already for 2-opt
and 3-opt a straightforward implementation would require O(n2) or O(n3)
exchanges to be examined. This is clearly infeasible when trying to solve
instances with several hundreds of cities in reasonable computation time.

Fortunately, there exist quite a few speed-up techniques [1, 45, 29] achiev-
ing, in practice, run-times which grow sub-quadratically. This effect is ob-
tained by examining only a small part of the whole neighborhood. We use
three techniques to reduce the run-time of 2-opt and 3-opt implementa-
tions. One, consists in restricting the set of moves which are examined to
those contained in a candidate list of the nearest neighbors ordered accord-
ing to nondecreasing distances [1, 33, 45]. Using candidate lists, for a given
starting node i we only consider moves which add a new arc between i and
one of the nodes in its candidate list. Hence, by using a neighborhood list of
bounded length, an improving move can be found in constant time.

An additional speed-up is achieved by performing a fixed radius nearest
neighbor search [1]. For 2-opt at least one newly introduced arc has to be
shorter than any of the two removed arcs (i, j) and (k, l). Due to symmetry
reasons, it suffices to check whether dij > dik. A similar argument also holds
for 3-opt [1].

To yield a further reduction in run-time we use don’t look bits associated
with each node. Initially, all don’t look bits are turned off (set to 0). If for a
node no improving move can be found, the don’t look bit is turned on (set to
1) and the node is not considered as a starting node for finding an improving
move in the next iteration. In case an arc incident to a node is changed by a
move, the node’s don’t look bit is turned off again.

For asymmetric TSPs, 2-opt is not directly applicable because one part of
the tour has to be traversed in the opposite direction. In case a sub-tour is
reversed, the length of this sub-tour has to be computed from scratch. Yet,
one of the three possible 3-opt moves does not lead to a reversal of a sub-tour.
We call reduced 3-opt this special form of 3-opt. The implementation of
reduced 3-opt uses the same speed-up techniques as described before.

The local search algorithm producing the highest quality solutions for sym-
metric TSPs is the Lin-Kernighan heuristic (LK) [33]. The Lin-Kernighan
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heuristic considers in each step a variable number of arcs to be exchanged.
Yet, a disadvantage of the LK heuristic is that its implementation is more
difficult than that of 2-opt and 3-opt, and careful fine-tuning is necessary to
get it to run fast and produce high quality solutions [45, 29].

1.5 EXPERIMENTAL RESULTS

In this section we present some computational results obtained withMMAS
on some symmetric and asymmetric TSP instances from TSPLIB. Since we
applyMMAS to larger TSP instances with several hundreds of cities, we first
present two techniques which decrease the complexity of the ACO algorithm
iterations.

1.5.1 Additional techniques

Candidate lists. Each tour construction has complexity O(n2), which would
lead to substantial run-times for larger instances. A standard technique used
when solving large TSPs is the use of candidate lists [29, 38, 45]. Typically,
a candidate list comprises a fixed number of nearest neighbors for each city
in order of nondecreasing distances. The use of candidate lists for the tour
construction by the ants has first been proposed for the application of ACS
[22] to the TSP. When constructing a tour an ant chooses the next city among
those of the candidate list, if possible. Only if all the members of the candidate
list of a city have already been visited, one of the remaining cities is chosen.
Note that using nearest neighbor lists is a reasonable approach when trying
to solve TSPs. For example, in many TSP instances the optimal tour can be
found within a surprisingly low number of nearest neighbors. For example,
an optimal solution is found for instance pcb442.tsp, which has 442 cities,
within a subgraph of the 6 nearest neighbors and for instance pr2392.tsp
(2392 cities) within a subgraph of the 8 nearest neighbors [45].

Fastening the trail update. When applying ACO algorithms to the TSP,
pheromone trails are stored in a matrix with O(n2) entries (one for each arc).
All the entries of this matrix should be updated at every iteration because
of pheromone trail evaporation implemented by Formula 1.2 (the update of
the whole trail matrix does not happen in ACS). Obviously, this is a very
expensive operation if large TSP instances should be solved. To avoid this,
in MMAS pheromone evaporation is applied only to arcs connecting a city
i to cities belonging to i’s candidate list. Hence, the pheromone trails can be
updated in O(n).
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1.5.2 Parameter settings

Suitable parameter settings were determined in some preliminary experiments.
We use m = 25 ants (all ants apply a local search to their solution), ρ = 0.2,
α = 1, and β = 2. During the tour construction the ants use a candidate
list of size 20. The most important aspect concerning the allowed interval of
the trail values is that they have to be in some reasonable interval around
the expected amount of pheromone deposited by the trail update. Hence, the
interval for the allowed values of the pheromone trail strength is determined
to reflect this intuition. We set τmax = 1

ρ · 1
T gb

, where T gb is the tour length of
the global best tour found (this setting corresponds to the maximum possible
trail level for longer runs). The lower trail limit is chosen as τmin = τmax/2 ·n,
where n is the number of cities of an instance.

As indicated in Section 1.3.4, the best results with MMAS are obtained
when the frequency with which the global-best solution is used to update
pheromone trails increases at run-time. To do so, we apply a specific schedule
to alternate the pheromone trail update between T gb and T ib. Let ugb indicate
that every ugb iterations T gb is chosen to deposit pheromone. In the first 25
iterations only T ib is used to update the trails; we set ugb to 5 if 25 < t < 75
(where t is the iteration counter), to 3 if 75 < t < 125 to 3 (where t is the
iteration counter), to 2 if 125 < t < 250 to 2, and from then on to 1. By
shifting the emphasis from the iteration-best to the global-best solution for
the trail update, we in fact are shifting from a stronger exploration of the
search space to an exploitation of the best solution found so far. Additionally,
we reinitialize the pheromone trails to τmax if the pheromone trail strengths
on almost all arcs not contained in T gb is very close to τmin (as indicated by
the average branching factor [21]). After a reinitialization of the pheromone
trails, the schedule is applied from the start again.

For the local search we use 3-opt, enhanced by the speed-up techniques
described in Section 1.4. The size of the candidate list was set to 40 for the
local search, following recommendations of [29]. Initially, all the don’t look
bits are turned off.

1.5.3 Experimental results for symmetric TSPs

In this section we report on experimental results obtained with MMAS, on
some symmetric TSP instances from TSPLIB. Most of the instances were
proposed as benchmark instances in the First International Contest on Evo-
lutionary Computation (1st ICEO) [2]. We compare the computational re-
sults obtained with MMAS to a standard iterated local search algorithm
[38, 37, 29] for the TSP using the same 3-opt implementation and the same
maximal computation time tmax for each trial as MMAS.

Iterated local search (ILS) [38, 37, 29] is well known to be among the
best algorithms for the TSP. In ILS a local search is applied iteratively to
starting solutions which are obtained by mutations of a previously found local
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optimal solution, typically the best solution found so far. In particular, the
ILS algorithm we use for comparison first locally optimizes an initial tour
produced by the nearest neighbor heuristic. Then it applies iteratively 3-opt
to initial solutions which are obtained by the application of random, sequential
4-opt moves (called double-bridge moves in [38]) to the best solution found
so far. The runs are performed on a Sun UltraSparc II Workstation with
two UltraSparc I 167MHz processors with 0.5MB external cache. Due to the
sequential implementation of the algorithm only one processor is used.

The computational results show that MMAS is able to find very high
quality solutions for all instances and on most instances MMAS achieves a
better average solution quality than ILS. This result is very encouraging, since
ILS is cited in the literature as a very good algorithm for the TSP [37, 29].

Table 1.1 Comparison of MMAS with iterated 3-opt (ILS) applied to some
symmetric TSP instances (available in TSPLIB). Given are the instance name (the
number in the name gives the problem dimension, that is, the number of cities), the
algorithm used, the best solution, the average solution quality (its percentage devi-
ation from the optimum in parentheses), the worst solution generated, the average
time tavg to find the best solution in a run, and the maximally allowed computation
time tmax. Averages are taken over 25 trials for n < 1000, over 10 trials on the
larger instances. Best average results are in boldface.

Instance Algorithm Best Average Worst tavg tmax

d198
MMAS

ILS
15780
15780

15780.4 (0.0)
15780.2 (0.0)

15784
15784

61.7
18.6

170

lin318
MMAS

ILS
42029
42029

42029.0 (0.0)
42064.6 (0.09)

42029
42163

94.2
55.6

450

pcb442
MMAS

ILS
50778
50778

50911.2 (0.26)
50917.7 (0.28)

51047
51054

308.9
180.7

600

att532
MMAS

ILS
27686
27686

27707.9 (0.08)
27709.7 (0.09)

27756
27759

387.3
436.2

1250

rat783
MMAS

ILS
8806
8806

8814.4 (0.10)
8828.4 (0.34)

8837
8850

965.2
1395.2

2100

u1060
MMAS

ILS
224455
224152

224853.5 (0.34)
224408.4 (0.14)

225131
224743

2577.6
1210.4

3600

pcb1173
MMAS

ILS
56896
56897

56956.0 (0.11)
57029.5 (0.24)

57120
57251

3219.5
1892.0

5400

d1291
MMAS

ILS
50801
50825

50821.6 (0.04)
50875.7 (0.15)

50838
50926

1894.4
1102.9

5400

fl1577
MMAS

ILS
22286

22311.0
22311.0 (0.28)

22394.6 (0.65)
22358
22505

3001.8
3447.6

7200
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Table 1.2 Comparison of MMAS with iterated 3-opt (ILS) applied to some
asymmetric TSP instances (available in TSPLIB). Given are the instance name (the
number in the name gives the problem dimension, that is, the number of cities;
an exception is instance kro124p with 100 cities), the algorithm used, the best
solution, the average solution quality (its percentage deviation from the optimum
in parentheses), the worst solution generated, the average time tavg to find the best
solution in a run, and the maximally allowed computation time tmax. Averages are
taken at least over 25 trials. Best average results are in boldface.

Instance Algorithm Best Average Worst tavg tmax

ry48p
MMAS

ILS
14422
14422

14422.0 (0.0)
14425.6 (0.03)

14422
14507

2.3
24.6

120

ft70
MMAS

ILS
38673
38673

38673.0 (0.0)
38687.9 (0.04)

38673
38707

37.2
3.1

300

kro124p
MMAS

ILS
36230
36230

36230.0 (0.0)
36542.5 (0.94)

36230
37114

7.3
23.4

300

ftv170
MMAS

ILS
2755
2755

2755.0 (0.0)
2756.8 (0.07)

2755
2764

56.2
21.7

600

1.5.4 Experimental results for asymmetric TSPs

We applied the same algorithms also to the more general asymmetric TSP; the
computational results are given in Table 1.2. On the asymmetric instances the
performance difference betweenMMAS and ILS becomes more pronounced.
While MMAS solves all instances in all runs to optimality, ILS gets stuck
at suboptimal solutions in all the four instances tested. Among the instances
tested, ry48p and kro124p are easily solved by MMAS, while on these the
relatively poor performance of ILS is most striking. Only the two instances
ft70 and ftv170 are somewhat harder. Computational results from other
researchers suggest that in particular instance ft70 is, considering its small
size, relatively hard to solve [39, 54, 17].

1.5.5 Related work on the TSP

Because the TSP is a standard benchmark problem for meta-heuristic algo-
rithms, it has received considerable attention from the research community.
Here, we only mention some of the most recent work, for a discussion of earlier
work we refer to the overview article by Johnson and McGeoch [29].

Currently, the iterated LK heuristic (ILK), that is, ILS using the LK heuris-
tic for the local search, is the most efficient approach to symmetric TSPs for
short to medium run-times [29]. Recently, several new approaches and im-
proved implementations have been presented which appear to perform as well
or better than ILK for larger run-times. Among these algorithms we find the
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genetic local search approach of Merz and Freisleben [20, 39], an improved im-
plementation of ASPARAGOS (one of the first genetic local search approaches
to the TSP) of Gorges-Schleuter [27], a new genetic local search approach us-
ing a repair-based crossover operator and brood selection by Walters [54], a
genetic algorithm using a specialized crossover operator, called edge assem-
bly crossover, due to Nagata and Kobayashi [42], and finally a specialized
local search algorithm for the TSP called Iterative Partial Transcription by
Möbius et.al. [41]. Some of these algorithms [39, 41, 42, 54] achieve better
computational results than the ones presented here. For example, the genetic
local search approach presented in [39], which uses the LK heuristic for the
local search, reaches on average a solution of 8806.2 on instance rat783 in 424
seconds on a DEC Alpha station 255 MHz. Yet, the computational results
withMMAS also would benefit from the application of a more powerful local
search algorithm like the LK heuristic. In fact, some initial experimental re-
sults presented in [49] confirm this conjecture, but still the computation times
are relatively high compared to, for example, the results given in [39].

Applied to asymmetric TSP instances, our computational results with re-
spect to solution quality compare more favorably to these approaches. For
example, the solution quality we obtain with MMAS is better than that of
the genetic local search approach of [39] and the same as reported in [27, 54],
but at the cost of higher run-times.

1.6 OTHER APPLICATIONS OF ACO ALGORITHMS

Research on ACO algorithms, and on ant algorithms more in general, has led
to a number of other successful applications to combinatorial optimization
problems. We call ant algorithm those algorithms that take inspiration by
some aspects of social insects behavior. In general, ant algorithms are char-
acterized by being multi-agent systems using only local information to make
stochastic decisions and interacting with each other via a form of indirect com-
munication called stigmergy [28]. A general introduction to ant algorithms
can be found in Bonabeau, Dorigo, and Theraulaz [5]. In this paper we limit
our attention to ACO algorithms, a particular class of ant algorithms which
follow the meta-heuristic described in Dorigo, Di Caro, and Gambardella [16]
and Dorigo and Di Caro [15].

The most widely studied problems using ACO algorithms are the traveling
salesman problem and the quadratic assignment problem (QAP). Applications
of ACO algorithms to the TSP have been reviewed in this paper. As in the
TSP case, the first application of an ACO algorithm to the QAP has been that
of Ant System [36]. In the last two years several ant and ACO algorithms
for the QAP have been presented by Maniezzo and Colorni [35], Maniezzo
[34], Gambardella, Taillard, and Dorigo [25], and Stützle [48]. Currently,
ant algorithms are among the best algorithms for attacking real-life QAP
instances. We refer to [50] for an overview of these approaches.
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The sequential ordering problem is closely related to the asymmetric TSP,
but additional precedence constraints between the nodes have to be satisfied.
Gambardella and Dorigo have tackled this problem by an extension of ACS
enhanced by a local search algorithm [23]. They obtained excellent results and
were able to improve the best known solutions for many benchmark instances.

A first application of AS to the job-shop scheduling problem has been
presented in [10]. Despite showing the viability of the approach, the com-
putational results are not competitive with state-of-the-art algorithms. More
recently,MMAS has been applied to the flow shop scheduling problem (FSP)
in [47]. The computational results have shown thatMMAS outperforms ear-
lier proposed Simulated Annealing algorithms and performs comparably to
Tabu Search algorithms applied to the FSP.

Costa and Herz [11] have proposed an extension of AS to assignment type
problems and present an application of their approach to the graph coloring
problem obtaining results comparable to those obtained by other heuristic
approaches.

Applications of ASrank to vehicle routing problems are presented by Bulln-
heimer, Hartl, and Strauss [8, 6]. They obtained good computational results
for standard benchmark instances, slightly worse than the best performing
Tabu Search algorithms. A recent application by Gambardella, Taillard, and
Agazzi to vehicle routing problems with time windows, improves the best
known solutions for some benchmark instances [24].

A further application of AS to the shortest common supersequence problem
has been proposed by Michel and Middendorf [40]. They introduce the novel
aspect of using a lookahead function during the solution construction by the
ants. Additionally, they present a parallel implementation of their algorithm
based on an island model often also used in parallel genetic algorithms.
MMAS has recently been applied to the generalized assignment problem

by Ramalhinho Lorençou and Serra [43], obtaining very promising compu-
tational results. In particular, their algorithm is shown to find optimal and
near optimal solutions faster than a GRASP algorithm which was used for
comparison.

Applications of ACO algorithms to telecommunication networks, in partic-
ular to network routing problems, have recently received a strongly increased
interest in the ACO community (see, for example, Schoonderwoerd et al. [46]
and Di Caro and Dorigo [13]). The application of ACO algorithms to net-
work optimization problems is appealing, since these problems have charac-
teristics like distributed information, non-stationary stochastic dynamics, and
asynchronous evolution of the network status which well match some of the
properties of ACO algorithms like the use of local information to generate so-
lutions, indirect communication via the pheromone trails and stochastic state
transitions. A detailed overview of routing applications of ACO algorithms
can be found in Dorigo, Di Caro and Gambardella [16].
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28. P. P. Grassé. La Reconstruction du Nid et les Coordinations Interindi-
viduelles chez bellicositermes natalensis et cubitermes sp. La Théorie de la
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