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Abstract—A new technique for adaptation of fuzzy membership
functions in a fuzzy inference system is proposed. Thepointer
technique relies upon the isolation of the specific membership
functions that contributed to the final decision, followed by the
updating of these functions’ parameters using steepest descent.
The error measure used is thus backpropagated from output
to input, through the min and max operators used during the
inference stage. This occurs because the operations of min and
max are continuous differentiable functions and, therefore, can
be placed in a chain of partial derivatives for steepest descent
backpropagation adaptation. Interestingly, the partials of min
and max act as “pointers” with the result that only the function
that gave rise to the min or max is adapted; the others are not. To
illustrate, let � = max [�1; �2; � � � ; �N ]. Then @�=@�n = 1 when
�n is the maximum and is otherwise zero. We apply this property
to the fine tuning of membership functions of fuzzy min–max
decision processes and illustrate with an estimation example. The
adaptation process can reveal the need for reducing the number of
membership functions. Under the assumption that the inference
surface is in some sense smooth, the process of adaptation can
reveal overdetermination of the fuzzy system in two ways. First,
if two membership functions come sufficiently close to each other,
they can be fused into a single membership function. Second, if
a membership function becomes too narrow, it can be deleted.
In both cases, the number of fuzzyIF–THEN rules is reduced. In
certain cases, the overall performance of the fuzzy system can be
improved by this adaptive pruning.

Index Terms—Adaptive estimation, adaptive systems, fuzzy
control, fuzzy sets, fuzzy systems, intelligent systems, knowledge-
based systems.

I. INTRODUCTION

M ODERN decision theory has been very successful in
coping with problems where the system and its struc-

ture have been well defined; notably in cases where good infor-

Manuscript received February 8, 1996; revised August 16, 1996. This work
was supported in part by Boeing Computer Services and the Royalty Research
Fund at the University of Washington. Earlier versions of this paper were
published inProc. Int. Joint Conf. Neural Networks,Beijing, China, 1992
andProc. 2nd IEEE Int. Conf. Fuzzy Systems,San Francisco, CA, Mar. 1993.
This paper was recommended by Associate Editor S. Kiaei.

P. Arabshahi is with the Jet Propulsion Laboratory, Pasadena, CA 91109
USA (e-mail: payman@jpl.nasa.gov).

R. J. Marks, II and B. G. Song are with the Department of Electrical
Engineering, University of Washington, Seattle, WA 98195 USA (e-mail:
marks@u.washington.edu; sbg@nelson.ee.washington.edu).

S. Oh is with Neopath Inc., Redmond, WA 98052 USA (e-mail:
seho@neopath.com).

T. P. Caudell is with the Department of Electrical and Computer
Engineering, University of New Mexico, Albuquerque, NM 87131 USA
(e-mail: tpc@eece.unm.edu).

J. J. Choi is with Boeing Computer Services, Research and Technology,
Seattle, WA 98124 USA (e-mail: jai@atc.boeing.com).

Publisher Item Identifier S 1057-7130(97)06582-8.

mation about the environment and an adequate mathematical
model of the system under control have been available. This
remarkable success in the analysis ofmechanisticsystems;
i.e., systems governed by difference, differential, or integral
equations, has perhaps partly contributed to the belief that such
analysis techniques can be applied equally well to complex
human-centered systems. In his now classic paper on the
foundations of fuzzy systems and decision processes [1],
Zadeh takes issue with this point of view in his statement
of the principle of incompatibility, stating that:

As the complexity of a system increases, our ability to
make precise and yet significant statements about its
behavior diminishes until a threshold is reached beyond
which precision and significance (or relevance) become
almost mutually exclusive characteristics.

Consequently, over the years a number of alternative control
schemes, for instance techniques employing neural networks or
fuzzy sets, have been proposed and implemented [2], [3]. We
provide a brief discussion of relevant topics of fuzzy systems
and control here to motivate our approach.

A. Fuzzy Sets

A fuzzy subset of a universal set is characterized by
a membership function which assigns a real number
in the closed interval [0, 1] to every element of [4]. This
number represents the grade of membership of element

in set , with larger values of it denoting higher degrees
of set membership.1

For example, we can define a possible membership function
for the fuzzy set of real numbers near zero in the following
way:

(1)

The membership grade of each real number in this fuzzy set
thus represents the degree to which that number is close to 0.

We define afuzzy variableas a variable that can be described
by a number of different fuzzy sets. For instance, if we have a
fuzzy variable denoted byheight, then it could be described as
tall, very tall, not tall, etc. Note that the values thatheightcan
take on can be crisp (well defined and fixed); such as when
we say that a person’s height is 2 m. However, a person with
that height could be described astall in a fuzzy way.

1A nonfuzzy (crisp) set can, therefore, be viewed as a restricted case of a
fuzzy set, where the “membership” function�A maps elements of the universe
of discourse to theset {0, 1}.

1057–7130/97$10.00 1997 IEEE
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Fig. 1. Block diagram of a general fuzzy inference system. The error value
from a given performance measure can be fed back and used to adapt all
or one of the following: a) Membership function shapes and cardinality; b)
and d)AND/OR aggregation operators; c) the rule base; e) the defuzzification
technique.

Various set operations can be defined on fuzzy sets, just
as the crisp set case. For instance, it is common to denote
intersection of two fuzzy sets by the “minimum” operation
applied to the two corresponding memberships functions:2

(2)

Similarly, the union of two fuzzy sets can be represented by
the “maximum” operation. These operations are not unique.
Other operators for performing fuzzy intersection, union, and
complementation exist [5]. However, the and opera-
tions are special in the sense that they are theonly continuous
and idempotent fuzzy set intersection and union operators,
respectively [5].

B. Fuzzy Inference

Fuzzy inference is based on the concept of thefuzzy
conditional statement: IF THEN , or, for short ,
where the antecedent and the consequent are fuzzy sets.

A general fuzzy inference system consists of three parts
(see Fig. 1). A crisp input is fuzzified by input membership
functions and processed by a fuzzy logic interpretation of a set
of fuzzy rules. This is followed by the defuzzification stage
resulting in a crisp output. The rule base is typically crafted
by an expert; though self organizing procedures have been
suggested [6]–[15].

There are a number of different ways to implement the
fuzzy inference engine. Among the very first such proposed
techniques is that due to Mamdani [11], who describes the
inference engine in terms of a fuzzy relation matrix and uses
the compositional rule of inference [1] to arrive at the output
fuzzy set for a given input fuzzy set. The output fuzzy set
is subsequently defuzzified to arrive at a crisp control action.
Other techniques include sum-product and threshold inference.
A review of these is given by Driankovet al. [16].

C. Adaptation in Fuzzy Inference Systems

All of the stages of the fuzzy inference system are affected
by the choice of certain parameters. A list follows.

2min (a; b) = a(b) if a � b(a > b)

The Fuzzifier: The fuzzifier in Fig. 1 maps the input onto
the continuous interval [0, 1] and has the following parameters:

1) the number of membership functions;
2) the shape of the membership functions (e.g., triangle,

Gaussian, etc.);3

3) the central tendency (e.g., center of mass) and dispersion
(e.g., standard deviation, bandwidth, or range) of the
membership function.

The Inference Engine:The inference engine is the system
“decisionmaker” and determines how the system interprets the
fuzzy linguistics. Its parameters are those of the aggregation
operators which provide interpretation of connectives “AND”
and “OR.” An example of a parameterized union operator is
the Yager union [17]:

where the inputs are membership valuesand , and the
parameter ranges over .4

The Defuzzifier:The defuzzification stage maps fuzzy con-
sequents into crisp output values. Its design requires choice
of the following:

1) the number of membership functions;
2) the shape of membership functions;
3) the definition of fuzzy implication, i.e., how the value

of the consequents from the inference engine impact the
output membership functions prior to defuzzification.

4) a measure of central tendency of the altered consequent
output membership functions. The center of mass is
typically used, although medians and modes can also
be used to arrive at the crisp output.

It is, thus, seen that both the fuzzification and defuzzification
stages require choices of cardinality, position, and shape of
membership functions. The defuzzification operation itself can
be parameterized, and the inference engine requires choices to
be made among numerous fuzzy aggregation operators, which
can be parameterized.

All of these parameters can be adaptively adjusted by mon-
itoring a certain target performance measure in a supervised
learning environment. Over the years numerous techniques
for adaptation of fuzzy membership functions, rule bases, and
aggregation operators have been proposed. These techniques
include the following.

• Procyk and Mamdani’s self-organizing process controller
[6] which considered the issue of rule generation and
adaptation.

• Numerous methods involving the performing of steepest
descent on the centroid and dispersion parameters of
input and output membership functions [18]–[23]. Other

3As a simple example of a parameterized membership function shape,
consider the membership function

w(x; �) = (1� jxj)��
x

2
(3)

where�(x=2) = 1 for jxj � 1 and is zero, otherwise. For� = 1, (3)
is the familiar triangle function while, for� = 0, it is a rectangular (crisp)
membership function. As� !1, the functionw(x; �), by the central limit
theorem, becomes Gaussian in shape (with zero width).

4limw!1 min [1; (aw + b
w)1=w] = max (a; b).
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algorithms such as random search and conjugate gradient
descent can be used in tuning such parameters as well.

• Pruning the number of input and output membership
functions (see Section IV, and [14], [24]).

• Adapting the shape of membership functions (see footnote
3).

• Adaptation ofAND/OR aggregation operators. This could
occur when the expert designing the rule base is satis-
fied with both the cardinality and shape of membership
functions, as well as the setting up of rules (see [25]).

A bibliography of these techniques is available [25]. In the
next section, we provide the necessary mathematical back-
ground for understanding the pointer adaptation process, which
is considered in Section III. We describe the adaptation process
and demonstrate via a number of examples. Section IV ex-
pands the discussion by taking a closer look at one of the
artifacts of adaptation (or initialization of the rulebase), which
is a possible overdetermination of the fuzzy system. Tech-
niques to overcome this problem in the context of adaptive
inference are provided and verified by examples.

II. PRELIMINARIES

Fuzzy membership functions chosen for a control or de-
cision process may require adaptation for purposes of fine
tuning or adjustment to stationarity changes in the input data.
Use of neural networks to perform this adaptation has been
proposed by Leeet al. [18]. Other techniques proposed can be
found in [20]–[23]. Our method more closely parallels that
proposed by Nomura, Hayashi, and Wakami [22]. In their
work, membership functions are parameterized and steepest
descent is performed with respect to each parameter using
an error criterion, in order to obtain the set of parameters
minimizing the error. To straightforwardly differentiate the
error function with respect to each parameter, they used
products for the fuzzy intersection operation. The output
error backpropagated this way, was used to adjust the fuzzy
membership functions.

Here, we show that the more conventionally used minimum
operation for fuzzy intersection and maximum operation for
fuzzy union can be similarly backpropagated. Unlike the
method of Nomuraet al., which updates all fuzzy membership
function parameters in each stage, the pointer method proposed
herein results only in the adjustment of the fuzzy membership
functions that gave rise to the control action or decision output.

A. Differentiation of min and max Operations

Differentiation of the or operations results in
a “pointer” that specifies the source of the minimum or
maximum. To illustrate, let

(4)

where , a unit step function, is 1 for positive arguments
and is zero otherwise. Note that the operator in (4) is

(a)

(b)

Fig. 2. A fuzzy estimation problem. (a) 3-D plot and (b) contour plot, of the
signal to be estimated:t(x1; x2) = sin (�x1) cos (�x2) over the domain
f(x1; x2)jx1 2 [�1; 1]; x2 2 [�1; 1]g.

continuous and can be differentiated as

if is maximum
otherwise

(5)

This result is also intuitively satisfying. Only one of the,
let us say a certain , in (4) is the maximum. Differentiation
with respect to this number then (when ), should result
in a 1, and differentiation with respect to any other number
should be zero.

In a similar way, let

(6)

The function is also continuous and

if is minimum
otherwise

(7)

Indeed, any order statistic operation (e.g., the third largest
number or, for odd, the median) can likewise be differen-
tiated. In each case, the partial derivative points to index of
the order statistic.

III. FUZZY MIN–MAX ESTIMATION

To illustrate adjustment of fuzzy membership functions
by steepest descent, consider the fuzzy estimation problem
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TABLE I
DECISION TABLE FOR FUZZY ESTIMATION. TABLE CONTENTS ESTIMATION.

TABLE CONTENTS REPRESENT THEESTIMATED FUZZY VALUE OF THE

OUTPUT f FOR A GIVEN CHOICE OF VALUES FOR x1 AND x2. RULES

WITH A CONSEQUENT OFPOSITIVE MEDIUM (PM) ARE HIGHLIGHTED

(a)

(b)

Fig. 3. Initial membership functions for: (a)x1, x2 and (b)f(x1; x2). Here,
NH � negative high, NM� negative medium, NS� negative small, NZ�
negative zero, PZ� positive zero,� � �.

illustrated in Fig. 2. We wish to generate an estimate
of a target function using a set of fuzzyIF THEN
rules. Here we have

(8)

The rule table (Table I) is generated by partitioning the
domain of ,
into 64 (8 8) regions and assigning a fuzzy membership
function to each region in accordance to the values of
in that region. For instance, if takes on values close
to 1 in certain regions, then the membership function used
for those regions of the domain will be “positive high” (PH).
Initial membership functions for are thus formed in this way.
The values of and are fuzzified in a similar manner.
The initial membership functions chosen are Gaussian and are
shown in Fig. 3 for and .

To illustrate, consider the fuzzyIF THENrules with a
positive medium (PM) consequent. These are highlighted in
Table I. Reading from left to right from the top of the table,
they are:IF is NH AND is NH OR IF is PH AND

is NH OR IF is NM AND is NM OR
IF is PZ AND is PH THEN is PM.

Similar rules exist for the other five categories of.

A. Feedforward Procedure

For purposes of analysis, let the membership functions for
the variable be denoted by , , those for
the variable by , , and those for the
output variable by , .

For a given output membership function , the rules, as
shown in Table I, are of the form:

If is and is OR

If is and is OR

Then is

Let us define a set as follows:

and are antecedents of a

rule with consequent (9)

The operations to arrive at the output are as follows.

1) Perform a pairwise fuzzy intersection (e.g., minimum or
outer product) on each of the membership values of
and in and for every rule with consequent ,
forming activation values :

(10)

2) Collect activation values for like output membership
functions and perform a fuzzy union (e.g., maximum).

(11)

3) These values are defuzzified to generate the output
estimated value, , by finding the centroid of
the composite membership function:

(12)

(13)

where

(14)

(15)

and are, respectively, the area and centroid of the
consequent membership function.
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Backpropagation Adjustment:Expert heuristics are typi-
cally used to specify the membership functions for the input
( ) and output ( ). These functions can be adapted or
fine tuned using supervised learning. The steps to adapt the
input membership functions are as follows.

We first form the error function by taking the squared
difference between the estimated output, and the desired
target value :

(16)

Assume now that we wish to update parameters of a Gauss-
ian membership function that appears either in the antecedent
or the consequent of a rule. Denote these parameters by
and the corresponding membership function by. In our
example, for 1, 2, the index 1, 2, 8 and for

3, the index 1, 2, 6; 1, 2, and

(17)

For instance, would represent parameter number 1 (of
2) of membership function number 7 (of 8) of the variable.

The steepest descent update rule is

(18)

We have, for the general case

(19)

This in turn can be written in the following way [see (10)
and (11)]:

(20)

From (5) and (7), and referring to (10) and (11), we obtain:

(21)

(22)

where , the Kronecker delta function, is equal to one for
zero arguments and is zero otherwise.

Substituting the above two equations in (20), we obtain

(23)

The two Kronecker delta functions now serve to isolate the
membership function whose parameter is being updated. Other

(a)

(b)

(c)

Fig. 4. Final membership functions for (a)x1, (b) x2, and (c)f(x1; x2).
Here NH� negative high, NM� negative medium, NS� negative small,
NZ � negative zero, PZ� positive zero,� � �.

membership functions that are not used in the decision process
are not adapted. Equation (23) finally simplifies to

(24)

where

(25)

In general, is a function of many parameters ,
. For our estimation problem, using Gaussian

membership functions, there are two parameters to adapt.
These are the mean ( ), and the variance ( ). We
thus have

(26)

(27)

B. Results

We present here results of the application of this technique
to the estimation problem discussed in Section III. Fig. 4
illustrates the input and output membership functions after
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TABLE II
RULE TABLES BEFORE (LEFT) AND AFTER (RIGHT) FUSION OF TWO FUZZY MEMBERSHIP FUNCTIONS OF THE VARIABLE x

(a)

(b)

Fig. 5. Result of fuzzy estimation. (a) 3-D plot. (b) Contour plot, of
the estimated signalf(x1; x2) = sin (�x1) cos (�x2) over the domain
f(x1; x2)jx1 2 [�1; 1]; x2 2 [�1; 1]g.

adaptation and Fig. 5 shows the (much improved) estimation
result.

IV. A DAPTIVE PRUNING OF FUZZY INFERENCESYSTEMS

As we have shown, the parameters of the input and output
fuzzy membership functions for fuzzyIF–THEN inference can
be adapted using supervised learning applied to training data.
The specific case of adaptation of min–max inference using
steepest descent has the advantage of adapting only those
membership functions used in the fuzzy decision process for
each training data input–output pair.

In the process of adapting, two membership functions may
drift close together. If the underlying target surface which we
wish to estimate is smooth, then the membership functions can
be fused into a single membership function. Alternately, if a
membership function becomes too narrow, it can be totally
deleted. In either case, the fuzzy decision process is pruned.
In artificial neural networks, pruning neurons from hidden
layers can improve the performance of the neural network [26].
Likewise, the performance of fuzzy inference can be improved
through the adaptation and pruning of membership functions.
The number ofIF–THEN rules is also correspondingly reduced.

Assume that the center of mass of (membership function
of input variable ) is and the dispersion (spread) of

is parameterized by . The parameter is also pro-
portional to the area of . The membership functions (for
input ) and (for the output) are likewise parameterized.

TABLE III
WHEN THE MEMBERSHIP FUNCTION FORYj = Z IN THE LEFT TABLE IN

TABLE II IS ANNIHILATED , THE RULE TABLE SHOWN HERE RESULTS

TABLE IV
TARGET RULE FOR EXAMPLE 1

TABLE V
RULE TABLE FOR EXAMPLE 1

If the output membership functions are, then the defuzzi-
fied output using the center of mass of the sum of weighted
output membership functions is

(28)

Although we will use min–max inference, the pruning
procedure described below can be applied to other fuzzy
inference methods, wherein, for example, alternate forms of
defuzzification are used or intersections and unions other than

and are employed [5], [27].
Herein, we will assume all linguistic variables are scaled

to the universe of discourse on the interval [1, 1]. Gaussian
membership functions of the form

will be used throughout ( and ).
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(a) (b)

(c) (d)

Fig. 6. (a) Initial membership functions for Example 1. The top, middle, and bottom plots are for�X ; �Y , and�Z , respectively. (b) Initial membership
functions. (c)–(n) Evolution of the adaptation, fusion, and annihilation process.

A. Membership Function Fusion

Fusion of two membership functions occurs when they
become sufficiently close to each other. Annihilation occurs
when a membership function becomes sufficiently narrow. As
illustrated in Fig. 10, two membership functions are fused
when the supremum of their intersection exceeds a threshold,

. If the means of the membership functions prior to fusion

are and , then the mean of the fused membership is
set equal to the center of mass of the sum of the membership
functions

where and are the spread parameters of the two
membership functions. Similarly, the spread of the fused
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(e) (f)

(g) (h)

Fig. 6. (Continued.) (e)–(h) Evolution of the adaptation, fusion, and annihilation process.

function is obtained from

Membership fusion has a direct impact on the fuzzy decision
process. To illustrate, consider Table II. Here, negative,

near zero, and positive. Assume that the membership
functions for corresponding to and fuse. The two
left most columns of the rule table are combined into one.

A new linguistic variable, called labels this column. It
remains to specify the corresponding rules. When two adjacent
rules are the same prior to fusing, the answer is simple. For
example, since and both have as a consequent
for , the clear choice for the fused rule table for

and is the consequent . For ,
however, there are different consequents when and

. To determine the consequent for and
(marked “?” in Table II), we chose to query the
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(i) (j)

(k) (l)

Fig. 6. (Continued.) (i)–(l) Evolution of the adaptation, fusion, and annihilation process.

training data base. Specifically, training data was found where
. The value of the target,, for this

input pair is compared to the means of the existing output
membership functions. The membership function having the
closest mean is assigned as the consequent.

Output membership functions can also fuse. If, for example,
the output fuses with in the left-hand rule table in
Table II, the resulting fused rule table will place s in the
six boxes currently occupied withs or s.

Once fusion occurs, the membership functions are further
adapted to the training data. Additional fusion or annihilation
can follow.

B. Membership Function Annihilation

If the contribution of a fuzzy membership function
becomes insignificant, then it can be annihilated. To illustrate,
consider Fig. 11. The membership function becomes
insignificant with respect to the membership function,
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(m) (n)

Fig. 6. (Continued.) (m)–(n) Evolution of the adaptation, fusion, and annihilation process.

, when, for all ,

where parameterizes the degree of insignificance. High
corresponds to a severe criterion for annihilation. It is

sufficient for the above criterion to hold only for

The process is valid when the underlying target surface
is smooth.

When an input membership function is annihilated, all rules
using it are deleted from the fuzzy rule base. For example, if
the membership function corresponding to in the left-
hand rule table in Table II is annihilated, then the rule table
after annihilation would be as shown in Table III.

An output membership function can likewise be annihilated.
In such a case, one of the remaining membership functions
must take its place in the rule table. The choice, again, is
made by a query to the training data base as was done for
input membership function fusion.

After annihilation, the membership parameters can be fur-
ther adapted using the training data. Additional annihilation
and/or fusion might subsequently result.

C. Examples

We illustrate the process of membership function fusion and
annihilation with two examples. The first is a proof of principle
wherein convergence is to a solution known to be optimal.
The second uses adaptation to fit a given target surface. We
used the parameters 2 and 0.9 for input membership
functions and 0.95 for the output. Iteration was performed

until . In cases where a membership function
could either be fused or annihilated, annihilation was given
priority.

1) Convergence to a Known Solution:In this example, the
target membership functions shown in Fig. 6 were used. The
target rule table is shown in Table IV. Using a universe of
discourse on [ 1, 1], the membership functions are indexed
from 1 for large negative numbers upward. The largest index
corresponds to large positive numbers.

A total of 500 training data points were randomly generated
from these target functions.

Overdetermined initialization is shown in Fig. 6(b) with
a rule table shown in Table V. Input membership functions
are spaced evenly. Spacing of output membership functions
is determined from a histogram of the training data target
values. The histogram is divided into intervals of equal area.
The number of intervals is chosen to be equal to the number
of output membership functions. The means of the output
membership functions are places at the boundaries of these
intervals.

The result of the first steepest descent adaptation is shown
in Fig. 6(c). Compare this to Fig. 6(d). The two left most
membership functions for (top plot) fuse. The third fuse.
The third membership function for is annihilated, etc. For
the output, two membership functions are annihilated. The rule
table becomes that shown in Table VI.

The membership functions in Fig. 6(d) are further trained.
The result is shown in Fig. 6(e). Compare this to Fig. 6(f),
where four input membership functions are annihilated. The
results of Fig. 6(f) are adapted and converge to the result
shown in Fig. 6(g). As can be seen in Fig. 6(h), two more input
membership functions are annihilated. Further iteration yields
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(a) (b)

Fig. 7. (a) Initial membership functions for Example 2. (b) Final membership functions for Example 2.

TABLE VI
MODIFIED TABLE V A FTER FIRST STEEPESTDESCENT

ADAPTATION FOLLOWED BY FUSION AND ANNIHILATION

TABLE VII
TABLE V A FTER FURTHER ADAPTATION, FUSION, AND ANNIHILATION

Fig. 6(i). For (middle plot), three membership functions fuse
to two membership functions [see Fig. 6(j)]. The fuzzy rule
table corresponding to Fig. 6(j) is as shown in Table VII. The
results in Fig. 6(j) are adapted to those shown in Fig. 6(k).
Fusion occurs as shown in Fig. 6(l). Additional adaptation
results in the middle two membership functions for(middle
plot) shown in Fig. 6(m) to be graphically indistinguishable.
They are fused in Fig. 6(n). The rule table is now exactly the
target table in Table IV. The input membership functions are

(a) (b)

(c)

Fig. 8. Contour plots of the (a) target, (b) initialization, and (c) final result
for Example 2.

the same as in Fig. 6(a). The output membership functions are
not the same; all defuzzifications from these membership func-
tions though, are. Output membership functions will
yield the same defuzzification as the membership functions

when defuzzification is performed as in (28).
2) Regression Fitting of a Surface:In this example, we as-

sume, from (8), a target surface of . The
initial membership functions are shown in Fig. 7(a). A contour
plot of the target is shown in Fig. 8(a). The first initialization
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Fig. 9. Convergence of the rmse for Example 2.

Fig. 10. Illustration of the criterion for fusion. When two membership
functions become sufficiently close so that the maximum of their intersection
exceeds, then the two membership functions are fused into a single
membership function.

Fig. 11. Illustration of the process of membership function annihilation.
When the membership function,�2(x), becomes narrow with respect to an
adjacent membership function, it can be annihilated.

is shown in Fig. 8(b). A total of ten steps of iteration followed
by fusion and annihilation were required prior to convergence.
The results are shown in Figs. 7(b) and 8(c). Convergence
mean square error is shown in Fig. 9. Between odd and even
steps (e.g., 3 and 4), error is reduced by steepest descent.
Between the even and odd steps (e.g., 4 and 5) fusion and
annihilation are applied, generally resulting in an increase in
error.

The final rule table is shown in Table VIII. The number
of rules has been reduced from 441 (21) to 169 (13). The
cardinality of the set of consequents has been reduced from
8 to 5.

V. CONCLUSION

We have considered a new technique for adaptation of
fuzzy membership functions in a fuzzy inference system. The
technique relies upon the isolation of the specific membership
function that contributed to the final decision, followed by the

TABLE VIII
FINAL RULE TABLE FOR EXAMPLE 2

updating of this function’s parameters using steepest descent.
The error measure used is thus backpropagated from output
to input, through the and operators used during
the inference stage. This was shown to be feasible because
the operations of and are continuous differentiable
functions and, therefore, can be placed in a chain of partial
derivatives for steepest descent backpropagation adaptation.
More interestingly, it was shown the partials of and
(or any other order statistic, for that matter) act as “pointers”
with the result that only the function that gave rise to the
or is adapted; the others are not. We applied this property
to the fine tuning of membership functions of fuzzy –
decision processes and illustrated with an estimation example.

Membership functions can be parameterized in ways other
than those considered here as well. In general, the shape
of the membership functions of the control action can be
used to assess the quality of the rules. A strong single
peak in the membership function signifies the presence of a
dominant control rule; two distinct strong peaks are a sign
of the existence of contradictory rules; and a very low or
weak membership value of the maximum of the membership
function indicates that some rules are missing, and the rule
database is incomplete [28]. Thus, parameterizing the peak
value of the membership function, in addition to its mean
and variance, can provide further improvements in the fuzzy
control process.

We also looked at adaptive pruning of fuzzy inference
systems as a solution to the problem of overdetermination in
fuzzy systems. This resulted in a reduced-complexity system
with similar or better performance.
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