
AN ANT COLONY SYSTEM APPROACH FOR SOLVING THE AT-LEAST VERSION OF THE
GENERALIZED MINIMUM SPANNING TREE PROBLEM

Arindam K. Das

University of Washington
arindam@ee.washington.edu

Payman Arabshahi, Andrew Gray

Jet Propulsion Laboratory
{payman,gray}@jpl.nasa.gov

ABSTRACT

We consider the “at least” version of the Generalized Min-
imum Spanning tree problem (L-GMST). Unlike the MST,
the L-GMST is known to be NP -hard. In this paper, we pro-
pose an ant colony system based solution approach for the
L-GMST. A key feature of our algorithm is its use of ants of
different behavioral characteristics, which are adapted over
time. Computational results on datasets used in earlier lit-
erature indicate that our algorithm provides similar or better
results for most of them.

1. INTRODUCTION

Given an undirected graph G = (N , E), where N is the set
of nodes and E the set of edges, and a symmetric edge cost
matrix C = [Cij], Cij ∈ R

+, (i, j) ∈ E , the Minimum
Spanning Tree (MST) problem seeks to find a spanning tree
on the nodes such that the cost of the tree is minimum. The
MST problem is solvable in polynomial time and techniques,
e.g., via Prim’s and Kruskal’s algorithms [1].

An extension to the MST, the Generalized Minimum Span-
ning Tree (GMST) problem, was suggested by Myung et
al [2]. In GMST, the nodes are divided into C clusters and
a minimum weight tree is sought spanning the C clusters
using exactly one node from each cluster. This version of
the GMST is also referred to as the E-GMST (to emphasize
the “exactly one node per cluster” condition). Another vari-
ant of the GMST, introduced by Ihler et. al. [3], is the L-
GMST, where a minimum weight spanning tree is sought on
the clusters using at least one node from each cluster. Fig-
ure 1 illustrates both these versions. The GMST problem
finds applications in diverse areas including telecommunica-
tions, transportation engineering, and biology.

Similar generalizations can be made to other commonly
studied network design and combinatorial optimization prob-
lems, e.g., the Generalized Steiner Tree problem, General-
ized Traveling Salesman problem and the Generalized Short-
est Path problem. Discussions on these can be found in [12].

In this paper, we concentrate on the L-GMST problem,
although our proposed algorithm can be extended straight-
forwardly to the E-GMST with only minor modifications to
the edge selection rules. Unlike the MST, both versions of
the GMST have been shown to be NP-hard [2, 3]. Specif-
ically for the L-GMST, it is shown in [3] that no constant
factor polynomial time algorithm exists unless P = NP .
While most research regarding the GMST has focused on
the E-GMST [2, 4, 7, 8, 11], some solution methods have
also been reported in the literature for solving the L-GMST

problem. These include integer linear programming (ILP),
local search and metaheuristics such as tabu search and ge-
netic algorithms. ILP formulations for the L-GMST were
first given by Dror et. al. [5]. However, two out of their
three models were subsequently shown to be invalid by Fer-
emans et. al. [8]. Another branch-and-cut based exact al-
gorithm was suggested by Feremans [9]. Transformational
techniques to convert an instance of the L-GMST problem to
the E-GMST are also discussed in [9]. Besides the ILP for-
mulations, Dror et. al. [5] also proposed four heuristic algo-
rithms and a genetic algorithm based optimization procedure
for the L-GMST. Two other polynomial time heuristics have
been suggested by Ihler et. al. in [3].

Our proposed algorithm is based on the swarm intel-
ligence paradigm which appears in biological swarms of
certain insect species and gives rise to intelligent behavior
through complex interaction of thousands of autonomous
swarm members. A main principle behind swarm interaction
is stigmergy, or communication through the environment.
An example is pheromone laying on trails followed by ants.
Pheromone is a potent form of hormone that can be sensed
by ants as they travel along trails. It attracts ants which there-
fore tend to follow trails that have high pheromone concen-
trations. This causes an autocatalytic reaction, i.e., one that
is accelerated by itself. Ants attracted by the pheromone will
lay more pheromone on the same trail, causing even more
ants to be attracted. Swarm intelligence paradigms thus use
positive reinforcement as a search strategy. The Ant Colony
System (ACS) algorithm, an optimization procedure inspired
by swarm intelligence principles, was originally proposed by
Dorigo and Gambardella [13] for solving the celebrated trav-
eling salesman problem.

2. THE ACS ALGORITHM FOR L-GMST

2.1. Notation

The following notation will be used in this paper:

t = time index
tMAX = maximum time index
Nants(A)(t) = number of Type-A ants at time t
Nants(B)(t) = number of Type-B ants at time t
N = set of all nodes in the input graph
|N | = cardinality of N = N
E = set of all bidirected edges in the input graph
|E| = cardinality of E = E
C = set of all clusters in the input graph
|C| = cardinality of C = C
N (Cc) = set of all nodes in cluster Cc

(c) (a) (b)

Figure 1. (a) A feasible solution for the E-GMST problem,
where exactly one node is used from each cluster. (b) A fea-
sible solution for the L-GMST problem, where at least one
node is used from each cluster. (c) Another feasible solution
for the L-GMST. If two nodes are chosen from a cluster, it
is possible for them to be joined by inter-cluster edges, as
shown here. In many applications, however, the weights of
inter-cluster edges are much greater than the weights of the
intra-cluster edges, and a solution such as this will not be the
optimal L-GMST.

|N (Cc)| = number of nodes in cluster Cc

α(Cc) = node density of cluster Cc := |N (Cc)|/N
E(Cc) = set of edges whose end nodes are in cluster Cc

(also referred to as intra-cluster edges)
Ē = set of all inter-cluster edges := E \⋃c Cc

F (i, Cc) = largest forest in cluster Cc, rooted at node i
(i ∈ N (Cc), all edges in F (i, Cc) are in E(Cc))

N (F (i, Cc)) = set of all nodes in F (i, Cc)
τij(t) = pheromone level on the edge i → j at time t
Wij = weight of the link between nodes i and j
ηij = visibility of node j from node i := 1/Wij

βA(t) = tunable parameter to control ηij for Type-A
ants, possibly time-varying, 0 < βA ≤ 1

βB(t) = tunable parameter to control ηij for Type-B
ants, possibly time-varying, 0 < βB < βA ≤ 1

Tm(t) = tree developed by ant m at time t
Ym(t) = cost of Tm(t)
ρ = pheromone decay coefficient, ρ ∈ (0, 1]
γ = pheromone delivery coefficient (> 0)
q = uniformly distributed random variable over the

interval [0,1]
q0(t) = tunable parameter, q0(t) ∈ [0, 1], ∀t

In the following section, we discuss the tree building mech-
anism for each ant, given an input graph G = (N (C c), E :
c ∈ C) and a symmetric edge weight matrix W. We assume
that there is no overlap between the clusters, or, any node can
be a member of only one cluster. All elements of W are as-
sumed to be real and non-negative. If an edge does not exist
between nodes i and j, Wij = ∞. We also assume that the
elements of the weight matrix satisfy the triangle inequality;
i.e., if there are edges between the node pairs (i, j), (j, k)
and (i, k), then we have:

Wij + Wjk ≥ Wik (1)

Else, all Wij’s for which an edge exists between i and j are
replaced by the cost of the shortest path between i and j.

Wij =

{
min(cost(SP (i, j)),Wij), if (i ↔ j) ∈ E
0, otherwise

(2)

where cost(SP (i, j)) denotes the cost of the shortest path
between nodes i and j. Note that the above transformation
is not equivalent to computing the shortest path matrix (or
closure matrix) since only those elements of Wij for which
an edge exists are modified.

We will use the notation (i ↔ j) to denote a bidirectional
edge between nodes i and j while a directed edge from i to j
is represented by (i → j). The notation (i, j) is used to refer
to the node pair. With a slight abuse of notation, we also use
the set E to refer to all directed edges, {i → j}, in the graph.

(i ↔ j) ∈ E ⇒ (i → j) ∈ E and (j → i) ∈ E (3)

2.2. Tree building by an ant

Tree building in our ACS algorithm is an iterative procedure
where a population of ants (or agents) work in parallel to
generate feasible solutions. For an L-MST instance with C
clusters, each ant is allowed C − 1 iterations to generate a
feasible solution. Starting from a randomly chosen initial
cluster, each ant chooses an inter-cluster edge at iteration
k from a set of candidate edges {(i → j) ∈ Ē}, where
i belongs to the set of nodes in clusters which have been
spanned till iteration k − 1, denoted by CSk−1, and j
belongs to the set of nodes in clusters which have not
been spanned till iteration k − 1, denoted by CNSk−1. If
the set of candidate edges is empty, the partial solution is
labeled invalid and assigned a high cost. See Fig. 2. In

Figure 2. Generation of an invalid solution. The set of all
inter-cluster and intra-cluster edges is shown. Even though
a GMST clearly exists, if the first edge chosen is the one
marked by a thick line, cluster 3 cannot be spanned in.

our simulations, we have observed that the frequency of
occurrence of invalid solutions is significantly reduced if the
tail nodes in the candidate edge list are chosen from certain
rooted forests within the clusters which have been spanned.
This improvement is most pronounced for problem instances
which are sparsely connected and have one or more clusters
with a high number of connected components. We discuss
this concept and the tree construction algorithm in detail
below. See Fig. 3 for an illustration of the tree-building
algorithm.

1. Initially, we mark all nodes as unshaded and all
clusters as not spanned. Next, we choose an initial cluster,
either randomly, or probabilistically according to the node
densities of the clusters. For example, if the input graph has
3 clusters, with 1, 3 and 6 nodes, the node densities of the
clusters are 0.1, 0.3 and 0.6 respectively. If the initial cluster
is chosen probabilistically, cluster 3 will be chosen about
60% of the time.

Suppose the initial cluster chosen is Ca. Label Ca as
spanned and define:

CS0 = Ca and CNS0 = C \ CS0

2. For the first iteration, we prepare a list of candidate edges
{m → n}, such that (a) m ∈ N (CS0), (b) n ∈ N (CNS0)
and (c) (m → n) ∈ E . The notation N (CS0) denotes the set
of nodes in CS0. Next, we choose an edge (i1 → j1). The
criterion based on which the edge is chosen will be discussed
subsequently (see Fig. 4). Suppose j1 ∈ Cb. Cluster Cb is
then labeled spanned and nodes i1 and j1 are marked shaded.
Note that a cluster which has at least one shaded node must
be spanned, and conversely, a cluster with no shaded node
must not be spanned.

Next, we grow the largest forests rooted at nodes i1 and j1,
F (i1, Ca) and F (j1, Cb), and mark the nodes in the largest
forests as shaded. Note that these forests are local; i.e., they
are composed of only intra-cluster edges. A greedy algo-
rithm, such as the one discussed in Section 12.3 of [15], may
be used to compute the largest forests, with the adjacency
matrix of the nodes within the cluster as the weight function.
Now define

CS1 = CS0 ∪ Cb and CNS1 = C \ CS1

3. If all clusters have been spanned, we stop. Otherwise,
we prepare a set of candidate edges {m → n}, such that (a)
m ∈ N (CS1), (b) n ∈ N (CNS1), (c) (m → n) ∈ E and
(d) node m is shaded. Note that, because of the last condi-
tion, only those directed edges whose tail nodes belong to
the largest rooted forests in the spanned clusters are eligible
for consideration as a candidate edge. Another implication
of condition (d) is that it will preclude solutions of the type
shown in Fig. 1(c), where two nodes located in the same clus-
ter, with no direct path between them, are connected by one
or more inter-cluster edges. This wont be a problem, how-
ever, if any of the following conditions are satisfied:

• the problem instance is such that a local spanning tree
exists for all clusters, i.e., for any cluster Ca, it is possi-
ble to reach all other nodes in Ca from any node i ∈ Ca,
and, the weights of all intra-cluster edges are smaller
than the weight of any inter-cluster edge,

or
• the weight matrix is replaced by a shortest path matrix,

i.e., all Wij’s are transformed as:

Wij ← min(cost(SP (i, j)),Wij) : ∀(i, j)

where cost(SP (i, j)) is the cost of the shortest path be-
tween nodes i and j. The shortest path matrix can be
calculated in O(N 3) time using the Floyd-Warshall al-
gorithm (see Section 5.6 of [1]). With the above trans-
formation, the total number of edges in the underlying
graph is effectively equal to N(N−1)/2, which may be
significantly higher than the original number of edges
E.

On the positive side, imposing condition (d) ensures that a
valid solution can be found after C − 1 inter-cluster edges
have been chosen during the construction phase.

From a modeling aspect, condition (d) implies an added
constraint on the ILP model for the L-GMST; that, if more
than one node is chosen from a cluster, they must be con-
nected in the GMST by intra-cluster edges.

If the set of candidate edges is empty but not all clusters
have been spanned, we set the cost of the partial solution
to ∞ and break out of the iterative process. Otherwise, we
choose an edge, say (i2 → j2), j2 ∈ Cc, label Cc as spanned,
grow the largest forest in Cc rooted at node j2, F (j2, Cc), and
mark the nodes in F (j2, Cc) as shaded. Note that the cluster
to which node i2 belongs must be spanned and therefore a
rooted forest already exists for that cluster. Finally, we de-
fine:

CS2 = CS1 ∪ Cc and CNS2 = C \ CS2

4. The above step is repeated till all clusters have been la-
beled spanned.
5. After the tree construction algorithm terminates success-
fully, i.e., after all clusters have been spanned in, all redun-
dant edges which are not required to complete the GMST are
pruned from the local forests grown during the construction
phase. The remaining set of intra-cluster edges is appended
to the set of inter-cluster edges chosen during the construc-
tion phase to complete the GMST. We now discuss the cri-
terion by which an ant chooses an edge at any iteration of
the tree-building process. Edge selection is either random or
deterministic and based on selection probabilities of the con-
stituent edges in the candidate list. The extent to which prob-
abilistic decisions are made is controlled by a possibly time
varying tunable parameter, q0(t). In our implementation, we
gradually reduce q0(t) over time so that decision making is
predominantly probabilistic during the initial stages of the
algorithm and mostly deterministic during the latter stages.
Edge selection is also dependent on the behavioral character-
istics of the ant population. These characteristics, which are
controlled by tunable parameters, are stochastically adapted
to allow for better exploration of the search space during the
initial stages of the algorithm.

The factors which determine the desirability of choosing
an edge (i → j) at iteration k and time t are:

• local visibility of node j from i, ηij , which is inversely
proportional to the weight of the edge (i ↔ j), W ij .
Greater the local visibility, higher is the desirability of
choosing that edge. In our algorithm, we use two types
of ants, Type-A and Type-B, with different behavioral
characteristics. This difference is induced by unequal
exponential scaling of the local visibilities for the two
types of ants. Specifically, let βA(t), 0 < βA(t) ≤ 1, be
the exponential scaling parameter for Type A ants and
βB(t), 0 < βA(t) ≤ βB(t) ≤ 1, the scaling parame-
ter for type B ants. The desirability of choosing an edge
(i ↔ j) is proportional to [ηij]

βA(t) for Type A ants and

[ηij]
βB(t) for Type B ants. If βA < βB ≤ 1, Type A

ants operate on reasonably smoothed out edge weights
compared to Type B ants, and therefore distant nodes
appear almost as attractive as nearby nodes. For an ar-
bitrary 3-node network, suppose we have one Type A
and one Type B ant at node 1. Assume that η12 = 0.25

Cluster 1 Cluster 2

Cluster 3

Cluster 1 Cluster 2

Cluster 3

Cluster 1 Cluster 2

Cluster 3

 (a) (b) (c)

 (d) (e) (f)

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2

Cluster 3 Cluster 3 Cluster 3

Figure 3. Illustrating tree building by an ant. (a) Distribution of nodes in the 3 clusters. Initially, all nodes are labeled unshaded and all
clusters are labeled not spanned. (b) For the first iteration, an initial cluster is chosen, either randomly, or, probabilistically according
to the cluster node densities, α(Cc)’s. Let the initial cluster be 1. Suppose an inter-cluster edge is chosen between clusters 1 and 2, as
shown. In general, suppose that the initial edge chosen is (i1 → j1), i1 ∈ N (Ca) and j1 ∈ N (Cb). Mark nodes i1 and j1 as shaded,
as shown in the figure. Also, mark clusters Ca and Cb as spanned. Note that a cluster which has at least one shaded node must be
spanned, and conversely, a cluster with no shaded node must not be spanned. (c) For the first iteration only, grow the largest forests
rooted at nodes i1 and j1, F (i1, Ca) and F (j1, Cb). Mark the nodes in the largest forests as shaded. In this figure, we show the largest
rooted forests for clusters 1 and 2 and the set of all shaded nodes. Edges which are part of the largest rooted forests are shown dotted.
(d) For all subsequent iterations, prepare a candidate edge list such that tail nodes of the edges in the list are shaded and the head nodes
are located in clusters labeled not spanned. Choose an edge from the candidate edge list, say (i2 → j2). Suppose j2 ∈ N (Cc). Mark
node j2 as shaded and label cluster Cc as spanned. Note that the cluster to which node i2 belongs is already spanned. If all clusters
are spanned, the tree building algorithm terminates, as is the case in our example. Otherwise, we repeat steps (c) and (d), with the
exception that, in step (c), we now grow only the largest forest rooted at j2. (e) After the tree building algorithm terminates, we may
have redundant intra-cluster edges, which are pruned. In the figure, we have pruned the redundant edges in clusters 1 and 2. (f) The
remaining intra-cluster edges are appended to the set of inter-cluster edges chosen previously to complete the solution.

and η13 = 0.125. Choosing βA = 0.1 and βB = 1, the
scaled local visibilities for the two types of ants are:

– Type A: [η12]
βA = 0.87, [η13]

βA = 0.81
– Type B: [η12]

βA = 0.25, [η13]
βA = 0.125

If edges are chosen probabilistically based on scaled
local visibilities, the Type B ant is twice as likely to
choose edge (1 → 2) over (1 → 3). The Type A ant,
however, is almost equally likely to choose any of the
two edges. Type A ants are therefore less greedy and
better suited for random exploration of the search space.

During the initial time instants, we use an almost even
mix of Type A and Type B ants. Over time, the popu-
lation of Type A ants is gradually converted to Type B.
This limits the exploratory regime and guides the algo-
rithm towards convergence.

• pheromone level on the edge at time t. Since edges
which are part of better solutions are positively rein-
forced, presence of a high pheromone level on an edge
is used to boost the desirability of choosing that edge.
At time t, the pheromone level on the edge (i → j)
reflects the cumulative knowledge acquired by the ants
till time t − 1 on the desirability of moving to node j
from node i. A very high pheromone level on any edge,
therefore, makes it much more probable for that edge to
be included in the final tree.

The exact formulae for computing the edge selection proba-
bilities is shown in Fig. 4 which summarizes the edge selec-
tion mechanism discussed above. From equation (4), it is ap-
parent that the initial stages of the algorithm (small t), when
the pheromone levels on the edges are almost uniform, are
conducive to the exploratory behavior of Type A ants. With
gradual pheromone build-up over time, the selection prob-
abilities (the aij ’s) are dominated by the pheromone levels
on the edges. Coupled with the fact that decision making is
mostly deterministic as time increases (see Step 3 in Fig. 4),
it is apparent that the benefit of using Type A ants reduces
over time. This provides an intuitive justification for gradu-
ally converting the Type A ants to Type B as t increases.

A complete pseudocode of the tree building algorithm is
shown in Fig. 5, with an optional local tree improvement
step and a “shortest path replacement and edge elimination”
(SPREE) step for non-Euclidean problem instances whose
weight matrices are transformed as shown in (2). These are
discussed below.

2.3. Non-Euclidean weight matrices: Shortest path re-
placement and edge elimination (SPREE)

We mentioned at the beginning of this section that the
weight matrix for non-Euclidean problem instances is trans-
formed according to (2) before the ACS algorithm is applied.
Though this transformation is helpful, it is only a partial

Cluster D

Cluster A

Cluster C

Cluster B

Cluster D

Cluster A

Cluster B

Cluster C Cluster C

Cluster A

Cluster B

Cluster D
1

2 3

3
10

4

1

2

1 1

1 1

1 1

1 1

2

2 2

2

2 2

2 2

2 2

3 3

33
3

3

3

3

3

4 4

2

5 5 5

5 5

4 4

Cluster A Cluster A

Cluster B Cluster B

Cluster C Cluster C Cluster D Cluster D

1

2

(a) (b) (c)

(d) (e)

3

Figure 6. Illustrating the need for shortest path replacement and edge elimination for non-Euclidean weight matrices. (a) Input graph.
The numbers above the edges are the weights. Note that the weights of the edges between nodes 3, 4 and 5 do not satisfy the triangle
inequality. (b) Transformation of W34 according to (2). The shortest path between nodes 3 and 4 is [3 ↔ 5; 5 ↔ 4] and its cost is 3.
(c) Optimal solution for graph (a). Cost = 8. (d) Solution obtained using the ACS algorithm. Cost = 9. (e) Since the weight of the edge
3 ↔ 4 was modified in (b), we replace it with the shortest path [3 ↔ 5; 5 ↔ 4]. The edges in the shortest path replacement are shown
in bold. Doing so results in two edges between nodes 3 and 5, one of which can be eliminated to obtain the optimal solution in (c).

remedy, as illustrated in Fig. 6. Given a solution, it may
be possible to improve it by replacing the edges which un-
derwent a weight transformation (i.e., the edges for which
Wij > cost(SP (i, j)) in the input graph) with their short-
est paths and eliminating any resulting multi-edges1.

2.4. A local tree improvement heuristic

As indicated in Fig. 5, it is possible to embed a local tree im-
provement heuristic within the tree building algorithm. Al-
ternately, the heuristic can be applied only on the best so-
lution at time t, Tcbest(t). In our implementation, we have
incorporated a simple branch exchange heuristic for tree im-
provement. This is done for all ants, before their costs are
evaluated, as shown in step 6 of Fig. 5. A brief description
of the branch exchange algorithm follows.

Given an initial tree, the algorithm temporarily removes
an edge (say ec) from the tree and checks whether the two
disconnected components (e.g. T1 and T2) created by the
edge removal operation can be reconnected using a cheaper
replacement edge (say er) whose end nodes are in T1 and
T2. If so, the edge ec is replaced by er and the algorithm is
applied on the modified tree. This procedure is repeated till
no further improvement is possible.

2.5. Edge reinforcement mechanism

In this section, we describe our edge reinforcement strategy.
We adopt an elitist approach, or, in other words, only the best
ant at each time instant is allowed to positively reinforce the
edges constituting its solution. Let us first define the follow-
ing parameters:

• Tgbest(t) = global best tree till time t.
• Jgbest(t) = cost of Tgbest(t).
• Tcbest(t) = best tree at current time t.
• Jcbest(t) = cost of Tcbest(t).
1A multi-edge is a collection of two or more edges having identical end

nodes [16].

For t = 1, the current best ant is designated the global best
ant as shown below:

Tgbest(1) = Tcbest(1) and Jgbest(1) = Jcbest(1) (6)

For t > 1,

Tgbest(t) =

j
Tcbest(t) if Jcbest(t) < Jgbest(t − 1)
Tgbest(t − 1) otherwise

(7)

Jgbest(t) =

j
Jcbest(t) if Jcbest(t) < Jgbest(t − 1)
Jgbest(t − 1) otherwise

(8)

The reinforcement mechanism is straightforward, as shown
in Fig. 7. Figure 7 also shows an optional pheromone thresh-
olding step. Implementing this step might prevent prema-
ture stagnation of the search process for certain problem in-
stances. However, we have not noticed any evidence of stag-
nation in the simulations we have conducted so far.

All edges which are part of the global best solution till
time t, Tgbest(t), receive a positive reinforcement which is
inversely proportional to its cost, Jgbest(t), and a negative
reinforcement (evaporation) which is controlled by the pa-
rameter ρ (9). The smaller the cost of Tgbest(t), the higher
the positive reinforcement. The exact pheromone delivery
amount is regulated by the parameter γ.

If the edge is not part of Tgbest(t), but is part of the cur-
rent best solution at time t, Tcbest(t), it receives a posi-
tive reinforcement which is inversely proportional to its cost
Jgbest(t), weighted by the ratio Jgbest(t)/Jcbest(t), and a
negative reinforcement controlled by the parameter ρ (10).
As in the previous paragraph, the exact pheromone delivery
amount is regulated by γ. Note that, if Tcbest(t) is almost
as good as Tgbest(t), the ratio Jgbest(t)/Jcbest(t) � 1 and
therefore Tcbest(t) receives almost the maximum allowable
reinforcement amount, γ/Jcbest(t) � γ/Jgbest(t). Con-
versely, if Tcbest(t) is significantly worse than Tgbest(t), its
edges receive almost negligible reinforcement (attenuated as
Jgbest(t)/J2

cbest(t)).
All other edges receive only a negative reinforcement (11).

Fig. 8 provides a high level description of the overall algo-
rithm.

/* Let edge listk denote the candidate edge list at iteration k. */
1. Let Ak = {aij : (i → j) ∈ edge listk} be the decision matrix
based on which an ant makes its decision for selecting an edge at
iteration step k. The elements {aij} are computed as follows:

aij =

8<
:

τij(t)fA(ηij)
P

x τix(t)fA(ηix)
, for Type A ants

τij(t)fB(ηij)
P

x τix(t)fB(ηix)
, for Type B ants

(4)

where τij(t) is the pheromone level on edge (i → j) at time t,
fA (ηij) = [ηij]

βA(t) is a function of the local visibility of node j

from node i for Type A ants and fB (ηij) = [ηij]
βB(t) is a function

of the local visibility for Type B ants.
2. Sample q from a uniform distribution over [0,1].
/* 0 < q0(t) ≤ 1 is a time dependent threshold parameter. As t
increases, q0(t) is driven towards 1. */
3. if (q < q0(t)) /* deterministic decision making */

Choose the strongest edge, (u → v), from Ak.

(u, v) = argmaxi,j{aij} (5)

else /* explore, probabilistic decision making. */
Choose the edge (u → v) from Ak probabilistically, e.g.,
using a roulette-wheel mechanism.

end if
4. Let (ik → jk) denote the edge chosen at iteration k. Assign
(ik → jk) := (u → v) /* this extra notation is introduced to main-
tain consistency with our previous discussion of the tree building
algorithm */

Figure 4. Pseudo-random-proportional edge selection crite-
rion at any iteration k of the tree building process.

3. SIMULATION RESULTS

We have tested our algorithm on some of the problem in-
stances used by Dror et al in [6] and Feremans in [9] 2. The
edge weight matrices for the problem instances are symmet-
ric, non-Euclidean and each element is an integer drawn from
an uniform distribution between 1 and 50. See [6] for a dis-
cussion on how the datasets were generated. Since the ele-
ments of the input weight matrix do not satisfy the triangle
inequality, we first transformed it according to (2).

Table 3 shows the values of the parameters used in the sim-
ulations. A key point to note in Table 3 is the dynamic nature
of the parameters q0(t), βA(t) and the number of Type A and
B ants. Gradually reducing q0(t) ensures that the bulk of the
exploration work (step 3 in Fig. 4) is carried out during the
initial stages of the algorithm, when the pheromone distri-
bution on the edges is not too uneven and “trail conditions”
are more suitable for Type A ants. Increasing βA(t) has the
effect of reducing the local visibility of Type A ants so that
they start behaving more like their Type B counterparts as
t increases. In fact, for
0.6 ∗ tMAX� + 1 ≤ t ≤ tMAX ,
βA(t) = βB(t), which ensures that all ants concentrate on
a select group of edges and look for better solutions within
their neighborhoods, during the final stage of the algorithm.
The pheromone thresholding option in Figure 7 was disabled,
but the local search and SPREE components in Figure 5 were
enabled.

2The datasets were obtained through personal communication with Dr.
Corinne Feremans.

Parameter Parameter value
tMAX 100/200

ρ 0.2
γ 0.2

τij(t = 0) 0.001/0.0005
βB(t) 1

0.1, if t ≤ �0.3 ∗ tMAX�
βA(t) 0.5, if �0.3 ∗ tMAX� + 1 ≤ t ≤ �0.6 ∗ tMAX�

1, if �0.6 ∗ tMAX� + 1 ≤ t ≤ tMAX

0.3, if t ≤ �0.3 ∗ tMAX�
q0(t) 0.6, if �0.3 ∗ tMAX� + 1 ≤ t ≤ �0.6 ∗ tMAX�

0.9, if �0.6 ∗ tMAX� + 1 ≤ t ≤ tMAX

2, if t ≤ �0.3 ∗ tMAX�
Nants(A)(t) 1, if �0.3 ∗ tMAX� + 1 ≤ t ≤ �0.6 ∗ tMAX�

0, if �0.6 ∗ tMAX� + 1 ≤ t ≤ tMAX

3, if t ≤ �0.3 ∗ tMAX�
Nants(B)(t) 4, if �0.3 ∗ tMAX� + 1 ≤ t ≤ �0.6 ∗ tMAX�

5, if �0.6 ∗ tMAX� + 1 ≤ t ≤ tMAX

Table 1. Parameter values used for the simulations. tMAX

was set to 100 for problem instances 1 to 6 (Group A) and
200 for problem instances 7 to 10 (Group B). The initial
pheromone level, τij(0) was set to 0.001 for Group A and
0.0005 for Group B.

We ran the ACS algorithm three times for every problem
instance. The results, along with the optimal costs and those
reported by Dror et al in [6] are shown in Table 3. While
Dror et al provide results for four heuristics and a genetic
algorithm (GA), we cite only the GA results here since they
produce the best solutions. For each test instance, we used
a population of 5 ants. The maximum running time of the
algorithm, tMAX , was set to 100 for problem instances 1
to 6 (which we refer as Group A) and to 200 for problem
instances 7 to 10 (referred to as Group B)3. The ACS costs
reported here therefore represent the best of a maximum of
500 solutions for Group A and 1000 solutions for Group B.
In comparison, the results reported in [6] represent the best
of a maximum of 2000 solutions (population size = 100 and
number of generations = 20).

From Table 3, it can be seen that:

• for problem instances 1 to 5 and 7, both the ACS algo-
rithm and Dror et al’s GA algorithm are able to find the
optimal solutions.

• for problem instance 6, the ACS algorithm is able to
find the optimal solution. The reported GA solution is
about 110% of the optimal cost.

• for problem instances 8 and 10, neither algorithm finds
the optimal solution. However, in both cases, the ACS
algorithm is able to improve upon the GA solution.

• for problem instance 9, the GA algorithm finds the op-
timal solution but the ACS algorithm does not. The
best ACS solution is approximately 123% of the opti-
mal cost.

We are currently in the process of generating other (both

3It appears from [6] that the authors ran their GA algorithm 4000 times
for each problem instance.

Problem Instance N E C Optimal DHC-GA [6] ACS - Run 1 ACS - Run 2 ACS - Run 3
gmst 1 25 50 4 23 23 23 27 23
gmst 2 25 100 8 41 41 41 41 41
gmst 3 25 150 10 36 36 37 37 36
gmst 4 50 150 5 18 18 22 20 18
gmst 5 50 300 10 27 27 27 27 27
gmst 6 75 200 8 55 60 66 55 64
gmst 7 75 300 10 67 67 70 67 77
gmst 8 75 400 15 53 60 57 62 55
gmst 9 100 300 7 35 35 43 45 43
gmst 10 100 500 10 48 50 51 49 50

Table 2. Computational results. The first column lists the problem instance numbers (same as those used in [6] and [9]); the second,
third and fourth columns list the number of nodes (N), number of undirected edges (E) and number of clusters (C); the fifth column
lists the optimal costs; the sixth column lists the GA solution costs reported by Dror, Haouari and Chaouachi in [6] and the last 3
columns list the best solution costs obtained by running our ACS algorithm 3 times on each problem instance.

Euclidean and non-Euclidean) test instances with the follow-
ing characteristics4:

• a spanning tree exists for each cluster (i.e., the graph
(N (Cc), E(Cc)) is connected for all c).

• the weights of the intra-cluster edges are smaller than
the weight of any inter-cluster edge.

Computational results for these datasets and a second batch
of 10 test instances (gmst 11 to gmst 20) from [6] will be
reported in an upcoming journal version of the paper.

4. CONCLUSION

In this paper, we considered the “at least” version of the Gen-
eralized Minimum Spanning tree problem (L-GMST), which
is known to be NP -hard. We proposed an ant colony system
based solution approach for the L-GMST. A key feature of
our algorithm is its use of ants of different behavioral char-
acteristics, which are adapted over time. Computational re-
sults on datasets used in earlier literature indicate that our
algorithm provides similar or better results for most of them.

Acknowledgement

The authors wish to thank Dr. Corinne Feremans for provid-
ing them with the test instances used in this paper and their
optimal costs.

5. REFERENCES

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, “Network flows:
theory, algorithms, and applications, Prentice-Hall,
1993.

[2] Y.S. Myung, C.H. Lee, and D.W. Tcha, “On the gen-
eralized minimum spanning tree problem,” Networks,
vol. 26, pp. 231-241, 1995.

[3] E. Ihler, G. Reich, P. Widmayer, “Class Steiner trees
and VLSI-design,” Discrete Applied Mathematics, vol.
90, pp. 173-194, 1999.

4These are motivated by typical topological characteristics of large scale
clustered sensor networks.

[4] U. Faigle, W. Kern, P. Pop and G. Still, “The Gener-
alized minimum spanning tree problem,” Working Pa-
per, Dept. of Operations Research & Mathematical Pro-
gramming, University of Twente, 2000.

[5] M. Dror, M. Haouari and J. Chaouachi, “Generalized
Steiner problems and other variants,” J. Combinatorial
Optimization, vol. 4, pp. 415-436, 2000.

[6] M. Dror and M. Haouari, “Generalized spanning trees,”
European J. Operational Research, vol. 120, pp. 583-
592, 2000.

[7] P. Pop, W. Kern, and G. Still, “An approximation algo-
rithm for the generalized minimum spanning tree prob-
lem with bounded cluster size,” Working Paper, Dept.
of Operations Research and Mathematical Program-
ming, University of Twente, 2001.

[8] C. Feremans, M. Labbé, and G. Laporte, “On gener-
alized minimum spanning trees,” European J. Opera-
tional Research, vol. 134, 2001, 457-458.

[9] C. Feremans, Generalized spanning trees & extensions,
Ph.D thesis, Universite Libré de Bruxelles, 2001.

[10] P.C. Pop, The generalized minimum spanning tree prob-
lem, Ph.D thesis, University of Twente, 2002.

[11] C. Feremans, M. Labbé, and G. Laporte, “A compara-
tive analysis of several formulations for the generalized
minimum spanning tree problem”, Networks, vol. 39,
pp. 29-34, 2002.

[12] C. Feremans, M. Labbé, and G. Laporte, “Generalized
network design problems,” March 2002.
http://citeseer.ist.psu.edu/feremans02generalized.html

[13] M. Dorigo and L.M. Gambardella , “Ant colonies for
the traveling salesman problem,” BioSystems, vol. 43,
pp. 73-81, 1997.

[14] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm in-
telligence: from natural to artificial systems, Oxford
University Press, 1999.

[15] C.H. Papadimitriou and K. Steiglitz, “Combinatorial
optimization: algorithms and complexity”, Dover Pub-
lications, 1998.

[16] J. Gross and J. Yellen, Graph theory and its applica-
tions,” CRC Press, 1999.

1. /* Initializations */
• k = 0; tree = ∅;
• node labels[n] = 0; 1 ≤ n ≤ N
• cluster labels[c] = 0; 1 ≤ c ≤ C
• rooted forests[c] = ∅; 1 ≤ c ≤ C
• Choose an initial cluster, either randomly or probabilistically
based on the cluster node densities. Suppose the initial cluster is
Ca.
• Assign: CS := [Ca]; CNS := C \CS;
• Increment: k = k + 1;
2. /* The tree building algorithm */
for (k = 1 to C − 1)

if (k == 1)
• Find the candidate edge list edge listk = [{m → n}]

such that m ∈ N (CS), n ∈ N (CNS) and
(m → n) ∈ E , where N (CS) denotes the set of
nodes in CS.

• Choose an edge (ik → jk) according to Figure 4.
Suppose jk ∈ Cb.

• /* Append the edge to the existing tree */
tree = [tree; (ik → jk)];

• Grow the local forests F (ik, Ca) and F (jk, Cb). The
forest growing algorithm should return ik (jk) if
ik (jk) is isolated in Ca (Cb).

• /* Updates. Note that ik ∈ Ca. */
cluster labels[c] = 1; c = Ca, Cb

rooted forests[Ca] ← F (ik, Ca);
cluster labels[Cb] ← F (jk, Cb);
node labels[n] = 1; ∀n ∈ F (ik, Ca) and F (jk, Cb)
CS ← CS ∪ Cb and CNS ← C \ CS;

else
• Find the candidate edge list edge listk = [{m → n}]

such that m ∈ N (CS), n ∈ N (CNS),
(m → n) ∈ E and node labels[m] = 1.

• Choose an edge (ik → jk) according to Figure 4.
Suppose jk ∈ Cc.

• /* Append the edge to the existing tree */
tree = [tree; (ik → jk)];

• Grow the local forest F (jk, Cc). The forest growing
algorithm should return jk if it is isolated in Cc.

• /* Updates */
cluster labels[c] = 1; c = Cc

rooted forests[Cc] ← F (jk, Cc);
node labels[n] = 1; ∀n ∈ F (jk, Cc)
CS ← CS ∪ Cc and CNS ← C \ CS;

end if
end for
3. Prune the redundant edges from rooted forests[c], ∀c. Let
intra edges denote the set of all remaining edges.
4. Assign: Tm(t) ← [tree; intra edges];
/* Step 5 is used if the weight matrix is non-Euclidean and transfor-
mation (2) is applied. */
5. Apply procedure SPREE (Section 2.3) on Tm(t);
6. Apply local tree improvement on Tm(t). /* Optional */
7. Compute the cost of Tm(t) and assign it to the variable Ym(t).

Figure 5. A pseudocode of the complete tree building algo-
rithm. Recall that Tm(t) denotes the tree built by ant m at
time t. Though not shown, the above algorithm should ter-
minate prematurely if the list of candidate edges is empty at
any iteration and not all clusters have been spanned. In that
case, the cost Ym(t) is set to ∞.

/* ρ and γ are parameters which regulate pheromone
evaporation and delivery. */

for all (i, j) ∈ E ,

if (i, j) ∈ Tgbest(t)

τij(t + 1) = (1 − ρ)τij(t) +
(

γ

Jgbest(t)

)
(9)

elseif (i, j) ∈ Tcbest(t)

τij(t + 1) = (1 − ρ)τij(t) +
(

Jgbest(t)
Jcbest(t)

)(
γ

Jcbest(t)

)
(10)

else

τij(t + 1) = (1 − ρ)τij(t) (11)

endif

/* Optional pheromone thresholding step. τMAX and
τMIN are user defined upper and lower threshold levels. */

if (τij(t + 1) > τMAX)

τij(t + 1) = τMAX ; (12)

elseif (τij(t + 1) < τMIN)

τij(t + 1) = τMIN ; (13)

endif

Figure 7. Edge reinforcement rules, with optional pheromone
thresholding.

1. Set t = 0.
2. Initialize the pheromone levels on the edges, τ ij(0).
3. Increment t = t + 1.
4. Set the time dependent parameters of the ACS algorithm
(see Section 2.1).
5. Build a tree for each ant iteratively (see Section 5).
6. Find the local best ant and the global best ant and their
costs (see Section 2.5).
7. If t > tMAX , stop. Otherwise, increment t = t + 1 and
repeat steps 4 to 6.

Figure 8. A high level description of the overall ACS algo-
rithm.

	footer: 0-7803-8916-6/05/$20.00 ©2005 IEEE
	01: 60
	02: 61
	03: 62
	04: 63
	05: 64
	06: 65
	07: 66
	08: 67

