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ABSTRACT

In this paper, we consider the problem of minimum-hop
multicasting in wireless networks. We first present a Mixed
Integer Linear Programming model of the problem, followed
by a discussion of a (sub-optimal) sequential shortest path
heuristic algorithm with “node unwrapping”. This sequen-
tial algorithm is amenable to distributed implementation.
The node unwrapping part of the algorithm is used to modify
the weight matrix of the underlying graph after each itera-
tion and exploits the inherently broadcast nature of wireless
transmissions. Simulation results are presented which indi-
cate that reasonably good solutions can be obtained using
the proposed heuristic algorithm.

I. INTRODUCTION

We consider the problem of minimum-hop multicasting in
wireless networks where individual nodes are equipped with
limited capacity batteries and therefore have a restricted com-
munication radius. Such networks are generally referred to
as Multi-Hop Wireless Networks (MHWN) since establish-
ing a broadcast/multicast tree in such networks often require
co-operation of intermediate nodes which serve to relay in-
formation onwards to the intended destination node(s). In
MHWNs, minimizing the number of hops in the routing tree
is motivated primarily by the need to conserve bandwidth,
minimize end-to-end delays, especially for delay-critical data
packets, and reduce packet error probabilities. In certain mil-
itary applications, employing a low-power multicast tree with
minimum number of transmissions can serve to further re-
duce the possibility of detection/interception by enemy radar.

Individual transmissions in multicast trees in MHWNs are
generally low-powered, given the limitations on battery ca-
pacity. Moreover, a suitable topology control algorithm can
be used to ensure a power efficient topology. For exam-
ple, topologies can be constructed to minimize the maximize
transmitter power needed to maintain connectivity [2] or the
total transmitter power. The focus of this paper is to pro-
vide solution methodologies for minimum hop multicasting
in power efficient wireless network topologies.

Previous efforts at attempting to solve the minimum-hop
multicasting problem include a Hopfield neural network
based approach and a couple of heuristics discussed in [1]. In
this paper, we first present a Mixed Integer Linear Program-
ming (MILP) model for optimal solution of the problem and
then discuss a sub-optimal heuristic algorithm. The MILP
model is based on the well-studied single-origin multiple-
destination uncapacitated flow problem, tailored to reflect the
inherently broadcast nature of the wireless medium, whereby
a transmission from node i to node j will also be picked up
by all other nodes which are closer to i than j, if line-of-sight
exists and nodes are provided with omni-directional anten-
nas. The heuristic is a sub-optimal sequential path algorithm
which is amenable to a distributed implementation.

The rest of this paper is organized as follows. Section
II outlines our assumptions, followed by descriptions of the
MILP model and the sequential heuristic algorithm in Sec-
tions IV and Section V. Simulation results are presented in
Section VI.

1 of 6



II. NETWORK MODEL

We assume a fixed N -node wireless network with a spec-
ified source node and a broadcast/multicast application. Any
node can be used as a relay node to reach other nodes in the
network. All nodes are assumed to have omni-directional
antennas. We also assume that all nodes are equipped with
limited capacity batteries which limits the maximum trans-
mitter power and hence the degree of connectivity (defined
as the number of nodes which can be reached by a transmit-
ting node using a direct transmission) of a node.

For any N -node network, the power matrix, P, is an
N ×N symmetric matrix. The (i, j)th element of the power
matrix represents the power required for node i to transmit to
node j and is assumed to be given by:

Pij =
[

(xi − xj)
2 + (yi − yj)

2
]α/2

= dα
ij (1)

where {(xi, yi) : 1 ≤ i ≤ N} are the coordinates of the
nodes in the network, α (2 ≤ α ≤ 4) is the channel loss
exponent and dij is the Euclidean distance between nodes i
and j.

III. PROBLEM STATEMENT

Let N be the set of all nodes in the network, s the source
node, E the set of all directed edges1 and D the set of desti-
nation nodes, D ⊆ {N \ s}. Let the cardinality of these sets
be N , E and D respectively; i.e., N = |N |, E = |E| and
D = |D|. Denoting the transmitter power threshold of node
i by Y max

i , the set of all edges, E , is given by:

E = {(i → j) | (i, j) ∈ N , i 6= j, Pij ≤ Y max
i , j 6= s}

(2)

The third condition in the right hand side of (2) restricts
the set of nodes reachable by a direct transmission from
any transmitting node depending on its power constraint and
the last condition reflects that no transmitting node needs to
reach the source node.

Let {Fij : ∀(i → j) ∈ E} be a set of flow variables, with
E defined as in (2) and {Hi : ∀i ∈ N} be a set of binary vari-
ables denoting the hop− count of nodes in the network. For
wired networks, the hop-count of any node i, Hi, is simply
the number of links carrying positive flow out of the node.
For wireless networks, however, Hi is visualized as an indi-
cator variable which is equal to 1 if there is at least one link
carrying a positive flow out of node i, and 0 otherwise. This

1In this paper, we assume that all edges are directed. The notation (i →
j) will be used to denote a directed edge from node i to j. The notation
(i, j) will be used to refer to the node pair.

definition of hop-count follows from the inherently broad-
cast nature of the wireless medium, where multiple nodes
can be reached from a transmitting node using a single trans-
mission to the farthest node. This is illustrated in Figure 1.
The total hop-count, therefore, is simply the number of trans-
mitting nodes in the multicast tree and minimizing the total
hop-count is equivalent to minimizing the number of trans-
mitting nodes in the tree.

Fig. 1. Shaded circles in the above network represent the destination
nodes. The numbers above the edges are the flows. For a wired network,
the hop-count of node 1 is 2, equal to the number of edges directed out of
node 1 carrying a positive flow. If the network is assumed to be wireless
and if nodes are equipped with omni-directional antennas, the hop-count
of node 1 is 1, since it can send a packet to the farther destination node,
which will be picked up by the destination node closer to it. By this reason-
ing, the total hop-count in a wireless multicast tree is equal to the number
of transmitting nodes in the tree.

IV. MATHEMATICAL MODEL

Following the above definition, the objective function of
the minimum-hop multicast problem in wireless networks
can now be written as:

minimize
N

∑

i=1

Hi (3)

The general multicast problem can be interpreted as a single-
commodity, single-origin multiple-destination uncapacitated
flow problem, with the source (the supply node) having D
units of supply and the destination nodes (demand nodes)
having one unit of demand each. For other nodes, the net
in-flow must equal the net out-flow, since they serve only
as relay nodes2. At a conceptual level, the flow model can
also be viewed as a token allocation scheme where the source
node generates as many tokens as there are destination nodes
and distributes them along the “most efficient” (in terms of
number of hops) tree such that each destination node gets to
keep one token each.

The above flow problem can be solved using the usual con-
servation of flow constraints as shown below (see e.g. [3]):

N
∑

j=1

Fij = D; i = s, (i → j) ∈ E (4)

2Note that not all of the relay nodes need to act as such.
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N
∑

j=1

Fji −
N

∑

j=1

Fij = 1; ∀i ∈ D, (i → j) ∈ E (5)

N
∑

j=1

Fji −
N

∑

j=1

Fij = 0; ∀i 6∈ {D ∪ s}, (i → j) ∈ E (6)

We now have to write down constraints linking the flow vari-
ables to the hop-count variables. A suitable equation for ex-
pressing the condition that “the hop-count of a node is equal
to 1 if there is a positive flow in at least one link directed
away from the node, and 0 otherwise” is given in (7):

D · Hi −
N

∑

j=1

Fij ≥ 0; ∀i ∈ N , (i → j) ∈ E (7)

The coefficient of Hi in (7) is due to the fact that the maxi-
mum flow out of a node is equal to the number of destination
nodes in the network. Equation (7) leaves open the possi-
bility for Hi being greater than or equal to 1 if there is no
flow out of node i; i.e., if

∑N
j=1 Fij = 0. However, in this

case, setting Hi ≥ 1 would unnecessarily increase the cost
of the optimal solution, or, in other words, the smallest in-
teger value of Hi which satisfies (7) when there is no flow
out of node i is 0. On the other hand, if there is any flow
out of node i, the smallest integer value of Hi which satis-
fies (7) is 1.3 By the above reasoning, the set of hop-count
variables, {Hi}, will always be restricted to 0-1 values in the
optimal solution, and can therefore be simply declared to be
non-negative integers.

The final set of constraints express the integrality of the Hi

variables and non-negativity of the Fij variables.

Hi ∈ {0, 1}; ∀i ∈ N (8)

Fij ≥ 0; ∀(i → j) ∈ E (9)

To summarize, the objective function (3) subject to con-
straints (4) to (9) solves the minimum-hop multicast problem
in wireless networks. The number of variables is equal to
E + N , since the number of flow variables in the formula-
tion is equal to E while the number of hop-count variables is
equal to N . Strictly speaking, however, the number of hop-
count variables is equal to N−1 since the multicast tree must
include a transmission from the source and hence Hi must be
equal to 1 for i = source.

A. Discussion

Note that the values of the flow variables in the optimal
solution are not particularly important for determining the

3This can be easily verified by substituting
∑N

j=1
Fij = 1 and

∑N

j=1
Fij = D in (7).

routing tree. What is important is the zero−nonzero status
of the variables. The actual routing tree can be constructed
by identifying the transmitting nodes and their farthest neigh-
bors for which there is an outward positive flow, as illustrated
below.

Referring to the 10-node network in Figure 2, let node
1 be the source and the destination nodes be 2, 5, 7, 9 and
10. Assume that the degree of connectivity of each node is
3, i.e., each node can communicate with only 3 of its nearest
neighbors. The flow variables which appear in the optimiza-
tion model (using eqn. 2) and their optimal values are shown
in (10). Note that the first column in the flow matrix, F, is
empty since node 1 is the source and reflects the condition
j 6= source in (2). The diagonal elements of F are empty
because of the condition i 6= j in (2). Whether flow variables
corresponding to the rest of the indices exist or not is dictated
by the maximum power constraint on the transmitters.

Examining the first row of the optimal flow values in (10),
it can be seen that there are non-zero flows from node 1 to
nodes 2, 3 and 9, of which node 3 is the farthest. This is
shown as a solid line from node 1 to 3 in Figure 2. The
dotted lines to nodes 2 and 9 represent that these nodes pick
up the transmission by virtue of their being closer to node 1
than 3. The actual sequence of transmissions in the multicast
tree is therefore: {1 → 3, 3 → 6, 6 → 5, 7 → 10}.

F =

































− 1 3 − − − − − 1 −
− − 0 − − − − − 0 −
− 0 − 0 − 3 − − − −
− − 0 − 0 0 − − − −
− − 0 0 − 0 − − − −
− − 0 − 1 − 2 − − −
− − − − − 0 − 0 − 1
− − − − − − 0 − 0 0
− 0 − − − − − 0 − −
− − − − − − 0 0 0 −

































(10)

We conclude this section by noting that the above MILP
model can also be used for obtaining maximum power con-
strained minimum hop multicast trees. In [4], a polynomial
time optimal algorithm was presented for obtaining the mul-
ticast trees which maximizes minimum node lifetime, or al-
ternately, as a special case, minimizes the maximum transmit
power. Let Ŷ be the optimal maximum transmit power ob-
tained after solving the minimax problem. Redefining the set
of valid edges as:

E = {(i → j) | (i, j) ∈ N , i 6= j, Pij ≤ Ŷ , j 6= s} (11)

in place of (2) and solving the MILP model will yield a min-
imum hop multicast tree such that the maximum transmit
power is not greater than Ŷ .
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Fig. 2. Example 10-node network. Node 1 is the source and the des-
tination nodes are 2, 5, 7, 9 and 10. The solid lines represent the actual
transmissions in the multicast tree. The dotted lines represent implicit
transmissions; i.e., the associated recipient nodes pick up the transmis-
sions by virtue of their being closer to the transmitting nodes.

B. LP-relaxation

We now briefly discuss the LP -relaxation of the above
MILP model. Such relaxations usually form the basis of ap-
proximation algorithms. For an excellent discussion on ap-
proximation algorithms derived from LP -relaxations, read-
ers are referred to [5]. Given an MILP problem P and an
instance of the problem, I , let us denote the LP-relaxation
of the instance by LP (I). If the optimal solution of LP (I)
is integral, the problem is solved. Otherwise, the fractional
optimal solution, which is a lower bound on the optimal so-
lution of I , is usually rounded4 (which can be deterministic
or randomized) to provide a feasible integral solution. An
approximation guarantee can then be obtained by comparing
the costs of the fractional solution and the integral solution.

For our MILP model, the LP-relaxation is obtained by re-
placing constraints (8) with:

0 ≤ Hi ≤ 1; ∀i ∈ N (12)

From (7), it is apparent that Hi will be set equal to
∑

j Fij/D
in the optimal solution of the relaxed model since the objec-
tive function involves minimization of the sum of all Hi’s.
Note that 0 ≤

∑

j Fij/D ≤ 1 since the maximum flow out
of any node is equal to D and the minimum is 0. Therefore,
the upper bound on Hi in (12) is redundant and the variables
{Hi} can simply be declared to be non-negative, as shown in
(13).

Hi ≥ 0; ∀i ∈ N (13)

If there is zero flow out of node i, Hi will be equal to 0 in
the optimal solution; i.e., Hi = 0 if

∑

j Fij = 0, j 6= i. No
rounding is therefore required in this case for Hi. Also, since
the net flow out of the source node is always equal to D (4),

4There exists other methods for converting the fractional solution to an
integral solution, e.g., the primal-dual scheme [5].

Hsource will be equal to 1 in the optimal relaxed solution and
will not require any rounding.

For any node i 6= source, if the total outflow is non-zero
and the ratio

∑

j Fij/D is fractional (i.e., 0 <
∑

j Fij <
D), the cost associated with rounding up Hi to the nearest
integral value is 1 −

∑

j Fij/D. Clearly, the round-up cost
associated with the node Hi decreases as

∑

j Fij → D. The
maximum round-up cost occurs when

∑

j Fij = 1.
We now construct a problem instance for which the opti-

mal relaxed solution will incur the maximum round-up cost.
Following our discussion in the previous paragraph, it is clear
that the round-up cost will be maximum if the following con-
ditions are satisfied:
(a) the optimal minimum-hop multicast tree comprises of

node-disjoint (except at the source node) paths to each
of the destination nodes,

(b) all nodes other than source and destinations are used as
relays and carry unit flow5 each.

(c) all destination nodes are leaves in the optimal tree and
are farthest from the source (in terms of number of
hops). For odd N (N ≥ 5), this condition can be
met if the number of destination nodes is given by
D = (N − 1)1/2.

For example, consider the 9-node, 2-destination problem in-
stance in Figure 3. The darkly shaded nodes are the des-
tinations and the dotted circles represent the communica-
tion range of each node. Clearly, the optimal solution for
this problem instance involves 7 hops, as shown. If the LP-
relaxation of this problem is solved, all directed links will be
assigned unit flow as shown. Correspondingly, the optimal
cost of the relaxation is equal to 1+6× (1/2) = 4, since the
hop-count of the source is equal to

∑

j Fij/D = 2/2 = 1
and that of all relay nodes (shown lightly shaded) is equal to
∑

j Fij/D = 1/2. In general, if the above conditions are sat-
isfied, it can be shown that the ratio of the optimal solution
to its LP -relaxation is given by D(N − D)/(N − 1) ≤ D.

V. SEQUENTIAL SHORTEST PATH HEURISTIC

In this section, we describe a sub-optimal sequential short-
est path heuristic for solving the MILP problem. Let πD

be any ordering of the destination nodes with respect to the
source. For example, they can be ordered with respect to in-
creasing or decreasing Euclidean distance6 from the source.
As the name of the heuristic suggests, the MILP problem

5This must be satisfied since the paths to the destinations are node-
disjoint, except at the source.

6Other ordering criteria are also possible. For example, the destination
nodes can be ordered on the basis of a shortest path (in terms of number
of hops) tree to the source.
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Fig. 3. A 9-node, 2-destination problem instance for which the round-up
cost incurred in converting the optimal fractional solution to an integral
solution is the maximum. The darkly shaded nodes are the destinations
and the dotted circles represent the communication range of each node.
Clearly, the optimal solution for this problem instance involves 7 hops, as
shown above. If the LP-relaxation of this problem is solved, all directed
links will be assigned unit flow as shown. Correspondingly, the optimal
cost of the relaxation is equal to 1 + 6 × (1/2) = 4, since the hop-count
of the source is equal to

∑

j
Fij/D = 2/2 = 1 and that of all relay nodes

(shown lightly shaded) is equal to
∑

j
Fij/D = 1/2.

is solved by computing a series of shortest paths in the se-
quence given by πD. Let W

(1) be the initial weight matrix
used for computing the shortest path7 between the source and
πD(1), the first node in πD. The (i, j)th element of W

(1) is
given by:

W
(1)
ij =

{

1, if (i → j) ∈ E
0, otherwise

(14)

where E is the initial set of edges defined in (2).
As explained in Section III, the minimum hop multicast

problem in wireless networks with omni-directional anten-
nas can be viewed as a minimization of the number of trans-
mitting nodes. Consequently, if ~tr1 is the set of transmitting
nodes in the shortest path obtained after the first iteration, us-
ing these nodes as relays in subsequent iterations would not
incur any additional cost. In other words, the weight matrix
for the second iteration can be modified as follows:

W
(2)
ij =

{

0, if i ∈ ~tr1

W
(1)
ij , otherwise

(15)

We refer to the weight modification procedure after each it-
eration as node unwrapping. Using W

(2), a shortest path is
computed between the source and πD(2), the second node in
πD. This procedure is repeated till all destination nodes are
reached and the final multicast tree is obtained by concate-
nating the shortest paths obtained at each iteration. Figure

7See [6] or [7] for a description of shortest path algorithms.

4 provides a high level description of the sequential shortest
path algorithm. We note that since distributed algorithms8

exist for the shortest path problem, the heuristic is amenable
to distributed implementation provided the multicast group
members are aware of their Euclidean distance (or, any other
criterion used to sort the destination nodes) from the source.
The algorithm in Figure 4 can also be used for maximum
power constrained minimum hop multicasting if the set of
directed edges in the underlying graph is defined as in (11).

1. Let πD be any ordering of the destination nodes with respect to
the source.
2. Let k be the iteration index.
3. Let path(k) be the shortest path obtained at iteration k.
4. Set k = 1 ;
5. Compute the initial weight matrix W

(k) (see eqn. 14).
6. Find the shortest path between the source and the node πD(k),
path(k).
7. while(not all destination nodes reached)

• Increment k = k + 1;
• Compute the new weight matrix W

(k) (see eqn. 15).
• Find the shortest path between the source and πD(k).

end while

8. Concatenate the set of shortest paths {path(k)} to obtain the
multicast tree.

Fig. 4. High level description of the sequential shortest path algorithm.

Note that the above procedure would take D shortest path
iterations to terminate, one iteration for every destination.
However, because of node unwrapping, it may be possible
to reach additional destination nodes without any additional
cost, as illustrated in Figure 5. A simple modification to the
algorithm in Figure 4 can be made to check whether addi-
tional destination nodes can be reached by node unwrapping.
If so, those destination nodes that have not yet been reached
after unwrapping can be reordered and the first node in the
reordered set chosen as the destination for the next shortest
path iteration.

Experimental results suggest that ordering the destination
nodes with respect to decreasing Euclidean distance from the
source (i.e., the farthest node is the destination for the first
iteration) usually results in the fewest number of iterations
than if they are ordered with respect to increasing Euclidean
distance, with no appreciable difference in solution quality.
As implemented, if there are multiple shortest paths at any
iteration with the same hop count, any one is chosen arbitrar-
ily.

8For example, distributed Bellman-Ford [7].
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Fig. 5. (a) Shortest path at current iteration, A → B → C → D, before
node-unwrapping. (b) Node E can be reached simply by unwrapping node
C. No additional iteration is required.

VI. SIMULATION RESULTS

We conducted a study of the performance of the optimal
and the heuristic methods for different multicast group sizes
in 20, 30, 40 and 50-node networks. The networks and des-
tination sets were chosen so that a feasible9 solution exists.
Transmitter power constraints were set so that each node was
connected to its 4 nearest neighbors. The freely available
linear programming software, LPSOLVE [8], which uses a
branch and brand algorithm to solve MILP problems, was
used to compute the optimal solutions. The sequential short-
est path algorithm was implemented by ordering the desti-
nation nodes with respect to decreasing Euclidean distance
from the source. The performance measures for comparing
the optimal and heuristic solutions are the mean (PM1), max
(PM2) and standard deviation (PM3) of the ratio of the se-
quential shortest path heuristic to the optimal, over 50 ran-
domly generated instances.

Table I provides a statistical summary of the simulation
results for multicast group sizes 5, 10 and 15. As can be seen
from the tables, the heuristic performs quite reasonably on
average, being within 110% of the optimal in all cases. The
worst performance we observed was for 20-node networks
and multicast group size = 5, where the heuristic hop count
is 140% of the optimal hop count.

VII. CONCLUSION

In this paper, we have presented a mixed integer linear pro-
gramming model and a sub-optimal sequential shortest path
heuristic for solving the minimum-hop multicast problem in
wireless networks with omni-directional antennas. We also
showed that a simple redefinition of the set of directed edges
in the network graph allows for the solution of the mini-
mum hop multicast problem subject to a maximum trans-
mitter power constraint. The heuristic algorithm has been
shown to perform reasonably well in simulations conducted

9A feasible solution to the minimum-hop multicast problem exists if all
destination nodes can be reached, given the transmitter power constraints.

TABLE I
Simulation results.

N Multicast Size PM1 PM2 PM3

5 1.06 1.40 0.12
20 10 1.05 1.25 0.08

15 1.09 1.30 0.10
5 1.04 1.38 0.09

30 10 1.05 1.20 0.06
15 1.05 1.22 0.06
5 1.04 1.25 0.07

40 10 1.04 1.20 0.06
15 1.07 1.20 0.06
5 1.03 1.22 0.06

50 10 1.06 1.27 0.08
15 1.09 1.31 0.08

on different multicast group sizes in small and medium scale
networks. We are currently working on incorporating QoS
(bounded delay and minimum SINR) guarantees in the MILP
model.
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