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ABSTRACT

In this paper, we address the minimum power broadcast
problem in wireless networks. Assuming nodes are equipped
with omni-directional antennas, the inherently broadcast na-
ture of wireless networks can be exploited to compute power
efficient routing trees. We propose a 2-stage cluster-merge
algorithm for computing minimum power broadcast trees.
The cluster phase is a look-ahead variant of the Broad-
cast Incremental Power algorithm [1] and the merge phase
is a probabilistic positive reinforcement search procedure,
as used in swarm intelligence algorithms. A local tree-
improvement procedure is incorporated as an optional step
in the merge phase to boost the performance of the algo-
rithm. A key advantage of such a cluster based approach is
significant reduction in time complexity. Simulations show
that the algorithm is able to generate high quality solutions
in relatively little computational time.

I. INTRODUCTION

Broadcasting/multicasting in wireless networks is funda-
mentally different than wired networks, since multiple nodes
can be reached by a single transmission. This, of course,
assumes that nodes are equipped with omnidirectional an-
tennas, so that if a transmission is directed from node i to
node j, all nodes which are nearer to i than j will also
receive the transmission. This is the “wireless multicast ad-
vantage” [1] property. For a given network with an identified
source node, the minimum power broadcast (MPB) problem
in wireless networks is to find a route to all other nodes,
such that the overall transmission power is minimized.
Wieselthier et al [1] first noted that a “node based” ap-

proach is needed for solving the MPB problem in wireless

environments. The Broadcast Incremental Power (BIP)
algorithm discussed in [1] is a node-based minimum-cost
tree algorithm. Other techniques for solving this problem
are discussed in [2], [3, [5] and [6].
In this paper, we describe a 2-stage cluster − merge

(CM) algorithm for solving the MPB problem in large scale
wireless networks. A key aspect of the clustering algorithm
is that each cluster represents a partial connected subtree,
with respect to the overall minimum power broadcast tree.
Accordingly, if N nodes are divided into L clusters, a span-
ning tree can be obtained by adding at most L− 1 links for
connecting the clusterheads. This leads to a significant re-
duction in complexity and makes the algorithm particularly
suitable for use in large scale dense networks, when typi-
cally L << N . The merge phase of the algorithm utilizes
positive reinforcement search strategies adopted in swarm
intelligence paradigms [4].

II. NETWORK MODEL

We assume a fixed N -node network with a specified
source node which has to broadcast a message to all other
nodes in the network. Any node can be used as a relay node
to reach other nodes in the network. All nodes are assumed
to have omni-directional antennas, so that if node i transmits
to node j, all nodes closer to i than j will also receive the
transmission. The power matrix of the network, P, is an
N ×N symmetric matrix whose (i, j)th element represents
the power required for node i to transmit to node j and is
given by:

Pij =
[
(xi − xj)2 + (yi − yj)2

]α/2 = dα
ij , i �= j (1)
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where {(xi, yi) : 1 ≤ i ≤ N} are the coordinates of the
nodes in the network, α (2 ≤ α ≤ 4) is the channel loss
exponent and dij is the Euclidean distance between nodes i
and j. We assume that there is no constraint on maximum
transmitter power. However, the algorithm we discuss in this
paper can be extended straightforwardly to the case where
this assumption does not hold, by redefining the power ma-
trix such that its (i, j)th element is ∞ if dαij is greater than
the maximum power limit of node i.
We consider a centralized implementation where construc-

tion of the routing tree is done at the source node, which
has complete knowledge of the locations of all nodes in the
network. Finally, we assume that power expenditures due to
signal reception and processing are negligible compared to
signal transmission and hence the cost of a routing tree is
equal to the sum of transmitter powers corresponding to the
set of edges chosen in the tree.

III. THE CLUSTER PHASE

We first establish the following notation.

N = set of all nodes in the network, N = |N |
D = set of destination nodes, D = |D|
E = set of all edges in the network

�
= {(i → j) : 1 ≤ i �= j ≤ N}

k = iteration number
Ck

l = subtree in cluster l till iteration k
chd(Ck

l ) = clusterhead of subtree in cluster l
Y k

i = power level of node i after iteration k

NRk = all nodes reached till iteration k

NNRk = nodes not reached after iteration k

The clustering mechanism we employ is a look−ahead vari-
ant of the BIP algorithm, with backtracking. For k = 1, the
edge1 (source → node closest to source) is assigned to the
first cluster; i.e., C1

1 = {(source, node closest to source)}.
The sets NRk and NNRk are then updated as:

• NRk = {source, node closest to source}
• NRk = N \NRk

For k ≥ 2, the following sequence of steps is followed:
1. Prepare a set of possible edges to choose from.

edge listk = {(i, j) : i ∈ NRk−1, j ∈ NNRk−1} (2)

2. Determine the kth edge from edge list k using the min-
imum incremental cost criterion of the BIP algorithm. Sup-
pose the edge chosen is (p, q), with an associated incremen-
tal cost being Ppq − Y k−1

p (see eqn. 1 for definition of the
1In this paper, we use the notation (i → j) and (i, j) interchangeably

to mean a directed edge from i to j. The notation {i, j} will be used to
refer to the node pair.

power matrix, P). This is the “provisional incremental cost
of maintaining tree-connectivity at node q”. Assume that
node p is in cluster l1.
3. Update the parameters:

NRk = NRk−1 ∪ q, NNRk = N \ NRk (3)

4. Determine the node r, r ∈ NNRk, such that the cost of
spanning in r from q is the smallest (this step represents the
look − ahead variation on the BIP algorithm); i.e., Pqr <
Pqs : {r, s} ∈ NNRk, r �= s. Note that Pqr is the cost
that would be incurred if the connectivity requirement is
dropped and the BIP algorithm is restarted from node q on
the destination set NNRk.
5. If NNRk �= ∅ (i.e., if r is not the only unreached
node) and Pqr < Ppq − Y k−1

p , a new cluster is initialized,
node q is assigned to be its clusterhead 2 and node r is
spanned in from q. This newly generated cluster is left
disconnected, i.e., the edge (p, q) (recall from item 2 above
that this edge was determined using the incremental cost
criterion) is not included in the routing tree. Essentially,
therefore, the BIP algorithm is restarted from node q (on
NNRk) if the provisional cost of maintaining connectivity
at that node is greater than the cost that would be incurred by
restarting it. Parameters are then further updated as follows:

NRk = NRk ∪ r, NNRk = N \ NRk (4)

Y k
i =

{
Pqr, if i = q

Y k−1
i , otherwise (5)

Else, add the edge (p, q) to cluster l1 and update the node
power vector:

Y k
i =

{
Ppq, if i = p

Y k−1
i , otherwise (6)

6. If NNRk = ∅, stop. Else, increment k = k + 1 and
proceed to the next iteration.
To understand how backtracking works, suppose the root

of cluster l1 (l1 > 1), chd
(Ck

l1

)
, is disconnected and the

current edge chosen is (q, r), where q is in cluster l2, l2 > l1.
If this transmission also reaches the node chd

(Ck
l1

)
, clusters

l1 and cluster l2 can be merged, thereby reducing the number
of clusters by one. The backtracking phase is not necessary
if there are only two clusters since the source, which is
always the root of the first cluster, is not required to be
reached.
Note that the number of clusters is not preset, it is deter-

mined by the algorithm. The maximum number of clusters
that can be generated is 	N/2
.

2We use the terms clusterhead and root of a cluster interchangeably.
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IV. THE MERGE PHASE

Once the network has been clustered into L clusters, a
maximum of L−1 links, directed to the roots of the clusters
C2, C2 · · · CL, need to be chosen to obtain a connected routing
tree. Before explaining the edge selection criteria and the
tree building algorithm, we establish the following additional
notation.

Sinit = initial clustered solution.
cost(Sinit) = cost of initial clustered solution.
L = number of clusters in Sinit, L > 1.
t = time index.
tmax = maximum time index.
NA = number of Type-A ants.
NB = number of Type-B ants.
τmin = minimum pheromone level on any edge.
τij(t) = pheromone level on the edge (i, j) at time t.
βA = tunable parameter for Type-A ants,

0 < βA ≤ 1.
βB = tunable parameter for Type-B ants,

0 < βB < βA ≤ 1.
ρ = pheromone decay coefficient, ρ ∈ (0, 1].
q = uniform random variable over [0,1]
q0 = tunable parameter, q0 ∈ [0, 1].
k = tree-building iteration index.
Ck,m

l = subtree in cluster l at iteration k of ant m.

At time t = 0, the pheromone level on all edges is initialized
to τmin; i.e., τij(0) = τmin.

A. Tree building process
Tree building3 is an iterative process which starts with

an initial clustered solution and continues till there is only
one non-empty cluster. The iteration converges in at most
L − 1 iterations, i.e., k ≤ L − 1. Because of the wireless
advantage property, whereby multiple nodes can be reached
by a single transmission, the number of iterations can range
from as few as 1 to L−1 (this will be the case when exactly
one new clusterhead is reached at each iteration).
At each iteration, an edge (i, j) is chosen such that the

tail of the edge is in cluster 1 and its head is in the set of
clusterheads of clusters 2 to L. Assuming that node j is the
root of cluster l, clusters 1 and l are then merged. Further,
if the transmission reaches other clusterheads, those clusters
are merged with cluster 1 as well (similar to the backtracking
step in the cluster algorithm). At the next iteration, an edge
is chosen from the modified set of clusters. This process is
repeated till the number of non-empty clusters is equal to 1.

3In keeping with swarm intelligence terminology, we will refer to the
tree-building agents as ants.

For any ant m, a pseudo− random− proportional de-
cision rule is used for choosing an edge at iteration k of its
tree building process, as described in Figure 1. The edge is
chosen from a set of candidate edges (Step 1 in Figure 1),
either deterministically or probabilistically (Step 3 in Figure
1). The extent to which probabilistic decisions are made is
controlled by the tunable parameter q0. In our simulations,
we varied q0 with t so that decision making is predomi-
nantly probabilistic during the initial stages of the algorithm
and mostly deterministic during the latter stages. This is
discussed in Section V.
For deterministic edge selection (eqns. 7, 8), the factors

which determine the desirability of choosing an edge (i, j)
at iteration k are:
• the transmitter power required to reach node j from i, Pij ,
scaled exponentially by the parameter βA or βB , depending
on the type of the ant. Higher the power required, lower the
desirability of choosing that edge. The degree of desirability
can be varied by properly selecting βA and βB , as explained
subsequently, .
• the pheromone level, τij(t), of the edge at time t. Since
edges which are part of better solutions are positively rein-
forced4, presence of a high pheromone level on an edge is
used to boost the desirability of choosing that edge.
Probabilistic edge selection (9) is used for efficient ex-

ploration of the search space. In this mode, Type-B ants
rely only on the transmitter powers, unlike Type-A ants
which utilize both transmitter powers and pheromone level
for choosing an edge. This is done so that a fraction of the
ant population (represented by the Type-B ants) can continue
to explore the search space throughout the running time of
the algorithm, without being biased by high pheromone lev-
els on a select group of edges.
We now explain how the degree of desirability of choosing

an edge can be controlled by varying βA and βB . Consider
an arbitrary 4-node network. Suppose we have one Type-A
and one Type-B ant at node 1. Assume that the distances
of nodes 2, 3 and 4 from 1 are d12 = 0.5, d13 = 1.5 and
d14 = 2.0. If we now set βA = 1 and βB = 0.1, the
probabilities {aij : i = 1, j = 2, 3, 4} (eqn. 9, or 7, if we
assume that all τij’s are equal) for the two types of ants are
as follows:

• Type-A: a12 = 0.63, a13 = 0.21, a14 = 0.16
• Type-B: a12 = 0.36, a13 = 0.32, a14 = 0.32

Clearly, if both the ants are allowed to choose an edge prob-
abilistically, while the Type-A ant will choose the nearest

4At any time t, the pheromone level on the edge (i, j), τij(t), reflects
the cumulative knowledge acquired by the ants till time t − 1 on the
desirability of moving to node j from node i.
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1. At any iteration k, an ant m can travel from any node in
cluster 1 to the root of any non − empty cluster l, 2 ≤ l ≤ L.
The set of possible edges to choose from, edge listkm, is given
by: edge listkm = {(i, j)}, where:

i ∈ Ck−1,m
1 ; j ∈ chd(Ck−1,m

l ), 2 ≤ l ≤ L, Ck−1,m
l �= ∅

2. Sample q from a uniform distribution over [0,1].
3. if (q < q0) /* Deterministic decision making */

• Compute the decision matrix Ak,m = {aij : (i, j) ∈
edge listkm} based on which ant m makes its decision
for selecting an edge at step k.

aij =




[τij(t)][Pij]
−βA

x,y [τxy(t)][Pxy ]−βA
Type-A ants

[τij(t)][Pij]
−βB

x,y [τxy(t)][Pxy ]−βB
Type-B ants

(7)

where (x, y) ∈ edge listkm.
• Choose the strongest edge, (fk, tk), from Ak,m.

(fk, tk) = argmaxi,j{aij} (8)

else /* Explore. Probabilistic decision making. */
• Compute Ak,m = {aij : (i, j) ∈ edge listkm}.

aij =




[τij(t)][Pij]
−βA

x,y [τxy(t)][Pxy ]−βA
Type-A ants

[Pij ]
−βB

x,y [Pxy ]−βB
Type-B ants

(9)

where (x, y) ∈ edge listkm.
• Choose an edge (fk, tk) from Ak,m probabilistically.

end if

Fig. 1. Pseudo− random− proportional edge selection criterion at
any iteration k of the tree building process by ant m.

node (node 2) 63% of the time, the Type-B ant will choose
any of the three nodes with almost even probability. Type-B
ants, therefore, can select their edges by looking “deeper”
into the network, as opposed to Type-A ants which are
“mostly greedy” and tend to choose nearby nodes. Accord-
ingly, we refer to Type-A ants as narrow−vision ants and
Type-B ants as wide − vision ants. Note that, wide-vision
ants, because of their ability to make decisions by looking
deeper into the network, are better suited for exploiting the
wireless advantage property than narrow-vision ants, partic-
ularly if the pheromone distribution on all edges are almost
uniform.

B. Edge reinforcement

In this section, we discuss how edges are selectively re-
inforced after all ants have completed their tree-building
process at time t. A flowchart of the composite cluster −

merge algorithm is shown in Figure 2. It may be noted
from the figure that the tree building process can be im-
plemented in parallel since there is no interaction between
the ants during this phase of the algorithm. Once the ants
have built their trees from the initial clustered solution, the
best ant is identified and its tree is subjected to a local
tree-improvement procedure. Alternately, the improvement
heuristic can be moved inside the parallel tree-building phase
of the algorithm. That is, a tree built by an ant can first be
subjected to the tree-improvement procedure before its cost
is computed and the best ant is identified.

Fig. 2. Flowchart of the overall cluster − merge algorithm. The
“Local tree-improvement” block is optional. Edge reinforcement is done
as shown in Figure 3.

After the best solution is identified, we reinforce the con-
stituent edges of the current best solution. First, let us define
the following parameters.

• T post
gbest(t) = global best post-improvement (i.e., after ap-
plying the tree improvement heuristic) tree found till
time t. The final solution is the tree Tpost

gbest(t
max).

• Y post
gbest(t) = cost of Tpost

gbest(t). The cost of the final so-
lution is Y post

gbest(t
max).
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For all (i, j) ∈ E ,
if (i, j) ∈ Ec(t)

τij(t + 1) = τij(t) +
(

Ygbest(t)
Ycbest(t)

) (
ρ

Ycbest(t)

)
; (13)

elseif (i, j) ∈ Eg(t) ; /* Do nothing */
else

τij(t + 1) = max
[
τmin, (1 − ρ)τij(t)

]
; (14)

endif

Fig. 3. Edge reinforcement rules.

• T pre
gbest(t) = pre-improvement version of Tpost

gbest(t).
• T post

cbest(t) = best post-improvement tree found at time t.
• Y post

cbest(t) = cost of Tpost
cbest(t).

For t = 1,

T post
gbest(1) = T post

cbest(1) and Y post
gbest(1) = Y post

cbest(1) (10)

For t > 1,

T post
gbest(t) =

{
T post

cbest(t) if Y post
cbest(t) < Y post

gbest(t − 1)
T post

gbest(t − 1) otherwise
(11)

Y post
gbest(t) =

{
Y post

cbest(t) if Y post
cbest(t) < Y post

gbest(t − 1)
Y post

gbest(t − 1) otherwise
(12)

Next, define Eg(t) to be the set of edges which exist in
T pre

gbest(t), but not in the initial clustered solution, Sinit.5
Similarly, let Ec(t) be the set of edges which exist in
T pre

cbest(t), but not in Sinit. Edges are then reinforced as
shown in Figure 3.
Let us first assume that the best ant at time t is also the

global best ant till time t; i.e., Tpost
cbest(t) = T post

gbest(t) ⇒
Ygbest(t) = Ycbest(t). In this case, the reinforcement rule is
straightforward. All edges which are in Ec(t) are reinforced
by the amount ρ/Ycbest(t) (since Ygbest(t) = Ycbest(t) in
(13)). The pheromone levels of the rest of the edges are al-
lowed to decay (14), subject to a minimum threshold τ min,
thus making them less attractive for selection at subsequent
time indices 6.

5It is not necessary to keep a record of Tpre
gbest(t) since it is required

only for determining the set of edges Eg(t).
6Note that the lack of any decay component in (13) can result in some

edges having an extremely high level of pheromone, especially if tmax

is set pretty high, leading to premature stagnation. This situation can be
avoided by upper thresholding the pheromone levels or by adding a decay
component, −ρ · τij(t), to the rhs of (13). In our simulations, however,
we did not observe any stagnation since tmax was set to 40 for all N .

If the best ant at time t is not the global best ant till time t,
we adopt a conditional reinforcement mechanism. If (i, j) ∈
Ec(t), the reinforcement amount ρ/Ycbest(t) is weighted by
the ratio of the global best cost to the current best cost (13).
This ensures that if the current best solution is almost as
good as the global best, its constituent edges receive almost
full reinforcement (which is ρ/Ycbest(t)). Conversely, if the
current best solution is much worse than the global best, its
edges receive little reinforcement. If (i, j) is not in Ec(t) but
(i, j) ∈ Eg(t), no reinforcement is done. Finally, if (i, j) is
neither in Ec(t) nor in Eg(t), its pheromone level is allowed
to decay (14).
We conclude this section by comparing the complex-

ity7 of the CM algorithm vis-a-vis the Ant Colony Sys-
tem (ACS) algorithm [5], assuming a sequential implemen-
tation. First, note that the cluster phase can be executed
in O(N3) time, similar to the BIP algorithm. Next, note
that each tree-building process requires at most O(NL2)
time, if L << N . The overall time complexity is therefore
O(N3) + (tmax × no. of ants)×O(NL2). The complexity
of the ACS algorithm, on the other hand, is on the order of
(tmax × no. of ants) × O(N3).

V. SIMULATION RESULTS

We tested the CM algorithm on 25, 50, 75 and 100-node
networks in a 5 × 5 grid. In each case, 50 networks were
randomly generated and the tree powers were averaged to
obtain the mean tree power. ‘α’ was chosen to be equal
to 2 for all cases. Values of the parameters used in the
simulations are given in Table I. For N = 25 and 50, the
figures in boldface represent the parameter values used in the
ACS algorithm. Note that, for N = 25, while tmax×(NA+
NB) = 650 for the ACS algorithm, it is equal to 320 for the
CM algorithm. For N = 50, tmax × (NA + NB) = 2500
for ACS and 400 for CM, a reduction of more than a factor
of 6.
A key point to note in Table I is the dynamic nature of q0

and βB with respect to t. Gradual reduction of q0 ensures
that the bulk of the exploration work (Step 4 in Figure 1) is
carried out during the initial stages of the algorithm, when
the pheromone distribution is almost even and trail condi-
tions are more suitable for wide-vision ants. Increasing βB
with respect to t has the effect of reducing the visibility
of wide-vision ants so that they start behaving more like
their narrow-vision counterparts as t increases. In fact, for
	0.6 ∗ tmax
+ 1 ≤ t ≤ tmax, βB is equal to βA, which en-
sures that all ants concentrate on a select group of edges and

7We disregard the local tree-improvement step for complexity calcula-
tion, which is optional and can be used in either of the two algorithms.
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look for better solutions within their neighborhoods during
the latter stages of the algorithm.
The mean tree powers for the BIP solutions are shown in

column 2 in Table II. The mean tree powers for the BIP
solutions followed by the sweep algorithm [1] are shown in
column 3. For N = 25 and 50, column 4 lists the mean tree
powers obtained by applying the ACS algorithm. Finally,
column 5 shows the mean tree powers obtained using the CM
algorithm with 1-shrink [7] local tree-improvement. The
average number of clusters generated after the clustering
phase are: (a) L = 7.32 for N = 25, (b) L = 15.02 for
N = 50, (c) L = 22.36 for N = 75 and (d) L = 29.42 for
N = 100, approximately 30% ofN in each case. Percentage
improvement in mean tree power over the BIP solutions are
shown in Table III.
It can be seen from Tables II and III that the CM algo-

rithm, with local tree-improvement, is able to find solutions
of similar or better quality than the ACS algorithm. It should
be noted, however, that no local tree-improvement heuristic
was implemented in the latter. We conjecture that the per-
formance of ACS would improve (albeit, at enhanced com-
putation time) if such a step is incorporated. Nevertheless,
the improvement in solution quality that can be achieved by
implementing the cluster − merge algorithm, compared to
BIP, is significant.

TABLE I
Parameter values used in the simulations. For N = 25 and 50, the

figures in boldface represent the values used in the ACS algorithm [5].

Parameter N = 25 N = 50 N = 75 N = 100
tmax 40 (50) 40 (100) 40 40
NA 4 (7) 6 (13) 8 8
NB 4 (6) 4 (12) 4 4
ρ 0.2

τmin 1/cost(Sinit)
βA 1

0.5, if t ≤ 	0.3 ∗ tmax

βB 0.75, if 	0.3 ∗ tmax
 + 1 ≤ t ≤ 	0.6 ∗ tmax


1, if 	0.6 ∗ tmax
 + 1 ≤ t ≤ tmax

0.3, if t ≤ 	0.3 ∗ tmax

q0 0.6, if 	0.3 ∗ tmax
 + 1 ≤ t ≤ 	0.6 ∗ tmax


0.9, if 	0.6 ∗ tmax
 + 1 ≤ t ≤ tmax

TABLE II
Mean tree powers for BIP, BIP followed by sweep, ACS and CM.

N BIP BIP (sweep) ACS CM
25 12.46 12.14 10.21 10.23
50 11.67 11.45 10.04 9.90
75 11.63 11.37 - 9.88
100 11.60 11.36 - 9.87

TABLE III
Percentage improvement in mean tree power over BIP.

N BIP (sweep) ACS CM
25 -2.57% -18.06% -17.90%
50 -1.89% -13.93% -15.17%
75 -2.24% - -15.05%
100 -2.07% - -14.91%

VI. CONCLUSION

In this paper, we have proposed a cluster−merge algo-
rithm for solving the minimum power broadcast problem in
wireless networks. While the cluster phase is a look-ahead
variant of the BIP algorithm, the merge phase is based on
probabilistic positive reinforcement search techniques used
in swarm intelligence. Experimental simulations prove that
the algorithm is able to find solutions of similar quality as
the ACS algorithm, but at significantly reduced computation
times. We are currently researching a distributed implemen-
tation of the merge phase of the algorithm. Work is also
ongoing to extend the ideas described in this paper to a sys-
tem with directional antennas.
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