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1 Introduction

Over the past years, NASA and JPL have continuously sought to reduce spacecraft size and mass while
increasing its information return capability. Laser communications provide a way of achieving this goal.
The highly collimated beam allows for significant reductions in the size and mass of the communications
terminal along with reduced power requirements. Optical communications also avoids problems involving
radio frequency resource and spectrum allocation, interference, and frequency and bandwidth regulation.
Since an increasing number of missions will operate at high downlink data rates, the avoidance of these
issues is a significant advantage.

The optical communication system under study at JPL uses pulse-position modulation (PPM) to transmit
data. Each PPM symbol consists of 256 signal slots of 20 ns each, and approximately 15µs of “dead time”
(see Fig. 1). The “dead-time” after the 256 slots is present to allow the Q-switched laser sufficient charging
time between pulses. Within the slot, there is a small (2 ns) guard time on each side of the 16 ns duration
pulse to provide a safety margin against pulse jitter associated with Q-switched lasers [1, 2].
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Figure 1: Pulse Position Modulation timing diagram: the slot widthTs is 20 ns; the symbol widthTl is 20µs;
there areNs = 256 slots in a symbol, within which a signal pulse can occur; there areNd � 750 dead-time
slots in a symbol; and there are about one thousand (Ns+Nd) total slots per symbol.

Space-based optical communication systems are subject to several factors which can impact their per-
formance. Changes in atmospheric conditions on Earth can cause time-smearing, fading, and changes in the
received pulse shape [3]. Furthermore, laser communication systems are sensitive to pointing errors, which
can cause deep signal fades. As a result, the problem of detecting and acquiring PPM signals under varying
channel conditions is a major challenge. If it is known a priori that a PPM symbol does exist, then it is known
that the optimal strategy for demodulation is to pick the maximum slot value [4, 5]. However, the problem
of initially detecting and acquiring the signal poses a greater challenge since selecting the maximum slot
value simply yields a random number if no signal is present.
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Hypothesis Description Hypothesis Description
(Gaussian) (Exponential)

H1 σ = 0:1Ts H5 τ = 0:5
ln(100)Ts

H2 σ = 0:2Ts H6 τ = 1:0
ln(100)Ts

H3 σ = 0:4Ts H7 τ = 2:0
ln(100)Ts

H4 σ = 0:6Ts H8 τ = 3:0
ln(100)Ts

Table 1: Hypotheses and pulse shapes corresponding to Figs. 2 and 3.

To address this problem, an adaptive threshold device can be employed to eliminate the “noise-only”
case, and assist in the problem of detection and acquisition of the PPM signal. Such a device is a component
of an overall “intelligent agent”, which, additionally, assists in slot and frame synchronization, control of
the phase-locked loop, and determination of channel conditions and characteristics [1, 6].

This signal detection threshold is set based on information received from the intelligent agent, in the form
of extracted channel parameters (in turn obtained by analyzing the output of an initial avalanche photodiode
detector – APD). We will discuss the design and testing of both the channel parameter identification system,
and the adaptive threshold system, in this paper, and illustrate their advantages and performance under
simulated channel degradation conditions.

2 Pulse Modeling

It is common for optical pulses to assume Gaussian or exponentially decaying shapes [3, 7] in the time-
domain. An ideal Gaussian pulse is described by

E [x(t)] = α
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wherens is the average number of signal photons in the signal pulse,σ is the time-domain spread of the
pulse,t0 is the center of the pulse in the time-domain, andα is the multiplicative fade, assumed to be a
constant. An ideal exponential pulse with time constantτ is described by
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Eight different pulse types and spreads (four Gaussian and four exponential) were tested, as defined in
Table 1. In Table 1 hypothesesH1 andH5 correspond to “half-width” pulses, which are one-half the normal
width. HypothesesH2 andH6 correspond to “full-width” pulses in which 99% of the photons are contained
within the 20 ns slot duration (corresponding to 16 samples at our sampling rate). HypothesesH3 andH7

correspond to “double-width” pulses containing 99% of their photons within two PPM slots, and hypotheses
H4 andH8 correspond to “triple-width” pulses in which 99% of the photons are spread over three slots. In
the exponentially decaying case the pulse is defined to start at the beginning of the slot (to catch the largest
number of photons in the signal slot), while in the Gaussian case the pulse is centered at the middle of the
signal slot (once again to maximize the number of photons in the signal slot itself). Figure 2 illustrates the
four Gaussian and exponential pulse types tested.

The attenuation of the signal can be modeled by another multiplicative parameterβ, which is a function
of α andσ for Gaussian pulses; andα andτ for exponentially decaying pulses.

Onceσ, α, andβ are known, or adaptively estimated, they can be used in conjunction with receiver
operating characteristic (ROC) curves to select the signal detection threshold,λ, in an adaptive manner.
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Figure 2: Illustration of Gaussian (left), and exponential (right) pulse shapes used in the simulations. The
sampling rate is 800 MHz (16 samples per 20 ns slot). For the Gaussian pulses, three PPM slots (48 samples)
are illustrated with the signal slot in the center. The exponential pulses begin at the start of the signal slot in
order to maximize photon collection within the signal slot.

2.1 Estimating pulse spread

Neural networks are commonly used to solve problems in pattern recognition [8]. We use a radial basis
function network here to recognize pulse shapes, with particular emphasis on determining the pulse spread
σ or τ, via the following steps:

1. Noise-only portions of the received PPM symbols (i.e. the “dead-slots”) are averaged to compute the
ambient background signal. This DC background level is subtracted out, removing daylight effects,
and leaving us with only the received signal pulse; thus simplifying the analysis.

2. The vector of pulse samples is normalized to unitL1 norm. When estimatingσ or τ, a great deal
of training time can be saved if the neural network is presented with normalized pulse shapes. This
improves system reliability as well since the network is less likely to be confused by differences in
the pulse caused by fading.

3. The normalized pulse is presented to the neural network for analysis. The network returns a num-
ber indicating its estimate of the pulse spread parameterσ for a Gaussian pulse or the time-decay
parameterτ for an exponential pulse.

Additional performance improvements can be obtained by using a Reed-Solomon (255,223) code to
encode the data in order to detect and remove defective PPM symbols, or possible shot noise events. A
total of 255 received symbols are decoded to obtain 223 original data symbols. These are then re-encoded,
and the resulting 255 “corrected” symbols are compared to the symbols received from the channel. Any
channel symbols differing from the results of re-encoding are considered to be noise events and are ignored.
Symbols agreeing with the re-encoded symbols are deemed reliable, and used in the average.

For each symbol to be averaged, three slots (48 samples) consisting of the received PPM signal pulse
and its adjacent slots are selected. An average pulse consisting of up to 255 received channel pulses is thus
computed. This procedure results in more reliable averaged symbols being presented to the RBF network,
allowing very accurate pulse classification.
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Figure 3: Classification performance of the RBF network without pulse fading. The light gray line denotes
actual pulse categories and the darker line denotes the network’s classification output. The error is also
illustrated.

Figure 3 illustrates the ability of the RBF network to classify pulses based on their pulse spreads. The
actual pulse categories and the neural network’s classification output are seen to be very close to each other,
demonstrating the network’s excellent classification accuracy and low error performance.

2.2 Estimating pulse fadeα

The fadeα of the slot signal is a linear function of theL1 norm of the pulse calculated during pulse normal-
ization. A family of such linear graphs exists, each with different slopes corresponding to different values
of pulse spread. Given a value for the spread (σ or τ), the appropriate curve is selected; its slope computed,
and used in conjunction with the correct value for theL1 norm of the pulse, to estimateα.

Figure 4 illustrates the ability of the system to estimate fades once the pulse spreadσ is known. The
estimated fades are plotted against actual fades, and it can be seen that the points lie close to the liney= x,
indicating the accuracy of fade estimation.

2.3 Determining pulse attenuationβ

The total multiplicative attenuationβ of a Gaussian pulse can be written as

β = α f (σ); (3)

where f (σ) is the average proportion of “signal photons” contained in the signal slot. This is derived to be
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Figure 4: Fade estimation performance for a pulse withσ = 0:2Ts. Fades ranging fromα = 0:25 toα = 0:80
were estimated under daytime conditions with Gaussian pulses. In this case, a Reed-Solomon error-control
code had been used to remove invalid symbols prior to pulse averaging.

as expressed in terms of the commonly used “Q” function in communications.1

In the case of an exponential pulse (Eq. (2)), we define the pulse duration as the timeTd which contains,
on average, 99% of the photons in the pulse. This yieldsτ = Td= ln(100) as the pulse’s time constant.

Givenτ, we compute the average fraction of signal photons in a slot by computing
R Ts

0 exp(�t=τ)dtR ∞
0 exp(�t=τ)dt

= 1�exp(�Ts=τ) = 1� (0:01)
Ts
T (6)

which in turn yields the following forβ:

β = α
h
1� (0:01)
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3 Pulse Detection

Based on estimates of the above parameters at regular time intervals, we are now interested in determining
the receiver operating characteristic (ROC) curves when an adaptive threshold device is in use.

Let PFA be the probability of false alarm. This is the probability that APD noise will exceed the signal
detection threshold, thus causing a PPM symbol detection event when no PPM symbol exists. LetPD

be the probability of successful signal detection, which is the probability that if a pulse is present it will
be successfully detected. Our hypothesis testing problem can now be formulated as follows:ξ0 is the
hypothesis under which no pulse has been sent, andξ1 is the hypothesis under which a pulse has been sent.

Let p(xjξ0) denote the probability density function (pdf) of the received slot signalx given hypothesis
ξ0 and p(xjξ1) denote the pdf of the received slot signalx given hypothesisξ1. Equations (8) and (9) give
PFA andPD in terms of the thresholdλ:

PFA = P(D1jξ0) =

Z ∞

λ
p(xjξ0)dx (8)

1Q(x) =
p

2π(�1) R ∞
x exp(�t2=2)dt
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Figure 5: Illustrated here are a “theoretical” ROC curve forβ = 0:2900; and two experimentally obtained
ROC curves: “Gaussian 1” for the case whereσ = 0:2Ts andα = 0:30, corresponding toβ = 0:2963, and
“Gaussian 2” for the case whereσ = 0:6Ts andα = 0:50, corresponding toβ = 0:2977.

PD = P(D1jξ1) =
Z ∞

λ
p(xjξ1)dx (9)

We then compute the ROC curve for this receiver as a plot ofPD versusPFA. For a given set of channel
conditions,PD will be a function ofPFA. The ROC is parameterized byλ, and a given value ofλ will yield
a point on the ROC. The intelligent agent then uses its knowledge of the channel conditions as determined
above, to select the thresholdλ.

3.1 The use ofβ in selecting an ROC

The ROC is itself a function of the overall attenuationβ, and it is reasonable to ask whether the use of
an overall multiplicative attenuation is justified. This can be an important issue for cases where the time-
domain spread of a pulse is large, leading to significant presence of signal photons in slots other than the
signal slot (e.g. a Gaussian pulse with spreadσ = 0:6Ts). In fact in such cases, due to the stochastic nature
of the received signal, one of the adjoining slots may contribute significantly toPD.

Experimental results, however, suggest that the ROC typically remains the same for constantβ even
when there are significant variations in bothα andσ for Gaussian pulses (α andτ for exponentially decaying
pulses). Figure 5 illustrates this. It can be seen here that in spite of significant differences in pulse shapes
the ROC is essentially a function of the total multiplicative attenuation. This in turn justifies the use ofβ in
selection of an ROC curve, followed by selection of an operating point on the ROC, based on user needs.

3.2 Selecting a point on the ROC

The pdf in the noise only case,p(xjξ0) (see Eq. (8)), is a function of ambient lighting conditions (average
background photons per slot), Gaussian thermal noise in the APD, and the APD’s own physical parameters
(i.e. APD gain, etc.) Scintillation and fading affect only the signal without affecting either the background
photon counts or the thermal noise. This implies that channel conditions primarily affect the ROC and the
function of the threshold device throughPD.
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If the Neyman-Pearson criterion is used, one could set a threshold using Eq. (8) without considering
channel conditions. This may, however, lead to unacceptably lowPD, particularly under conditions of severe
scintillation (corresponding to severe time-smearing) and/or severe fading (low values ofα). Accordingly,
it is often important to takePD into account, which in turn implies the need to consider channel conditions.
We will thus emphasize the selection of a target value ofPD in the experimental results below with the
understanding that any receiver must select the thresholdλ by considering bothPFA andPD.

4 Experimental Results

We demonstrate the operation of the system below using both Gaussian and exponential pulses.

4.1 Example 1: Gaussian pulse under daytime steady-state conditions

In this first example we focus on a Gaussian pulse received under daytime, steady-state operating conditions.
Under these conditions, a Reed-Solomon (255,223) error control code has been used to eliminate “wrong”
symbols, leaving only correct pulses to be averaged (assuming no catastrophic decoding errors). The relevant
parameters are as follows: fadeα = 0:50, spreadσ = 0:4Ts, and overall attenuationβ = 0:3944.

Estimation of attenuationβ is performed as outlined above. In this example the RBF network output was
2:9780, which is within 1.0% of the correct output of 3:0000 corresponding to hypothesisH3. The estimated
values for the fade and the multiplicative attenuation wereα = 0:4928 (close to the actual fadeα = 0:5000)
andβ = 0:3887 (close to the theoretical value ofβ = 0:3944).
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Figure 6: A plot of actual vs. desired probability of signal detection for the case of Gaussian pulses with
σ = 0:4Ts, α = 0:50. The closeness of the experimental detection probabilities to the target probabilities
illustrates the system’s ability to accurately select a signal detection threshold.

At this stage, one could use the simple Neyman-Pearson test to set a threshold, but as explained above,
this may not yield an acceptable value ofPD. As stated in Section 3.2, it may be necessary to use knowl-
edge of the exact ROC, which requires knowledge ofβ, to select the thresholdλ. In our simulations, we
selected values ofPD ranging from 0:025 to 1:000 in steps of 0:025 by selecting the thresholdλ using the
parameterized ROC curves. To test the quality of the threshold selection based onβ, we can observe the
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Figure 7: Experimental and actual ROC curves for Gaussian pulses withσ = 0:4Ts andα = 0:50.

achieved values ofPD plotted against the targetPD. An ideal system should yield a straight line with a slope
of 1.0, but a realistic system will yield a noisier line, as illustrated in Fig. 6. The resulting signal detection
performance, expressed in terms ofPFA andPD, is shown in Fig. 7.

4.2 Example 2: Exponentially decaying pulse under night acquisition conditions

In the second example, we assume an exponentially decaying pulse received under night conditions and
in acquisition mode. This means only ten pulses have been averaged for rapid determination of channel
parameters. No error control code is used to remove defective symbols. The relevant parameters are as
follows: fade:α = 0:30, spreadτ = 1

ln(100)Ts, and overall attenuationβ = 0:2970.
Estimation of the attenuationβ is done as outlined above. Here the output of the RBF network was

5:8308, which is within 3.0% of the correct output of 6:0000 corresponding to hypothesisH6. The other
parameters are computed to beα = 0:3057 (close to the actual fadeα = 0:3000), andβ = 0:3026 (close to
the theoretical value of 0:2970).

Figure 8 shows the achievedPD vs. targetPD, illustrating the accuracy of the threshold selection process.
Figure 9 shows the experimental ROC data versus the theoretical curve. It can be seen that for highPD, the
two curves are quite close.

5 Conclusions

A method for setting PPM pulse detection thresholds using neural-network based estimates of channel pa-
rameters has been presented. RBF networks have the ability to accurately determine the shapes of received
PPM pulses, permitting an intelligent agent in the optical PPM receiver to determine channel operating
conditions and set the appropriate detection threshold for PPM signals. Under a variety of fading and scin-
tillation conditions and under two different families of pulse shapes, the proposed system is able to achieve
high accuracy in estimating relevant channel parameters and is also able to accurately select points on the
receiver operating curve as needed to achieve a balance betweenPFA andPD.
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Figure 8: Achieved vs. TargetPD. The threshold selection process yieldsPD close to target.
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Figure 9: Actual and Theoretical ROC for exponential pulses under acquisition stage conditions.
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Future directions include exploration of more sophisticated methods of channel analysis, with an empha-
sis on improved channel parameter estimation accuracy, and on making better use of channel information. In
particular, the system presented here estimates the degree of scintillation (through pulse shape analysis) and
the degree of fading as separate numbers. Such information could be used in other ways by an intelligent
agent seeking to maintain slot and symbol synchronization in addition to being used for signal detection.
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