Space-Based Autonomous Reconfigurable Protocol Chip

Clayton Okino, Clement Lee, Andrew Gray, Payman Arabshahi

Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive M/S 238-343 Pasadena, CA 91109 (818) 393-6668 {Clayton.Okino, Clement.Lee, Andrew.Gray, Payman.Arabshahi}@jpl.nasa.gov

Abstract—In this paper, we present an architecture for a reconfigurable protocol chip for space-based applications. We present a model for examining various stimuli for reconfiguration in space, and identify some approaches to operating on the stimuli. In particular, we examine fault tolerant schemes and reconfiguration based on detection of a link layer framing format.¹²

TABLE OF CONTENTS

1. INTRODUCTION	I
2. FRAMEWORK AND ARCHITECTURE	1
3. Remarks	6
References	6
BIOGRAPHY	6

1. INTRODUCTION

In this work, we present an architecture for implementing a software reconfigurable network processor for satellite communication applications. The reconfigurable protocol chip enables rapid autonomous reconfiguration of space communications network functions. This reconfiguration provides long-life space communications infrastructure, enables dynamic operation within space networks with nodes, heterogeneous and compatibility between heterogeneous space networks (i.e. distributed spacecraft missions using different protocols) as depicted in Figure 1. This work builds upon numerous advances in commercial industry as well as NASA and military software radio developments to develop reconfigurable space network processing and processors and operating parameters. Dynamic reconfiguration techniques developed herein include autonomous network/protocol identification and autonomous network node reconfiguration. Both the Earth Science Enterprise Strategic Plan and Research Strategy for 2000-2010 identify satellite constellations and specifically distributed spacecraft and particularly formation flying technologies as an important technology thrust and

investment areas, applicable to a range of missions. Such missions will have wireless network protocols derived or extended from commercial efforts in this area. Specifically, commercial

Figure 1

Heterogeneous networks in space

protocols might be used or might be modified for use in many future distributed spacecraft missions. It is a tremendous challenge to find one "universal" protocol to meet the requirements of all of these future missions.

This being the case, missions in the next 5-10 years are extremely likely to be operating with multiple protocols and substantial protocol variations depending on the requirements of the distributed spacecraft mission.

We initially present the basic concept for the architecture of the reconfigurable protocol chip. We then proceed with examining the various stimuli associated with various forms of reconfiguration, and then present an overall architecture.

2. FRAMEWORK AND ARCHITECTURE

In this section, we describe the basic reconfiguration architecture for space-based applications. We identify the key input stimuli, the mechanism that perform detection of the stimulus and some processing either coupled or decoupled that executes intelligent decision on the input.

¹ 0-7803-8870-4/05/\$20.00© 2005 IEEE

² IEEEAC paper #1402, Version 1, Updated October 27, 2004

As depicted in Figure 2, the reconfiguration architecture presented contains three key components required to identify and perform reconfiguration in space: (1) External stimulus detected will either result in a requirement to perform a chip reconfiguration or a desire to reconfigure a chip; (2) Sensors are required to detect and possible perform specific in-situ processing on the detected stimulus; (3) Intelligent processor performs the decision either independently or in a coupled manner if multiple stimulus are correlated such that desired outcomes of the process have differing reconfiguration mappings.

External Stimuli

In space-based operations, various interactions are desirable or necessary. We identify a set of currently realizable or desirable sensing interactions such as radiation, physical layer communication, link layer variability (interheterogeneity and intra-heterogeneity), updatability (to improve overall performance or correct errors in original design).

Figure 2 Space-based Reconfigurable Chip Architecture

Radiation-A key source of failure of a module in space resulting in a system fault in space environment [2]: Galactic Cosmic Rays (GSM), Solar Radiation (e.g. Solar Wind/Protons, Coronal Mass Ejections), Planetary Magnetic Fields (e.g. Van Allen Belts, Jovian belts). Some key types of radiation effects [2][3] are Total Ionization Dose (TID): cumulative ionization causing increase in leakage current and threshold shifts; Single Event Effects (SEE): single particles, Linear Energy Transfer, Single Event Latch up (SEL), Single Event Upset (SEU), Single Event Multiple Upset (SEMU), Single Event Gate Rupture, Single Event Micro-dose.

Physical Layer Communication Impairments

In space, key impairments and the effect it has on performance at the physical layer (assume RF links) are due to variations in the channel. The effect of these impairments can be mitigated utilizing various waveforms, error correction techniques, (as well as link layer reliability techniques and other higher layer interactions). Ideally one could map EIRP (perform link budgets, map to a potential set of waveforms or allowable waveforms, then perform appropriate detection in the Waveform Detection Module). Beyond a brief description of the Waveform Module description is techniques is beyond the scope of this work and is out of scope of this paper although is popular among the Software Radio community.

For our approach and for the remainder of this paper we assume a single waveform specifically, a BPSK waveform.

In terms of OSI layer 2, we recognize that space-based variability in terms of reconfiguration amount to the possibility of a number of link layer protocols and the ability to interact among various heterogeneous networks. If we assume a synchronization capability of some form either octet synchronous possibly due to framing performed at the forward error correction framing level, or some other mechanism such as described in the Goddard Space Flight Center (GSFC) Parallel Integrated Frame Synchronizer (PIFS) Chip, we can then perform additional framing detection as can be found in many standards. As a baseline capability, we assume a form of HDLC (RFC1662)[4] & 802.3 link layer framing.

Reconfiguration Variability

Version upgrades, added features, reliability of valid transfer are all desirable and in some cases required mechanism in a reconfigurable platform. Analogous to this philosophy is the ability to perform upgrades and add software while a spacecraft is in transit to a remote location. Some preliminary work has been performed for a spacecraft avionics architecture to provide reconfiguration in-situ [5]. In particular, [5] describes mission operation procedures and uplink/downlink process to reconfigure the spacecraft inorbit where commands are defined to execute the in-fight hardware reconfiguration where spacecraft safety is of significant concern.

Fault Detection Architecture

In this sub-section, we briefly describe a mechanism for sensing a faulty portion of an FPGA and a mechanism to load an alternate spatial orientation of the circuit design. This is the highlighted portion of the of our paper, we omit the complexity of other fault tolerance schemes³.

³ In general, we anticipate utilizing schemes such as Triple Modular Redundancy (TMR), a form of circuit replication and voting for space-based fault tolerance.

Fault Detection Sensor-The fault detection sensor must detect and distinguish between transient and permanent faults. The trade offs for different methods of fault detection include circuit down time, circuit complexity, and detection update rate. The chosen, low complexity fault tolerance scheme allows for a basic level of reliability. Other complex fault tolerance schemes can be implemented on top. In order to constrain the complexity

Cyclic Redundancy Check (CRC) codes provide a simple and effective tagged data scheme to monitor data corruption in many applications. CRC codes were selected as the fault detection sensor scheme due to their ease of implementation. However, system downtime and detection update rates may be an issue depending on the application, i.e. network latency requirements. In our scheme, CRC codes will be inserted into the data processing periodically. A single CRC failure will trigger a transient fault detect. Multiple consecutive CRC failures will trigger a permanent fault detect.

Fault Tolerant Mapping-The reconfigurable processor uses a simple two tiered fault diagnosis and recovery architecture, as shown in Figure 3.

Figure 3 Two tiered fault detection and recovery

Transient fault detects will be accumulated to detect permanent faults. Other than notifying the application, nothing else will be done to correct transient faults. We can rely on higher layers to deal with the effects of transient faults. Permanent faults will be dealt with by reprogramming the FPGA with an alternate pre-compiled spatial variant of the same application.

The motivation for this fault tolerance mapping is to increase the dependability of the link layer operation within the FPGA. The overall architecture is based on a priori knowledge of the failure within the FPGA.

If the spatial representation of an FPGA is defined in Euclidean coordinates (x,y), then let p(x,y) be the probability of a point in an FPGA failing. Given this distribution, we could simply constrain our FPGA design to minimize use of the points with the highest values of p(x,y). The probability of failure for the *ith* configuration file occupying some subset, r_i , of the entire FPGA is

$$P_i = \sum_{(x,y)\in r_i} p(x,y)$$

The spatial variants for a protocol detection circuit for 802.3 and HDLC framing structures is shown in Figure 4. Due to the relatively small size of the design, the Xilinx Spartan 2 XC2S30 FPGA was selected, where utilization is $\sim 50\%$ [1].

Figure 4 FPGA Floor Plans for 4 phases of constraints with 50% utilization

Waveform Detection Module

Many variants on dynamic waveform detection and reconfiguration can be employed. In particular the ability to detect a particular waveform in-situ and then reconfigure in space is a novel concept even though the basic concept can employ well-known techniques as are used in standard dialup modems. For our case, we shall assume that the waveform is BPSK and leave the remainder of waveform detection for future work out of the scope of this report. Significant work has been performed on reconfiguration of waveforms in terms of Software Defined Radio (SDR) as as work performed under the Software well Communications Architecture (SCA) [9].

Protocol Architecture

In this subsection, we consider the sensing of a particular link layer framing structure and the corresponding decision circuitry.

Protocol Correlation Module-The protocol correlation module is a layer 1 sensor that is expected to detect between a set of possible protocols. The concept of heterogeneous networks in space will be driven by a number of variables outside of the scope of this work. However, we can consider target protocols that have high probability of use in future space-based networks. Among these are HDLC variants (e.g. RFC1662), 802.3, and Generic Framing Procedure (GFP). For this paper, we consider three protocols, 802.3, RFC1662 as depicted in Figure 5 and GFP as depicted in Figure 6.

Figure 5 The 802.3 and RFC1662 (HDLC) Framing and header differences

Link Layer Recognition and Processing Schemes for 802.3 and RFC 1662 -We assume that the physical layer is octet synchronous for both the 802.3 frame structure and the RFC1662 HDLC frame structure. Specifically, the 802.3 preamble is omitted and we focus on the 802.3 start frame delimiter and the HDLC opening flag. As in any link layer protocol some of the primary functional attributes are frame synchronization, addressing, multi-protocol selection, data transparency, and reliability. To simplify the analysis, we focus on the RFC1662. Furthermore, we assume that the address field is set at 8 bits, the control field is fixed, the Frame Check Sequence is fixed at 16-bits and we are not utilizing ARQ.

For frame synchronization, it is straightforward to perform a cross correlation between the two start field bit sequences. Recognize that 0x7E and 0xAB differ in exactly 5 bit locations as depicted in Figure 5 above.

Consider a generic threshold circuit that is needed to validate the start flag for a single link layer protocol. In the case of RFC1662 (or 802.3), tolerating a number of bit errors (bit flips) in the start flag would be desired. Recognize that a sensing decision circuit in the form of a threshold decision circuit used to determine if the protocol is 802.3 versus HDLC will make an incorrect decision if at least 3 of the differing bits are in error (i.e. it will mistaken one protocol for the other).

Suppose p is the probability of a bit error. Then among the 5 differing bits, if any 3 or more bits are in error, then it can be shown that the sensing decision circuit will result in a protocol decision error from the binomial distribution as

Pr(False protocol detection) =
$$\sum_{i=3}^{5} {5 \choose i} p^i (1-p)^{5-i}$$

= $10p^3 + 5p^4 - 14p^5$

As depicted in Figure 7, we examine a plot for likelihood of false protocol sensing as a function of Signal to Noise (SNR) for uncoded Binary Phase Shift Keying (BPSK) modulation conditioned on reconfiguration between the two defined protocols using the simple threshold decision circuit. We observe that in general, the likelihood of a false sensing and error protocol configuration is low and decreases fast with respect to the bit error rate (BER) for BPSK. However, if the circuit is consistently monitoring on a per packet basis, and a burst of bit errors occur, then invalid reconfiguration could occur on a per packet basis. To reduce the likelihood of "protocol configuration flapping", we introduce a Markovian state based concept where we condition re-configuration on prior states.

Ideally, we would like the conditional state probability distribution of the sensing error. As an approximation, it would be advantageous to use the conditional average bit error rates.

Pr(error at time t = T) =
$$\sum_{i=3}^{5} {5 \choose i} p_T^{i} (1 - p_T)^{5-i}$$
,

where $p_T = p(t = T/t = 0, 1, 2, ..., T - 1)$, the average probability given the probability of the previous bit time slots. In general, one could assume that since all bits are independent, this is fixed to *p*, the probability of a bit error. However, if in a space-based (wireless) scenario the channel correlates bit errors (analogous to burst errors), then the independence assumption no longer holds and a conditional distribution is desired for state dependent autonomous protocol reconfiguration. We introduce an example of such an algorithm in [1].

We now extend the concept of error detection with higher resolution. Specifically, we consider identifying the data transparency variations within RFC1662. In particular, we detect the difference between the bit-stuff operation (RFC1662 Section 4) and the byte stuffing operation (RFC1662 Section 5). First, we briefly describe these two stuffing mechanisms and then describe a procedure for resolving the stuffing approach being used

Figure 7 Protocol Sensing Error Probability

From RFC1662, for the byte-stuffing procedure, the bit sequence is examined on an octet by octet basis. Since the flag sequence is 0x7E and we assume that the likelihood is uniform among all possible octet sequences, we have the well-known result for this sequence occurring with probability 1/256. Specifically, in RFC1662 the 0x7E sequence maps to 0x7D followed by 0x5E. Another possible character re-mapping is the control escape sequence 0x7D re-mapped to 0x7D followed by 0x5D.

From RFC1662, for the bit-stuffing procedure, the bit sequence is examined on a bit by bit basis. Since the flag sequence is 0x7E (containing five one's in a row), then a "0" bit is inserted after all five contiguous "1" bits. We have the well-known results of the likelihood of these sequences occur with probability 1/32.

In addition to utilizing the traditional CRC codes to validate that frames are correct, we can also validate using the special sequences described for the byte stuffing procedure. We assume that the only re-mapping for the byte stuffing procedure are the flag sequence and the control escape sequence. If we assume that the control escape sequence is almost never used, then we are evaluating if the bits sequence 0x7D5E exist versus the bit sequences that equate to inserting an additional "0" using bit stuffing equating to the 15-bit sequence "011111101011110". The likelihood that this is originally a bit stuffing process would be the likelihood that this exact 15-bit sequence occurred resulting is a probability of $1/2^{15} = 3e-5$. By executing this checking process and then weighting this scenario as a bit stuffed process with the $1/2^{15}$ likelihood followed by the proper CRC based on detecting the end-of-frame correctly then we can select the type of stuffing. Further examination into this the benefits of this procedure as oppose to simultaneously implementation of both stuffing procedures is under investigation. Note that weighting likelihood detections schemes of this form allow for a level of

scalability but also present some finite likelihood of false detection.

GFP versus 802.3 and RFC 1662 (HDLC)-We now consider incorporating the GFP standard into the sensing mechanism. As depicted in Figure 6, the GFP framing procedure (as used in the ITU Recommendation for G.7041/Y.1303) involves the use of specifying a length field (PDU length field) as oppose to a start flag (used in 802.3 and RFC 1662). In addition, to strengthen the reliability of the 16-bit PDU length field, a 16-bit error checking code called the Core Header Error Control (cHEC) Field is defined. The cHEC is a CRC-16 code and defined as

Now consider \overrightarrow{HD} \overrightarrow{PC} with \overrightarrow{rspect} to \overrightarrow{rsp} Assuming equally likely frame sizes (16-bit patterns), then there are 256 (0x7E) patterns out of the 216 -3 -1 = 65532 possible patterns for the length field that could result in a mistaken HDLC start or rather we have 256/65532 = -0.0039 as the likelihood (with no additional state knowledge, or use of CRC-16) of mistaking a GFP as an HDLC pattern. Similarly, we have 256 patterns out of the 65532 that can be incorrectly detected an 802.3 start flag. To reduce this likelihood of mis-detecting the GFP framing as either an 802.3 or RFC 1662 frame, we now factor in the CRC-16 check sequence as specified in the GFP framing structure. We consider the assumption that we have a GFP frame and calculate the likelihood of mis-detecting some other start flag procedure as a GFP frame: Thus, we have 1/65532 =1.525e-5. To reduce this likelihood of mis-detecting well below the 1e-5 region, we consider examining multiple consecutive frames. In particular, we have

 $p = (1.525e - 5)^n$ where p is the likelihood of mis-detection and n is the number of consecutive frames. For n=3, the likelihood is 3.55e-15.

Real-time FPGA File transfer

Beyond the standard mechanism employed in COTS Network Interface Cards (NICs), the concept of updating the file transfer process at the link layer is a novel concept that has not been fully leveraged in space-based applications. This is described in a companion paper in this conference [10].

Figure 8 Space-based Reconfigurable Hardware Platform

In Figure 8, we combined all the reconfiguration concepts and present an overall space-based reconfiguration platform. As part of the platform, the option to group all reconfiguration core into a single chip or partition into multiple chips will be investigated in the future. As part of the trade-space, the concept of integrating the sensing and reconfiguration into a Software Defined Radio platform is of high interest. This allows for developing and integrating the core into a standard platform with the above flexibility typically found in all FPGA development platforms. The platform is not restricted to the use of a Xilinx Virtex-II Pro, although this platform is more that satisfactory for development with a desired path to flight ready hardware. The intent is to produce platform independent core with some well–defined API.

3. REMARKS

We presented a promising architecture—that includes stimuli sensing capability and an intelligent processor—for a space-based reconfigurable protocol chip. We examined a simple strategy for detecting and combating faulty circuitry. Finally, we presented some standard link layer framing protocols and identified a detection mechanism for the data transparency variants in RFC1662. In addition to refinement of the link layer protocol set, there is significant interest in refinement of the reliable link layer file transfer architecture and corresponding protocol.

Contractual Acknowledgment

The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology and was sponsored by the National Aeronautics and Space Administration.

REFERENCES

[1] C. Okino, C. Lee, A. Gray, P. Arabshahi, "An Autonomous Evolvable Architecture in a Reconfigurable Protocol Chip for Satellite Networks", 2003 MAPLD International conference, September 9-11, 2003, Washington, D.C. [2]John Scarpulla and Allyson Yarbrough, "What Could go Wrong? The Effects of Ionizing Radiation on space Electronics",

http://www.aero.org/publications/crosslink/summer2003/03. html

[3] Raphael Some, "Radiation Models and Hardware Design", presentation in 2002.

[4] RFC1662 – PPP in HDLC-like Framing, July 1994.
[5] Savio Chau, Adans Ko, Kar-Ming Cheung, "Mission operation for reconfigurable spacecraft", SpaceOps 2004 conference.

[6] L. Clare, J. Gao, E. Jennings, C. Okino, "Reliable Link Layer File Transfer" DRAFT technical report May 2004.
[7] Shu Lin, Philip S. Yu, "A Hybrid ARQ Scheme with Parity Retransmission for Error Control of Satellite Channels", IEEE Transactions on Communications, no. 7, July 1982 pp. 1701-1719.

[8] Roy You, "Proximity Link with Hybrid ARQ", June 2004, JPL Technical Report.

[9] Software Communications Architecture <u>http://jtrs.army.mil/sections/technicalinformation/fset_techn</u> ical.html?technical_SCA.

[10] C. Okino and Jonathan LaBroad "A reliable data transfer architecture for a space-based protocol chip", 2005 IEEE Aerospace Conference, Big Sky, MT (to be presented).

BIOGRAPHY

Clayton Okino received a BS in Electrical Engineering at

Oregon State University in 1989, a MS in Electrical Engineering at Santa Clara University in 1993, and a Ph.D. in Electrical and Computer Engineering from the University of California, San Diego in 1998. After receiving his Ph.D., Dr. Okino accepted a position as an assistant professor in Thayer School of Engineering at Dartmouth College,

where he pursued research in communication and wireless networks, emphasizing on performance and security. In 2001, Dr. Okino accepted a position as a Senior Member of the Technical Staff in the Digital Signal Processing group at Jet Propulsion Laboratory and is now in the communications network group, where his current research is in wireless network routing and access algorithms, reconfigurable sensors, wireless QoS and location based processing techniques and has PI-ed numerous projects.