
 

 1

Neural Network Based Model Reference Controller  
for Active Queue Management of TCP Flows 

 
Kourosh Rahnami, Payman Arabshahi, Andrew Gray 

Jet Propulsion Laboratory 
California Institute of Technology 

Pasadena, CA 91109 
{rahnamai,payman,gray}@jpl.nasa.gov 

 
 
Abstract—We discuss here, implementation of a Neural 
Network (NN) based Model Referenced Control (MRC) 
algorithm to improve transient and steady state behavior of 
Transmission Control Protocol (TCP) flows and Active 
Queue Management (AQM) routers in a network setting. 
Based on a fluid theoretical model of a network, two neural 
networks are trained to control the traffic flow of a 
bottleneck router. Results show dramatic improvement of 
the transient and the steady state behavior of the queuing 
window length. The results are compared to the traditional 
RED algorithm and the P and PI controllers of classical 
control theory. 
 

TABLE OF CONTENTS 

1. INTRODUCTION............................................................ 1 
2. FLUID-BASED TCP FLOW MODEL .............................. 1 
3. LINEAR MODEL DERIVATION ..................................... 1 
4. MODEL REFERENCE NEURAL NETWORK................... 4 
5. RESULTS....................................................................... 4 
6. CONCLUSION ............................................................... 5 
 

1.  INTRODUCTION1 

Active queuing management is an important method to 
inform traffic sources of possible network problems at early 
stages of congestion. Using this feedback methodology, 
sources with heavy demand would reduce their flow rate to 
avoid network congestion and erratic network behavior. 
This concept has been the subject of many research papers 
[1-10]. However, recently much work has been done in 
modeling a network of Active Queue Management (AQM) 
routers using fluid dynamics theory [1-3]. Hollot and Misra 
[3-4] have shown that based on the linear model of a typical 
network, classical control system theories and design 
methodologies can be used to improve network performance 
and avoid network congestion. 2 

                                                 
1 0-7803-8870-4/05/$20.00© 2005 IEEE 
2 IEEEAC paper #1408, Version 3, Updated November 22, 2004 

2.  FLUID-BASED TCP FLOW MODEL 

In this section, we show in detail the process of developing 
the differential equation governing the TCP traffic flow. 
Fluid models have been used successfully to obtain 
nonlinear and linear models to describe dynamics of TCP 
and AQM [2-4]. The following coupled nonlinear 
differential equations describe the behavior of a typical 
TCP. 

( ) 1 ( ) ( ( ))
( ( ))

( ) 2 ( ( ))

d W t W t W t R t
p t R t

dt R t R t R t

•

−
= − −

−
                  (1) 

( )
( )

d q N
W t C

dt R t

•

= −                                                           (2) 

( )
( ) p

q t
R t T

C
= +                                                                  (3) 

 
where W is the expected TCP window length (packets), q  is 
the queue length (packets), R is the round trip time 
(seconds), C is the link capacity (packets/s), Tp is the 
propagation delay (seconds), N is the number of TCP 
sessions, and P is the probability of packet marked/drop. 
Obviously W and q cannot take negative values and are 
bounded respectively by Wmax and qmax, i.e., W ∈ [0, Wmax], 
and q ∈ [0, qmax]. 

Eq. (1) describes the behavior of the window-length. At 
each time iteration, window length is increased by one 
packet unless a packet loss occurs, then window length is 
reduced to half of its current value. Eq. (2) captures the 
dynamic behavior of the expected queue length and Eq. (3) 
is a static equation describing the round-trip delay as the 
sum of the propagation and queuing delays. 

3.  LINEAR MODEL DERIVATION 

In general, for a nonlinear function x(t) 

 ( ) ( ( ), ( ), )x t f x t u t t
•

=                                                    (4) 
Assuming that f(⋅) is smooth and has continuous 

derivative around the operating point, and using a Taylor 
series expansion, we can find the linear model of this 
nonlinear equation as 



 

 2

0 0[ ( ), ( ), ] [ ( ), ( ), ]

( ) ( ) ( ) ( ) ( , )x u

f x t u t t f x t x t t

f t x t f t u t o x uδ δ δ δ

=

+ + +
            (5) 

where 

 
0 , 0 0 , 0

( ) , ( )x u

x u x u

f f
f t f t

x u

∂ ∂
= =

∂ ∂
                              (6) 

Then 

 x ux f x f uδ δ δ
•

= +                                                       (7) 

Now a linear model [2-3] for Eqs. (1-3) can be derived 
around a nominal solution Q0 = (W0, R0, q0, p0). Let N and R 
be considered as constants; then Eqs. (1) and (2) can be 
rewritten as: 

 
( ) 1 ( )

( )
2

RWd W t W t
p t R

dt R R

•

= − −                                (8) 

 ( )
d q N

W t C
dt R

•

= −                                                       (9) 

 
1 ( )

( , , , ) ( )
2

R
R

WW t
x W W q p p t R

R R
= − −                   (10) 

 ( , ) ( )
N

u W q W t C
R

= −                                               (11) 

where ( ) ( )RW t W t R= − . 
At operating point Q0, the steady state conditions for Eqs. 

(8) and (9) are given by 
 

0 0
0

0 0

1
0, 0

2

W W
W p

R R

•

= ⇒ = −  

2 2

0 0 0 0 2

0 0

2 2
2 ,W p W p

p W
= ⇒ = =                           (12) 

0

0

0
N

q W C
R

•

= ⇒ −  

0
0

R
W C

N
=                                                                      (13) 

Calculating partial derivatives around the operating point 
will result in 

0 0 0 0 0 0 0 0

0
0

( , , , ) 0( , , , )

0
2W R p q R W R p q

Wx x
p

W W R

∂ ∂
= = −

∂ ∂
 

 

0 0 0 0

0

2
( , , , ) 0 0 0 0

2 1

2W R p q

Wx

W R W R W

∂
= − = −

∂
 

 
Using Eq. (13) 

0 0 0 0

2
( , , , ) 0 0 0

1

W R p q

x N

W R W R C

∂
= − = −

∂
                                  (14) 

0 0 0 0 0 0 0 0

0 0 0 0

( , , , ) ( , , , )

2

( , , , )

1 ( )
( )

2

1

2

R

W R p q W R p q

W R p q

Wx W t
p t R

q q R R

W
p

q R R

∂ ∂
= − −

∂ ∂

∂
= −

∂

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

 

Using Eq.  (3) 

0 0 0 0

0 0 0 0

2

( , , , )

( , , , )

1

2W R p q
p p

W R p q

x W
p

q qq q T T
C C

∂ ∂
= −

∂ ∂ + +

⎡ ⎤
⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟
⎣ ⎦⎝ ⎠

 

0 0 0 0

0 0 0 0

2

2 2

( , , , )

( , , , )

1 1

2W R p q

p p
W R p q

W px C C
q q q

T T
C C

−∂
= +

∂
+ +⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

0 0 0 0

2

0 0

2 2
( , , , ) 0 0

2

0 2

0

2 2

0 0

2 2

0 0

1 1

2

2 11

2

1 1

0

W R p q

W px C C
q R R

W
W CC

R R

C C
R R

−∂
= +

∂

−
= +

−
= + =

                                  (15) 

0 0 0 0 0 0 0 0( , , , ) ( , , , )

2

0
2

0 0 0

0 0 0

2

0

2

1 ( )

2

2 2 2

2

R

W R p q W R p q

Wx W t
p

p p R R

R
C

W W W N
R R R

R C

N

∂ ∂
= −

∂ ∂

= − = − = −

= −

⎡ ⎤
⎢ ⎥⎣ ⎦

⎛ ⎞
⎜ ⎟⎡ ⎤ ⎝ ⎠

⎢ ⎥
⎣ ⎦

         (16) 

 
Partial derivatives of Eq. (9) are 

 

0 0 0 0 0 0 0 0( , , , ) ( , , , ) 0W R p q W R p q

u N N
W C

W W R R

∂ ∂
= − =

∂ ∂
⎡ ⎤
⎢ ⎥⎣ ⎦

           (17) 



 

 3

0 0 0 0

0 0 0 0

0 0 0 0

( , , , )

( , , , )

2

( , , , )

1

W R p q
p

W R p q

p
W R p q

u N
W C

qq q T
C

NW
C

q
T

C

∂ ∂
= −

∂ ∂ +

−
=

+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟
⎣ ⎦⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 

0 0 0 0

0

2
( , , , ) 0

1

W R p q

NWu C
q R

−∂
=

∂
 

 
Using Eq. (13) 

0 0 0 0

0

2
( , , , ) 0 0

1
1

W R p q

R
N Cu N C

q R R

−∂ −
= =

∂
                                 (18) 

 
Now expressing Eqs. (12) through (18) in the form of Eq. 

Eq. (5) we obtain 
 

[ ]
2

0
0 0 02 2

0

( ) ( ) ( ) ( )
2

R CN
W t W W t W t R p t R

R C N
δ δ δ

•

= − + − − −  

0

0 0

1
( ) ( ) ( )

N
q t q W t q t

R R
δ δ

•

= + −  

Defining 

0 0( ) ( ) ( ) ( )W t W t W W t W t Wδ δ
• •

− ⇒ −  

0 0( ) ( ) ( ) ( )q t q t q q t q t qδ δ
• •

− ⇒ −  

0( ) ( )p t p t pδ −  
The two linear differential equations describing TCP flow 

can now be written as 

[ ]
2

0
0 02 2

0

( ) ( ) ( ) ( )
2

R CN
W t W t W t R p t R

R C N
δ δ δ δ

•

= − + − − −     (19) 

0 0

1
( ) ( ) ( )

N
q t W t q t

R R
δ δ δ

•

= + −                                    (20) 

Taking the Laplace transform of these equations 

0 0

2

0

2 2

0

( ) ( ) ( ) ( )
2

sR sRR CN
s W s W s e W s e p s

R C N
δ δ δ δ− −= − + −⎡ ⎤⎣ ⎦  

0 0

1
( ) ( ) ( )

N
s q s W s q s

R R
δ δ δ= + −  

( )0 0

2

0

2 2

0

1 ( ) ( )
2

sR sRR CN
s e W s e p s

R C N
δ δ− −+ + = −

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

0 0

1
( ) ( )

N
s q s W s

R R
δ δ+ = +

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
The transfer functions HTCP(s) and Hqueue(s) can be defined 
as 
 

( )

0

0

2

0

2

2

0

( ) 2( )
( )

1

sR

TCP

sR

R C
eW s NH s

p s N
s e

R C

δ
δ

−

−

−
= =

+ +
⎡ ⎤
⎢ ⎥⎣ ⎦

             (21) 

0

0

( )
( )

( ) 1queue

N

Rq s
H s

W s
s

R

δ
δ

= =

+
⎡ ⎤
⎢ ⎥⎣ ⎦

                                 (22) 

If W0 >> 1 [3], which is a reasonable assumption, then the 
delay term in the denominator of Eq. (21) will not be 
significant and Eq. (21) can be simplified to 

0

2

0

2

2

0

( ) 2( )
( ) 2

sR

TCP

R C
eW s NH s

p s N
s

R C

δ
δ

−−
= =

+
⎡ ⎤
⎢ ⎥⎣ ⎦

                               (23) 

Figure 1 shows the block diagram of the TCP model. 
Transcendental transfer functions such as the delay in the 
TCP model are much more difficult to handle than rational 
transfer functions. Most control theory design 
methodologies are based on linear models of systems. There 
are many different methods for approximating a time delay 
inherent in a system by a rational function. One such 
method is to approximate the exponential function by a 
Maclaurin series 

0

2 2

0
01

2
R s R s

e R s− ≅ − +                                                    (24) 

0

2 2

0
0

1

1
2

R se
R s

R s

− ≅

+ +

                                                  (25) 

Another method would be the Pade approximation. 
Keeping only the first two terms will result in 

0

0

0

1
2

1
2

R s

R
s

e
R

s

−

−
≅

+
                                                             (26) 

For the remainder of this paper, we will use Eq. (26) as an 
approximation of the TCP round-trip delay model.   

2

00
2

0

2

0

1( ) 22( )
( ) 21

2

TCP

R CR
sW s NH s

Rp s Ns s
R C

δ
δ

−−
= =

+ +
⎡ ⎤
⎢ ⎥⎣ ⎦

                     (27) 



 

 4

Therefore, the total linear model for the Active Queuing 
Management (AQM) is given by 

2

00
2

0

0

2

0 0

1
22( ) ( ) ( )
2 11

2

T TCP queue

NR CR
s RNH s H s H s

R Ns s s
R C R

−−
= =

+ + +
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

   (28) 

Now the linear model of TCP window-control, shown in 
Fig. 2, can be used to design a variety of controllers. 
Numerous papers have been published addressing this. In 
this study we will present the results of applying a model 
referenced neural network controller and compare the 
performance of this control structure with that of a standard 
random early detection (RED) and RED with PI. The RED 
algorithm for controlling AQM applies proportional control 
with saturation limits as shown if Fig. 33.  The RED 
nonlinear feedback function (Fig. 4) is given by 

min

min
max min max

max min

max

0 0

( )

1

q q

q q
p q p q q q

q q

q q

≤ ≤

−
= ≤ ≤

−

≤

⎧
⎪⎪
⎨
⎪
⎪⎩

                      (29) 

Figures (3) and (4) and equation (29) clearly describe the 
details of the RED algorithm. For values of q greater than 
qmin and less than qmax, RED algorithm behaves similar to a 
proportional feedback. For values outside this range, p will 
take on the limiting values of zero or one.   

4.  MODEL REFERENCE NEURAL NETWORK 

Model Reference control consists of two neural networks as 
shown if Figure 5. One neural network is used to model the 
system and one neural network is used to control the 
system. 

Using the plant measurement values, the model network 
is trained offline. This block estimates the plant behavior, 
and the output of this block is used to calculate the 
modeling error. Then the controller is trained such that 
system response follows a reference model. Controller 
parameters are updated based on the error signal computed 
from the system output and the neural network model of the 
plant.  

Each network has two layers with delayed inputs and 
outputs. Number of delayed inputs can be selected based on 
complexity of the plant. For all the results presented here 
two or three delayed inputs and outputs where selected. 
Normally the number of delayed units in the network is 
selected proportional to the order of the system. The higher 
the system order and plant complexity the higher should be 
the number of delayed inputs and outputs of the neural 

                                                 
3 Notice the positive feedback sign in Fig. 3. This is due to an inherent 180 
phase shift built into the linear model. Because of the negative sign in 
HTCP(s) in Eq. (23), input and output of this system are out of phase by 180 
degrees, and a positive feedback is required.  
 

network to allow the network to properly capture the 
dynamics of the system.  

5.  RESULTS 

The traditional RED algorithm is shown in Fig. 3. Much 
research has been performed [5] in implementing traditional 
control algorithms on this system with documented success 
in increasing system performance and stability. Fig. 6 shows 
the block diagram of a PID controller implementation. It has 
been shown [4] that P and PI controllers improve the overall 
performance of the system.  

MRC RED and PI RED algorithm as shown in Figs. 5 
and 6 are implemented using MATLAB/Simulink at the link 
of a network for active queue management. The considered 
network topology consists of a single bottleneck link, with 
channel capacity of C = 2000 pks/s and 40 ms round trip 
propagation delay. 

The network traffic consists of 50 identical long-lived 
TCP sessions with RED parameters set to, qmin = 200 
packets, qmax = 800 packets, and pmax = 0.5.  

Fig. 7 shows the simulation result when 10 TCP sessions 
drop at 5 seconds into the simulation. As can be seen the 
neural network transient response is much better than the PI 
controller, which exhibits oscillatory behavior. The 
difference between the steady state values of the two 
controllers is due to the difference between the open-loop 
gains of the two designs. In this study we will not 
concentrate on matching the steady state values, rather on 
exploring the transient response and stability behavior 
exhibited by the two controllers.  

As can be seen from Fig. 8, as the number of drop out 
flows doubles the transient response of the PI controller 
becomes much worst than the previous case while 
remaining stable. The NN-MRC controller performs very 
nicely with no overshoot and a fast rise time of less than one 
second. 

Fig. 9 shows the instability of the PI controller when 30 
TCP flows drop out at 5 seconds into the simulation. NN 
MRC performs with excellent transient response and adapts 
to dynamic change of the system. For the next set of 
simulation runs the reference queue length window is 
increased such that the drop out probability, Eq. (29), is in 
saturation range and equal to one. 

Figs. 10 and 11 show unstable behavior of the PI 
controller when operated in saturation range of the RED 
algorithm, and inability of this controller to perform under 
severe session drop-out. NN-MRC performs very well and 
exhibits stable behavior with no overshoot and fast rise time 
of less than 2 s.  

Next we retrained the networks several times and the 
following results show that the steady state behavior of NN-
MRC can be improved with proper network training. The 
network traffic again consists of 50 identical long-lived TCP 
sessions with RED parameters set to, qmin = 200 packets, 
qmax = 800 packets, and pmax = 0.5. qref   is set to 560 packets 
at 5 seconds into the simulation with 10 load factors (TCP 
sessions) drop out.  



 

 5

Comparing Figs. 7 and 11, we can see that retraining the 
networks did improve the steady response of the NN-MRC 
matching that of PI controller. After the session drop outs 
the PI controller again exhibits signs of instability. 

Figs. 13, 14, and 15 show how stable the NN-MRC 
behaves as compared to unstable behavior of the PI 
controller. Figure 16 shows the structure of the Simulink 
program that was used to perform the above simulation 
runs. A special S-function had to be created to allow 
dynamic change of simulation parameters and to capture the 
network dynamic changes.  

Next we modified the structure of the controller by 
removing the RED algorithm block from the NN-MRC 
feedback loop. In this scenario, the neural network has to 
capture the nonlinear behavior of the RED algorithm as 
well. This structure is shown in Fig. 17.  

With the network traffic of 50 identical long-lived TCP 
sessions and RED parameters set to, qmin = 200 packets, qmax 
= 800 packets, and pmax = 0.5. qref  we ran two simulation 
runs. In these runs we had 2 drop out points, one at 5 and 
one at 10 seconds into the simulation run. At each stage 10 
TCP sessions dropped out.  

We can see from Figs. 18 and 19 that with the RED 
saturating block removed, the response of the NN-MRC has 
some overshoot but performs gracefully under severe 
modeling changes as opposed to the unstable behavior of the 
PI controller. 

6.  CONCLUSION 

In this paper, we have shown that a neural network based 
model referenced control algorithm improves transient and 
steady state behavior of AQM controller over classical 
RED, P, and PI. While P and PI controllers perform very 
well at the design points, they exhibit instability when 
system model is changed drastically. On the other hand NN-
MRC controllers performed very well even under sever 
modeling errors or system dynamic changes. 

REFERENCES 

[1] D. Lin and R. Morris, “Dynamics of random early 
detection,” Proc. ACM/SIGCOMM, 1997. 

[2] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based 
analysis of a network of AQM routers supporting 
TCP flows with an application to RED,” Proc. 
ACM/SIGCOMM, 2000. 

[3] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “A 
control theoretic analysis of RED,” Proc. IEEE 
Infocom, 2001.  

[4] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong, 
“On designing improved controllers for AQM routers 
supporting TCP flows,” Proc. IEEE Infocom, 2001. 

[5] S. Floyd and V. Jacobson, “Random early detection 
gateways for congestion avoidance,” IEEE/ACM 
Trans. Networking, vol. 1, pp. 397- 413, August 1993. 

[6] V. Jacobson, “Congestion avoidance and control,” 
Proc. SIGCOMM ’88, pp. 314–329, August 1988. 

[7] M. May, T. Bonald, and J.-C. Bolot, “Analytic 
evaluation of RED performance,” Proc. IEEE 
Infocom, 2000. 

[8] M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith, 
“Tuning RED for web traffic,” Proc. ACM 
SIGCOMM, 2000. 

[9] F. Paganini, J.C. Doyle, and S.H. Low, “Scalable laws 
for stable network congestion control,” Proc. 
Conference on Decision and Control, 2001. 

[10] M. Kisimoto, H. Ohsaki, and M. Murata, “On 
transient behavior analysis of random early detection 
gateway using a control theoretic approach,” Proc. 
Intl. Conf. Control Apps., Sept.18-20, 2002 Glasgow, 
Scotland. 

BIOGRAPHY 

Kourosh Rahnamai has more than seventeen years of 
academic and industrial experience. His research interests 
are in the areas of Communications, controls, fuzzy, neural-
based systems, navigation, optical communications, 
spacecraft control, systems Engineering, Estimation theory, 
Linear and Nonlinear Kalman Filters. He has developed 
Laboratories for low-cost rapid prototyping and hardware in 
the loop test and validation of complex algorithms and has 
developed and analyzed mathematical models for complex 
multi-disciplinary systems. 

 

 

 
 
 

 

Figure 3: RED feedback block. 

RED 

HT(s) ∑ 
δq (s) δp(s) 

+ + 

 
2

0

2
2
0

22

R C
NN s

R C

−
⎡ ⎤

+⎢ ⎥
⎣ ⎦

δp 

 0sRe −
δq δW 

Window  

Delay 

0
0

1
N

R s
R

⎡ ⎤
+⎢ ⎥

⎣ ⎦

Queue 

Figure 1: TCP model.

 

Figure 2: AQM with rational delay model. 

2
0

2
2
0

22

R C
NN s

R C

−
⎡ ⎤

+⎢ ⎥
⎣ ⎦

δp  δq δW 

Window  Delay 

0
0

1
N

R s
R

⎡ ⎤
+⎢ ⎥

⎣ ⎦

Queue 

0

0

1
2

1
2

R s

R s

−

+

 



 

 6

 
 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 4: RED Nonlinear feedback function.   

p 

q qmax qmin 

pmax 

1 

 

Figure 5: Neural Network MRC. 

HT(s) 

∑ 

δp(s) δq(s) 

+ 

NN 
Controller 

∑ 
- 

Model error NN 
Plant Model 

Reference 
Model 

- + Control error 

 

0 5 10 15 20
-200

0

200

400

600

800

1000

1200

1400

Time

Q
ue

ue
 S

iz
e 

(p
ac

ke
ts

)

P = 1, I = 2

PID
NN

Figure 7: Simulation 1, 10 TCP flow drop 
out.  

 

δq(s) 

Figure 6: PID controller. 

HT(s) 

δp(s) 
+ 

 
PID 

∑ 
- 

 

Figure 8: Simulation 1, 20 TCP flow drop 

0 5 10 15 20
-500

0

500

1000

1500

2000

2500

Time

Q
ue

ue
 S

iz
e 

(p
ac

ke
ts

)

P = 1, I = 2

PID
NN MRAC

 

0 5 10 15 20
-1000

0

1000

2000

3000

4000

5000

6000

Time

Q
ue

ue
 S

iz
e 

(p
ac

ke
ts

)

P = 1, I = 2

PID
NN MRAC

Figure 9: Simulation 1, 30 TCP flow drop 
out.



 

 7

 
 
 

 
 
 

 
 
 
 

 

Figure 10: Simulation 1, qref = 1040 packets, 
30 TCP drop out. 

0 5 10 15 20
-500

0

500

1000

1500

2000

2500

3000

3500

Time

Q
ue

ue
 S

iz
e 

(p
ac

ke
ts

)

P = 1, I = 2

PID
NN MRAC

 

Figure 11: Simulation 1, qref = 1280 packets, 
30 TCP drop out. 

0 5 10 15 20
-500

0

500

1000

1500

2000

2500

3000

3500

4000

Time

Q
ue

ue
 S

iz
e 

(p
ac

ke
ts

)

P = 1, I = 2

PID
NN MRAC

 

Figure 12: Simulation 2, qref = 560 packets, 
10 TCP session drop out. 

0 2 4 6 8 10
-200

0

200

400

600

800

1000

1200

1400

Time

Q
ue

ue
 S

iz
e 

(p
ac

ke
ts

)

P = 1, I = 2

PID
NN MRAC

 

Figure 13: Simulation 2, qref = 560 packets,
20 TCP session drop out. 

0 2 4 6 8 10
-500

0

500

1000

1500

2000

2500

Time

Q
ue

ue
 S

iz
e 

(p
ac

ke
ts

)

P = 1, I = 2

PID
NN MRAC

 

Figure 15: Simulation 2, qref = 800 packets, 
30 TCP session drop out. 

0 2 4 6 8 10
-1000

0

1000

2000

3000

4000

5000

6000

Time

Q
ue

ue
 S

iz
e 

(p
ac

ke
ts

)

P = 1, I = 2

PID
NN MRAC

 

Figure 14: Simulation 2, qref = 560 packets, 
30 TCP session drop out. 

0 2 4 6 8 10
-1000

0

1000

2000

3000

4000

5000

6000

Time

Q
ue

ue
 S

iz
e 

(p
ac

ke
ts

)

P = 1, I = 2

PID
NN MRAC



 

 8

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

time

time

tcp_num1(s)

tcp_den1(s)

tcp1

tcp_num1(s)

tcp_den1(s)

tcp

q_num1(s)

q_den1(s)

queue1

q_num1(s)

q_den1(s)

queue

pid_out

output2

nn_out

output1

ref_input

input

X(2Y)
 Graph

Step2

Step1

Step0

Step ref

Scope2

Scope1

set_slink_par2

S-Function

RED2
RED1

RED

PID

PID Controller1

Plant Output

Reference

Control
Signal

Neural
Network
Controller

Model Reference Controller

800.8

Display

delay_num(s)

delay_den(s)

Delay1

delay_num(s)

delay_den(s)

Delay

Clock

 
Figure 16: Simulink simulation block. 

 

 

time

time

tcp_num1(s)

tcp_den1(s)

tcp1

tcp_num1(s)

tcp_den1(s)

tcp

q_num1(s)

q_den1(s)

queue1

q_num1(s)

q_den1(s)

queue

pid_out

output2

nn_out

output1

ref_input

input

X(2Y)
 Graph

Step2

Step1

Step0

Step ref

Scope2

Scope1

set_slink_par2

S-Function

RED2
RED1

PID

PID Controller1

Plant Output

Reference

Control
Signal

Neural
Network
Controller

Model Reference Controller

560

Display

delay_num(s)

delay_den(s)

Delay1

delay_num(s)

delay_den(s)

Delay

Clock

Figure 17: Neural network model reference  
and PI control structures. 



 

 9

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: Simulation 3, qref = 800 packets, 5 
session drop at 5 and 10 drop at 10. 

0 5 10 15
-200

0

200

400

600

800

1000

1200

1400

1600

1800

Time

Q
ue

ue
 S

iz
e 

(p
ac

ke
ts

)

P = 1, I = 2

PID
NN MRAC

 

Figure 18: Simulation 3, qref = 560 packets, 5  
session drop at 5 and 10 drop at 10. 

0 2 4 6 8 10 12 14 16 18 20
-500

0

500

1000

1500

2000

Time

Q
ue

ue
 S

iz
e 

(p
ac

ke
ts

)

P = 1, I = 2

PID
NN MRAC


