Categories
Blog Orientation Projects

How we get cores

The JOIDES Resolution is a ship made to recover hundreds of meters of rock or mud cores from miles below the ocean. This amazing feat is accomplished by a huge crew and one big drill. To understand what we’re trying to do out here, it helps to know how the drilling works.

The JR, on the right, is dwarfed by the Southern Ocean. I don't know what the Southern Ocean does, but it's not a drillship.
The JR, on the right, is dwarfed by the Southern Ocean. I don’t know what the Southern Ocean does, but it’s not a drillship.

The tower-like structure on the JR is where a lot of the drilling apparatus sits. The drill parts are lowered to the seafloor through a hole in the bottom of the ship – the Moon Pool (no photos of that yet: I can’t go down there).

The drill itself consists of a drill bit, inside of which sits a core barrel. The core barrel sits in the middle of the drill bit. Inside the core barrel is a device that lets sediment in, but not out (the core catcher) and a device to measure temperature. The whole apparatus is lowered down at the end of a drill pipe (an actual pipe), inside of which is a plastic tube (the core liner) that will hold the rock or sediment when we bring it up . Some weights are fitted to the pipe to get it to sit still on the seafloor.

If we are coring sediment, as we will be doing for much of this expedition, we use a device called an Advanced Piston Corer (APC) that punches 27 meters at a time into the sediment, pushed by both gravity and pressurized seawater (or sometimes mud). The APC and the core liner are pulled up out of the drill pipe, the core and liner removed, and the whole thing reloaded for the next 27 meters of coring. Meanwhile, the drill bit spins around, grinding down 27 meters until it gets to the bottom of the hole that the APC made. Then we repeat the process until we get to a couple of hundred meters below the seafloor, where the sediment is too hard for the APC.

A rotary drill bit (center), two APC barrels (far left), an XCB (extended core barrel, just to the left of the bit), and several core catchers (front).
A rotary drill bit (center), two APC barrels (far left), an XCB (extended core barrel, just to the left of the bit), and several core catchers (front).

There are two reasons we want to use an APC on the sediment here. First, APCs tend to recover a lot of sediment (other kinds of core barrels can break up the sediment, and tend to lose about half of it on the way down). Second, and just as important for us paleomagnetists, we can find the cores’ orientation using a compass-like device attached to the APC drill pipe. This is crucial if we need to know the direction in which the sediment of the Bengal Fan got magnetized: if the core turned around as it came out of the seafloor, we would never know if parts of it were magnetized in a different direction than Earth’s present magnetic field, or if they were just turned around during coring.

We will also be using the XCB on this expedition. The XCB is the Extended Core Barrel, a rotating core device that can cut more solid sediment. The XCB gets less recovery, and the core it takes can’t be oriented.