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Preface
This is a collection of notes made for INFO370, INFO371, IMT573 and IMT574
courses, taught at the Information School, University of Washington. It began as a
collection of topics where I could not find another suitable material. Later I have
also added some material where other good source exist, mainly to force me to think
through how I present these topics, and to simplify the reading materials. The pdf is
available at my UW faculty page.

I have chosen to collect related topics under the same sections, even if I do not
teach them at the same time. For instance, conditional probability is in Section 1.4,
even if I teach it either for Naive Bayes (Section 8.5) or Fairness (Section 13.3.3). I
believe that this approach makes this textbook more flexible and allows to pick topics
in a different order.

Check also out the python companion (preliminary) and R companion (even more
preliminary).

The source of these notes is available at it’s bitbucket repo, feel free to leave
feedback in it’s issue tracker.

The text is licensed as CC BY 4.0, the images have different copyrights, see the
captions and the readme files in the corresponding folders in the Bitbucket repo.

I am grateful to Yuemin Cao and Chesie Yu for help with illustrations; and for
William Wang for help with exercises.

https://faculty.washington.edu/otoomet/machineLearning.pdf
https://faculty.washington.edu/otoomet/machinelearning-py/
https://faculty.washington.edu/otoomet/machinelearning-R/
https://bitbucket.org/otoomet/lecturenotes/src/master/
(https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1)
https://bitbucket.org/otoomet/lecturenotes/src/master/
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0.1 Notation
These notes contain a lot of mathematical notation. Here is a list of conventions and
more common notation:

Greek alphabet Mathematical notation uses Greek alphabet extensively. Table 1
shows a complete list of it, both in upper and lower case form. Note that several
upper case letters are identical with the corresponding Latin letters, and there are
two ways to write certain lower case letters.

Table 1: Greek alphabet

Letter Lower case Upper case
Alpha α A
Beta β B
Gamma γ Γ
Delta δ ∆
Epsilon ϵ, ε E
Zeta ζ Z
Eta η E
Theta θ, ϑ Θ
Iota ι I
Kappa κ K
Lambda λ Λ
Mu µ M
Nu ν N
Omicron o O
Pi π Π
Rho ρ, ϱ R
Sigma σ Σ
Tau τ T
Upsilon υ Y
Phi ϕ, φ Φ
Chi χ X
Psi ψ Ψ
Omega ω Ω

Numbers We generally follow the following notation:

• number of observations (cases) is denoted by N .

• number of variables in a model is denoted by K.

• predicted or estimated values are denoted by “hat” ,̂ such as ŷ for predicted y
and β̂ for estimated value of β.
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Sets

• general sets are denoted by calligraphic letters like S, A, Q.

• number of elements in a set is denoted with the same symbol as norm, ||S||.

• Set of integers is denoted by Z, set of pairs of integers is Z2, and so on.

• Set of real numbers is denoted by R, pairs of real numbers are R2, etc.

• Intervals are denoted by [a,b] for a closed interval from a to b, (a, b) for an open
interval, and [a, b) and (b, a] for semi-open intervals.

Scalars, vectors, matrices

• scalar values (just numbers) are denoted with ordinary latin and Greek letters,
such as a and υ. Upper case letters denote integer constants (such as number of
observations), lower case letters are both continuous values and integer indices.
For instance, in case of xi, x may be a continuous variable while i is an integer
index.

• vectors are denoted in bold lower-case letters, for instance x and ϵ.

• Matrices are written in sans-serif capital letters. For instance, A and I are
matrices.

• unit matrix (identity matrix) is denoted by I, or In in case we want to stress it
is n× n identity matrix.

• vectors are just n × 1 or 1 × n matrices. We denote by x an n × 1 column
vector and x

T an 1×n row vector. When defining a column vector, we often use
notation like (1 2 3)

T , a row vector transposed, do denote the column vector1
2
3

 .

• Norm of vector is denoted by || · ||, e.g. ||v||.

• We use dot, ·, to denote multiplication where it helps to understand the formu-
las. This applies to both scalar and matrix multiplication. So

λx
T

y λx
T

· y λ · x
T

· y (0.1.1)

are all equivalent and denote a product of three factors.

• We use ⊙ to denote elementwise product of matrices and vectors. For instance,(
1 2
3 4

)
⊙
(
10 20
30 40

)
=

(
10 40
90 160

)
(0.1.2)

• we use large dot, •, to denote “all indices at this dimension”. For instance A•2
means second column of matrix A while A2• is its second row.
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Functions We use notation f : A→ B to denote a function that maps every element
of set A to an element of set B. For instance, f : Rn → Rm is a function that
maps elements from Rn to Rm, i.e. assigns a m-dimensional real vector to every n-
dimensional real vector. g : R→ R is the “traditional” function that computes a new
real number from every other real number.

We use the following special functions in the text:

• log indicates natural log. 10-based or 2-based logs are denoted as log10 and
log2.

• indicator function 1(A):

1(A) =

{
1 if A is true
0 otherwise.

(0.1.3)

For instance, 1(x > 0) is 1 if x is positive, and zero otherwise.
Indicator function is almost trivial to compute on computer: for the example
here, just a logical operation x > 0 will work in many programming language.

Acronyms Here is a list of common acronyms used in the text:

• c.d.f.: cumulative distribution function
• CI : confidence interval
• CLT : Central Limit Theorem (p 82)
• GA: Gradient Ascent (p 389)
• i.i.d: independently identically distributed
• LN : log-normal distribution (p 77)
• p.d.f.: probability density function
• p.m.f.: probability mass function
• ReLU : rectified linear unit (p 377)
• RV : random variable (p 54)



Chapter 1

Introduction to Statistics

This chapter gives an overview of the statistical methods that we use later when
discussing various machine learning topics. ML is statistics-heavy, most of the models
we discuss below are essentially statistical models, and statistics is also the tool that
allows us to understand and model data, and discuss the performance of the models.

Descriptive statistics is widely used to explore and summarize data. This includes
computing means and variances, comparing certain interesting groups in data, an-
alyzing data quality, and creating plots and tables. These methods are somewhat
distinct from the formal and precise mathematical theory, mathematical statistics.
Both branches of statistics are very important in data science. Much of “know your
data”, and a large chunk of data visualizations and presentations can be counted
as descriptive statistics; while machine learning is largely based on formal statistical
models. We start with data description, thereafter continue with descriptive statis-
tics, and consider certain concepts of mathematical statistics afterward. The final
section discusses the problems related to understanding statistical results.

Contents
1.1 Different Kind of Values . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Measures: Possible Mathematical Operations . . . . . . 3
1.1.2 Values: Which Values Are the Possible . . . . . . . . . . 6

1.2 Data about data . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Sampling: how is data collected . . . . . . . . . . . . . . 9
1.2.2 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Central Tendency: what are the typical values . . . . . . 17
1.3.2 Variability . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.3 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.4 Other descriptive measures . . . . . . . . . . . . . . . . . 30

1.4 Basics of Probability Theory . . . . . . . . . . . . . . . . . . . . 35
1.4.1 Events and Sample Space . . . . . . . . . . . . . . . . . 35
1.4.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.4.3 Conditional Probability and Bayes Theorem . . . . . . . 43

1
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1.4.4 Random Variable . . . . . . . . . . . . . . . . . . . . . . 54
1.4.5 Expected Value and Variance . . . . . . . . . . . . . . . 57
1.4.6 Expected value and variance of functions of RV-s . . . . 62

1.5 Probability distributions . . . . . . . . . . . . . . . . . . . . . . 67
1.5.1 Discrete distributions . . . . . . . . . . . . . . . . . . . . 67
1.5.2 Continuous distributions . . . . . . . . . . . . . . . . . . 72
1.5.3 Popular continuous distributions . . . . . . . . . . . . . 75
1.5.4 Central Limit Theorem . . . . . . . . . . . . . . . . . . . 82

1.6 Statistical Inference . . . . . . . . . . . . . . . . . . . . . . . . . 87
1.6.1 Statistical Hypotheses and Hypothesis Testing . . . . . . 87
1.6.2 Doing Statistical Inference . . . . . . . . . . . . . . . . . 95
1.6.3 Confidence interval for sample average . . . . . . . . . . 100
1.6.4 Comparing Distributions . . . . . . . . . . . . . . . . . . 106

1.7 Lies, Damned Lies, and Statistics . . . . . . . . . . . . . . . . . 113
1.7.1 Statistical Fallacies . . . . . . . . . . . . . . . . . . . . . 113
1.7.2 Misusing Statistics . . . . . . . . . . . . . . . . . . . . . 120

There are broadly three reasons we use statistics in data science and machine
learning:

• Descriptive statistics is a good way to summarize data. For instance, GDP
per capita (2017, nominal) in Madagascar is $450 and in Canada it is $44,841
(world-o-meter data). Despite all problems with reducing the complexity of an
economy into a single index, in practice it is a very good proxy to describe life
quality in various aspects in these places.

• Data is imprecise and we describe errors as random variables. This may include
missings, measurement errors, computation errors, validity and reliability issues.
This is one of the major motivations to use mathematical statistics for data
analysis.

• The world is complex and unpredictable, and we model uncertain factors as
random variables. This is the other reason mathematical statistics has done
such strong inroads into econometrics and machine learning. It is also related
to the previous problem, that of incomplete data—if we had better data, we
would be able to predict the world better. But we have to live in this world,
using data we have.

1.1 Different Kind of Values
Data contains values of different types. Here we discuss two potential ways to cate-
gorize the values: first, based on what kind of mathematical operations (comparison,
addition, …) the particular data type permits; and second, based on the possible
values data can take.

https://www.worldometers.info/gdp/gdp-per-capita/
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1.1.1 Measures: Possible Mathematical Operations
The values are often categorized to according to their measure level, namely nominal
(no comparison possible), ordinal (comparison possible, but cannot compute differ-
ence), interval (can compute difference but not ratio), and ratio (can compute ratio
too). Below we discuss these (and a few other) measure in a more detail.

Before nominal Nominal measures are usually exemplified with unique labels. How-
ever, there are important classes of data where such labeling does not make much
sense. This includes text and images. Labeling all texts or images uniquely means
not to label category but the text or image itself, so a single different letter or a single
different pixel will result in a different label. While we can do this, such labeling
is usually not helpful. We may use such approach if we are looking at very short
standard texts (say, a review text is “wonderful”), but otherwise almost all texts and
images are unique, and labeling will not help us to do any useful analysis. We have to
use different tools for, e.g. categorizing images or extract the sentiment of the texts.

Nominal measures In many cases we have a limited number of different categories
(and we can always lump too small categories into an “other” category). Such cat-
egories often do not follow any inherent order, and hence are not comparable (in
a sense as smaller/larger, better/worse, …). Examples include gender; name of the
college attended; and membership of political parties. In such cases there are only
limited number of mathematical operations possible:

• testing for equality: we can tell if two cases are equal
• mode: we can tell which category is the most common, or which case is more

common than another.
But usually we cannot tell which case “precedes” another in any meaningful sense.

Ordinal measures Another large set of values are categorical with an inherent order,
it is always possible to tell that one case is “larger” or “smaller” of another case
(or maybe they are equal). Examples include various opinion questions like “do you
support the president” with the answers ranging from 1 (not at all) to 5 (very much
support); continuous values measured in brackets like income categories (0-10k, 10k-
30k, 30k-60k, …).

One can use ordinal measures for all operations as nominal measures, but now we
can also compare the cases: which case is “smaller” or “larger”. This, in turn, allows
us to order the observations, and compute the median (the middle value), and other
sample quantiles.

However, the difference of such values carries little meaning. Sometimes the cat-
egories carry numeric label (like the opinion about president’s performance) but the
difference between these numbers may be hard to interpret. There is no guarantee
that the difference in the feeling about the president between strong and weak oppo-
nents (values 1 and 2) is similar as between weak and strong supporters (values 4 and
5).1

1Although, strictly speaking, one cannot compute the differences, it is fairly common in practice
when comparing different samples. For instance, one may find that the average support is 4.0 among
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Example 1.1: Numeric labels in World Value Survey

Ordinal measures are sometimes coded as numbers. World Value Survey is a
large-scale opinion survey that focuses on various kinds of work, family, religion
and other values. In wave 6 (2012-2012) the question V4 asks how important is
family in the respondents’ life. The possible answers are

1 very important
2 rather important
3 not very important
4 not at all important
-1 don’t know
-2 no answer
-3 not applicable

So there are seven valid labels, all numeric. Out of these seven, three describe
missing data. Only values 1,2,3,4 are ordinal; the negative codes for missing
values do not have any inherent ordering!

Interval measures These are numeric values that are comparable like ordinal mea-
sures, but where also the differences are meaningful. The examples include tempera-
ture (in both degrees of C or F) and GPA.

In case of temperature we can, for instance, say that 2019 global temperature was
0.98C above the temperature of 1951-1980 base period, and that of 2001 was 0.54C
above the same baseline.2 Even more, these two figures, 0.98 and 0.54 are directly
comparable, so we can say that the temperature anomaly in 2020 was 1.81 times
larger. However, the temperature values in this sense are not comparable in the same
way. The baseline temperature over this period was approximately 14C, and hence
the corresponding values were 14.54 and 14.98C. Now it carries little meaning to say
that the temperature in 2019 was 1.03 times larger than that of 2001. Celsius scale
is based on the freezing point of water, and from the climate perspective, it is an
arbitrary reference point.

With interval measures we can do all the operations as with ordinal ordinal mea-
sures, and one can also subtract and add two interval values. This allows to compute
a number of common statistical measures, including mean, standard deviation, and
variance.

Ratio measures These are numerical quantities that have well-defined zero. This
includes various physical measures like height or area, age, income (in money, not in
income categories) and the like. In case of ratio measures one can claim that one
house is “twice as large” as the other house, or that the tree is “three times older
than me”. Note that while ratio measures require the existence of a well-defined zero,
they do not require any objects actually to be of measure 0. For instance, in case of
human height, height 0 is very well defined despite of no human ever being of zero
height.

those without college degree and 3.5 among the college graduates. Such averages are handy for a
quick comparison of groups.

2NASA data
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A special ratio-related measure is percent. By definition, this is a proportion and
hence requires a ratio-type measure. For instance, if elevation of Mount Adams is
3,743 m, and that of Mount Hood 3,429 m, then Adams is (3,743 − 3,429)/3,429 =
1.092 times higher than Hood. This is 9.2% difference. Note that we have used
Hood’s elevation as the base here, related to the expression “…higher than Hood”.
Alternatively, we can also use Adams as the baseline: Hood is 3,429/3,743 = 0.9161
times higher, i.e. 8.389% shorter than Adams.

A measure closely related to percents is percentage points. This is difference be-
tween two values, expressed in percentages. For instance, ECB deposit interest rate
at the end of 2008 was 2.00 percent and refinancing rate was 2.50 percent. The differ-
ence between these rates was 0.5 percentage point. One can also say that refinancing
rate was 25% higher than deposit rate as percent measures are ratios. However, such
percent-of-percent figures are rarely used as this is a perfect source of confusion.

Table 1.1 summarizes the measures and some of the related descriptive statistics.

Table 1.1: Quantitative measures and associated statistical operations

measure operations; statistics plots examples
nominal equality, count cate-

gories; mode
(unordered) histogram bicycle brands

ordinal + greater/smaller; me-
dian

(ordered) histogram income categories

interval + add/subtract; mean,
variance, standard devi-
ation

histogram, density plot temperature, IQ, GPA

ratio + divide; ratio, percent-
age

length, height, income

Note: “+” means that the corresponding measure type allows to use all operations
of the previous measure type, plus the ones listed.

Numbers are sometimes used in a
way that does not correspond to
their measure levels. The claim
that the coldest place in Universe
is “three times icier” than Earth
depends on the temperature
scale. In Fahrenheits, the
temperature ratio is
−458F/− 136F ≈ 3.4
(space/earth correspondingly).
In Celsius scale it is
−272C/− 93C ≈ 2.9 and the
Kelvin scale, the scale closest to
a ratio measure, gives
180K/1K = 180. All these ratios
are correct, none of them is
useful. space.com, Oct 29, 2021.

One should also be aware that the boundaries between the measure types may not
be quite clear cut. As soon as one uses numeric labels for a variable, one can do all
mathematical operations with these data. The question is whether the result of such
operations have any applications. For instance, imagine financial data that contains
a student status variable with two potential values student and not student. These
are clearly nominal variables. But we can label “student” as 1 and “not student” as
2. These two numeric labels are as arbitrary as any other labels, but because they are
numbers, we can still perform mathematical operations with these, e.g. compute the
mean. The result, most likely a number between 1 and 2, will not carry much meaning
if applied to a particular person. However, it is a good descriptor of “studentness”
of the dataset, i.e. what is the percentage of students or non-students in data. In a
similar fashion, one can assign sequential numeric codes to ordinal measures, such as
language skills, and compute the average or the standard deviation. This average by
itself does not carry much meaning but is useful for comparing different samples.

space.com
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Exercise 1.1: Of what measure type are these values?

Are these nominal, ordinal, interval, or ratio measures?
• Talent show result (e.g. first place, second place, 10th place...)
• Height in cm
• Height in feet, inches
• Colors by name
• Temperature in C
• IMDB movie ratings (on scale 1-10)

Solution on page 472.

1.1.2 Values: Which Values Are the Possible
While measures describe the nature of data from the mathematical operations’ point
of view, they do not explain what kind of values are valid. When analyzing actual
datasets one may encounter various invalid numbers, e.g. negative age, or percentage
that is outside of [0, 100] range. It is important to see if the values are valid when
working with a new dataset.

Here we describe a few common types of values, and what kind of problems to
look when working with that type data. Unfortunately, it is a non-exhaustive list,
actual datasets contain an unimaginable number of different kinds of issues.

Discrete labels Quite often the values must belong to a pre-determined set of discrete
labels. These are often nominal measures but they do not have to be nominal.

Example: students’ major must belong to a set of all majors offered in the col-
lege. Now if you notice that there is someone who is majoring in “witchcraft” then
something must be wrong with your data (or maybe with the college).

In practice, a common issue is that the labels are coded not quite in consistent way.
One common source of trouble are country names. For instance, the country often
called “Congo” may be coded as “Congo”, “Democratic Republic of the Congo”, “DR
Congo”, “DRC” or other ways. To make the matters worse, there is also a different
country, called “Republic of Congo”. Historically, there has also been “Republic of
Congo (Léopoldville)”, which is not the same as “Republic of Congo”... This stresses
that it is very important to check the actual values in data when working with discrete
labels.

Another common problem with discrete labels is missing values. They may be
coded as the dedicated NA symbol, but also as empty strings, and labels like “NA”,
“N/A”, “-” and similar. In manually created datasets, you may find all of those.

Counts Counts must be non-negative integers. Any other value is clearly erroneous.
Example: number of children in a family. Values like -1 or 2.7 are clearly impossi-

ble. But before just throwing out such values you should consult the documentation.
Negative numbers are often used to denote various types of missing values (See Ex-
ample 1.1). In a different type of data 2.7 children may mean a certain average
value.
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Continuous positive measures Certain values can only be non-negative. For in-
stance, length or light intensity can take any fractional value but they must be non-
negative.

In actual data, however, what exactly constitutes the length or light intensity may
not be that simple. For instance, VIIRS night light data does complex processing to
remove effects of sunlight, moonlight, lightning, fires, northern lights, snow reflections,
drifting satellite orbits and instruments... (Elvidge et al., 2017). As a result, the light
intensity values that the dataset includes can be negative.

Another common source of surprises is that many inherently continuous measures
tend to be coded in a discrete way. For instance, age is continuous, but it is almost
always coded in full years. Harden data (Section B Harden, page 464) is an exception
where age is coded as years and days.

Some seemingly continuous measures tend to be “semi-discrete” in practice. For
instance, you may want to analyze the percentage of college-educated friends people
have. This seems like an inherently continuous measure–except that when we ask
people, or scrape their social media pages, it turns out that people do not have
that many friends. For someone with only three friends, there are only four possible
values: 0, 1/3, 2/3 and 1. So the actual distribution is not continuous but contains
such overlapping discrete values for different total number of friends.

Other limited values There are a plethora of other possible limitations. Some figures
must fall in a certain range, for instance unemployment rate, defined as fraction of
workforce out of work, must be between 0 and 1 by construction. In a similar fashion,
percentages typically must fall in the [0,100] interval. But not always–for instance,
an airplane can fly at 105% design speed.

Cheatsheet 1.1: Different kinds of values
Measures Actual data only allow for certain mathematical operations:
Nominal (categorical): cannot compare, only test for equality. Example: college

majors informatics, biology, economics.
Ordinal can be ordered, difference cannot be computed. Example: language

skills, coded as do not understand, can understand, can speak, can speak
and write.

Interval can compute difference but does not have well-defined zero. Examples:
temperature, year.

Ratio Have well-defined zero, can compute ratio. Examples: length, duration,
age.

Possible values Actual data can only take certain values

Discrete labels may have to fit into a pre-determined set. Example: college
majors mathematics, linguistics are possible, foobar is not.
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Counts Counts must be non-negative integers. Example: family can have 0, 1,
2, …children, but not 1.5.

Continuous positive certain values must be positive. Example: salary, age can
be any positive number but cannot be -5.
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1.2 Data about data
Before we can even start with statistics, we need to discuss data, in particular the
process of data collection. We normally want data to tell us something about the
world, and this is asking quite a lot from data. Indeed–the data must tell us not
about data themselves, but about the world. We need to know how are data and the
world related.

1.2.1 Sampling: how is data collected
Typically, we analyze data in order to answer certain questions. It may be something
very general, for instance do women earn as much as men when working in a similar
job, or something very specific, such as will the customer X be interested in the new
product? As it turns out, data alone is not sufficient to answer such questions. We
also need to know how data is collected. Even more, if data are not collected in a
suitable way, we cannot answer the question at all.

Sample and Population

Datasets usually contain a sample of the population of interest. Typically we want to
make conclusions about the latter based on the “sample”. It is not always the case
though, and if the dataset is everything we are interested in, then the question of
sampling is of minor importance. But often we are interested in something more than
just the dataset (see Section 1.6 Statistical Inference, page 87 below). What kind of
traits must be present in data for it to be possible to draw such conclusions?

Intuitively, we want enough data so that it covers all the important subgroups.
By population we mean the whole set of cases we want to apply our results to.3 In
contrast, sample is the set of observations we have access to. For instance, based on
a sample of 1000 voters, a consultant may want to make claims about the election
outcome, determined by the population of all voters.

Why do we need to consider sampling and sampling designs?

• It is rarely possible to collect data on the complete population. Even if possible,
it is typically much cheaper to collect and analyze a sample, and generalize the
results to the population.

• Sometimes it is inherently impossible to measure everything. This includes
cases where we are concerned about the future or about the past. For instance,
we cannot have access to future weather information when analyzing weather
patterns in a particular location.
Alternatively, as in case of destructive testing, the data collection itself may
destroy the subject. If we learn how much data can be written to a hard drive
before it fails, then we’ll destroy it in the process. We want to try this with a
few drives only, and generalize the results to all drives.

3Later, we talk about random variables instead of population, see Section 1.4.4 Random Variable,
page 54 below.
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• Other times we can collect the data about “everything” but we still want to
generalize our results to even larger populations. For instance, we can easily
collect grades of all students who take a particular course. Why we still might
want to generalize? This depends on the exact question we are interested in:

– If we are only interested in students of that particular course then we have
the full population. We do not have to consider generalization issues. In
this case the sample and the population are the same. Say, if the instructor
is concerned that the grades are too low and considers curving those up,
then grades in this course are all that matters.

– If we are interested in “all” students in “similar” courses then our data only
represents a sample. For instance, we may be concerned that the course
may be too hard for students who haven’t taken a certain other background
courses. Should these be introduced as pre-requisites? This concern is a
generic one, also applying to the future students in similar courses. In this
case, we need to generalize from the sample (students in this course) to
the complete population (all students in similar courses).

Sampling Process

Collecting a dataset—a sample—typically involves many steps, some of which are
deliberate choices, and some of which are caused by external factors, such as access
to data sources, funding, or convenience. It broadly contains the following steps:

1. Theoretical population. Who (or what) do we want our results to generalize to?
This may be quite general populations like “all students in similar courses”, or
“weather in Seattle”, or something much more specific, e.g. “all voters who will
cast their vote in the next elections”.

2. Study population. What part of the theoretical population can we access? For
instance, we can access current students, but not future or past students.

3. Sampling frame. What part of the population will be studied? This is the part
of the population that is accessible from the practical point of view, i.e. we
have information about their presence and location, and can realistically access
them. It is often based on proxy information, for instance phone directory
when surveying humans, or geographic location when counting wildlife. In the
students’ example, this may by “students who are currently in class”.

4. Sample. What part of the population do you end up getting data for? This
may be “students who were in class today and responded to the survey”.

Example 1.2: Predicting election results

Look at the sampling process when predicting election results.

1. The population of interest is all actual voters (those who will cast their vote,
not all registered voters), and we are interested in finding their preferred
candidates.
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2. Study population is a list of voters we have records about, either their
address, phone, or just the fact that they exist. If the analysts have access to
all registered voters records, then the study population will almost overlap
with the theoretical population. However, the overlap may still not be
perfect, as between now and the election day, more people may register as
voters, and some in our records may leave the records.

3. Sampling frame is a (potential) voter register with contact information. In
the best case this is the actual voter register, but it may also be any other
accessible proxy, e.g. phone directory, street maps, or lists of public places
to visit.

4. Sample. This is taken from the sampling frame, the voters we were able to
access and who did answer the questions about their (prospective) voting
behavior.

Each step in the sampling process can introduce a corresponding error. Here is a
brief discussion of the more common ones:

• External validity concerns the generalizability of study population to the theo-
retical population. For instance, are the results collected for current students
also valid for future students?

• Coverage error are errors, resulting from non-perfect overlap between study
population and sampling frame. If many voters do not have phone, we miss
those voters.

• Sampling error arises from the fact that instead of the whole population, we only
work with a small population. Sampling errors can be addressed by increasing
the sample size, if feasible. If the sampling process is well known, the errors
can also be quantified, and taken into account through confidence intervals (See
Section 1.6.2 Doing Statistical Inference, page 95).

Descriptive analysis may shed light on some of the sampling problems. For in-
stance, if you notice that there are fewer voters who prefer Liberals in your poll than
what other data sources suggest, then it hints that your data collection may be prob-
lematic. But small issues may not be visible, and often you just do not know what a
reasonable answer might be.

Biased data

But what happens if the data is collected without enough attention to sampling? After
all, this is a very common situation. When collecting “big data”, such as Wikipedia
articles, restaurant reviews or Flickr images, we can hardly understand how is the
data created and how does it relate to the “population”. What would “population”
even mean in case of, e.g. English texts?

Such datasets that are collected in an unknown way may cause our results to be
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wrong.4 The problems may manifest in multiple ways. For instance, if we had an
easier access to Liberal voters to Conservative voters, then we may get the election
outcome forecast wrong. If our voice-to-text app was trained on mostly male voices,
then we may discover that it makes more errors when transcribing a female voice.
Such situations are often referred to as “biased data”,5 and more recently it has been
widely discussed from the ethical and discriminatory perspective.

Sampling bias is a combination of coverage error and external validity problems.
Sampling bias can sometimes accounted for if we know the sources of these problems.
But full extent of it is rarely known and hence the sampling bias is a common issue,
and the results may lack external validity.

Note that the bias is a combination of both, external validity problems and coverage
error. So even if we devise a way to sample Wikipedia texts with no coverage error, the
question of external validity still remains. Is Wikipedia an unbiased representation of
texts that we want to analyze?

Sometimes a non-representative dataset may be exactly what we want. For in-
stance, we may want to provide our voice-to-text app enough both male and female
voices to be trained on, so that it can work well with both voices. This does not
depend on the gender distribution of the future users.

Example 1.3: “Y’all” versus “you guys”

Imagine you want to analyze how much and in which situation people use “you
guys” and how much “y’all” when referring to others. You will use Reddit data
for this analysis, because this is what you can easily access.

1. What might be the population of interest? Are we interested in a certain
geographic area, e.g. the U.S.? All English speakers? Native English
speakers only? A particular age group? Does it also include future and
past speakers?
This is something you need to specify. Best if you can do it before you
begin the analysis, but you can also do it ex-post, based on what you can
generalize your results to.

2. Study population will be the Reddit users. How are they related to the the-
oretical population? We may guess that certain age and education groups,
language skills, professions and other traits are over-represented while other
groups are scarcely present. But the details are not known.
Besides the obvious population groups like age and ethnic background, we
know that some people are much more active on Reddit. How is the activity
correlated with the usage of the expression?
An additional complication is caused by the medium–Reddit is a written
medium, while “y’all” and “you guys” are primarily used in spoken lan-
guage. How do written texts relate to spoken language expressions?

4We should stress here that sampling is not the only problem that can lead to wrong results.
There are many other ways to get analysis wrong.

5“Bias” is a somewhat unfortunate word here–it has many colloquial meanings; there is also a
precise statistical concepts of bias. All this makes it sometimes hard to understand what does “bias”
mean in a particular situation.
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And do not forget: our theoretical population is about humans. An un-
known number of Reddit accounts are bots.

3. Sampling frame is all the Reddit users you can access with your web scraper.

4. Finally, your sample is whatever posts you finally download to your com-
puter. You can sample a limited number of posts through the “new” feed
across subreddits... But how exactly is this procedure related to all users?
How is it even related to all “recent” posts?

What does your sample tell about the usage of these expressions? It gives some
guidance, but as you are hardly able to answer any of these questions, the exact
relationship remains unclear.

Unfortunately, such problems are very common with big data. “Big” often
means a lot of unclear data.

A specific set of problems is related causal inference. Using statistical analysis to
estimate causal effects requires very specific data–a data that contains information
about manipulations, not just observations. See more in Section 3.4.

A few common sampling methods

This section discusses two simple and common sampling methods. Uniform sampling
and clustered sampling.

Uniform sampling Uniform sampling is such a sampling where every item in your
population has the same probability to be in the sample. For instance, if analyzing
the students in Seattle, then every student has the same probability to be in the
sample.

Uniform sampling is often referred to as “random sampling”, but the word “ran-
dom” is imprecise. There are many ways to sample “randomly”, including clustered
sampling (see below). Biased sampling may also be done randomly, just not uniformly
randomly.

A big advantage of uniform sampling is that the related statistical inference is
easier. It usually also leads to smaller sampling noise.

But uniform sampling may be more expensive than other ways to collect data.
For instance, the most obvious way to achieve uniform sampling of students in a city
is to compile a list of all students, and then randomly select students out of the list,
and finally go and collect data about these students. This may be impractical.

Clustered sampling In case of the student example above, it may be more practical to
first select certain schools, thereafter in each school to select a few classes, and finally
in each class to select a number of students. Such approach is typically cheaper than
to compile a list of all students and thereafter select individual students uniformly.

This is the idea of clustered sampling. It is a multi-stage process: first we select
the large clusters (schools), thereafter we select small clusters (classes) and finally
individuals (students). This example includes two-level clusters, but it may be more
appropriate to include only one cluster level, or more than two levels.
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Clustered sampling assumes that data is somehow clustered. If there are no ob-
vious clusters, then you cannot do clustered sampling. Even if the clusters exist, it
may not always be practical.

1.2.2 Data Quality
Previously we discussed sampling, how data was collected, and tried to answer that
based on the documentation and theoretical considerations. But now we turn to
data. Before we can start the actual analysis, we should understand if the data can
be trusted. What are the main traits and the main problems there? Do simple results
on these data make sense? What kind of information looks reasonable and what kind
of variables cannot be trusted?

These are some of the important questions we may want to answer using descrip-
tive methods. Some of the answers can also be obtained from the documentation, but
unfortunately, well-documented datasets are a rare species. Moreover–even if high-
quality documentation exists, we cannot be sure that the data actually correspond
to what is stated there. The latter may be outdated, or the way the variables are
encoded may have been changed later, protocols may have been violated, and there
may just be human errors. This is another reason why we may want to begin with
descriptive analysis.

The initial analysis should address the following question:

• How is data collected? We cannot assess external validity of the results without
knowing the sampling procedure. Ideally, the data represents the population
under study well.
However, even if the authors were striving toward a particular sampling scheme,
they may not have achieved this for various reasons. It is a common practice
to test new data by calculating a selection of well-known results, e.g. relative
population by region in case of a geographic dataset. In case of a representative
dataset, these results should be close to what we already know from census or
fromurces.
See more in Section 1.2.1 Sampling Process, page 10.

• Which variables/information are in data and how are they encoded? A good
starting point may be the data documentation. Well-documented and easy-to-
understand datasets exist, but too often one has to rely just on looking at the
numbers and doing guesswork based on the variable names. For instance, if
age is coded as “17”, “28” and “66”, then we are reasonably confident that this
means age in years. But what it means to have income marked as “17,000”,
“0”, and “-500” is everyone’s guess. Good documentation requires a lot of work
and is therefore often skipped, and you as the analyst will suffer as a result.

• Does the dataset contain information you need? If you are interested in the
relationship between income and education, it is not enough to have a dataset
that contains columns “income” and “education”. Both of the variables may be
coded in a way that is not informative for our purpose. Imagine the case where
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we want to say something about how income is related to college degree, but
the dataset only tells if someone earns any wages or not.

• Missings and implausible entries. The variables interested may also suffer from
many missing values, implausible entries. For instance, what should one do with
a negative income? Or with negative age? And what to do with Japanese words
in a vocabulary that is supposed to be a list of English words?

• How are values coded? It may be obvious that if variable age values fall between
18 and 81 then it is age in years. But if variable sex has values 1 and 2, or maybe
1, 2, 9 instead? Unless there is suitable documentation, it may not be possible
to deduce the meaning of these values with certainty. Text and images add their
own questions–are the texts converted to lower case? How are country names
coded? Does the word lists contain numbers? What is the format and size of
images? Are they photos or line art? Are they black-and-white or color images?

• How are missing values coded? Do they use a dedicated marker? An empty
string? A negative value? A plethora of dedicated markers, empty strings and
implausible values? Does the dataset contain repeated observations? And are
these different observations with similar values, or is one case repeated multiple
times?

Understanding all such nuances is a substantial work, se of large datasets researchers
usually try to stay within of data they know. But without knowing the answers to
thions, we may not even be able to start the analysis.

Besides reading the documentation, the suitable techni here are just value fre-
quency tables and minimum and maximum values. For discrete labels, the tables will
give an idea which values are recorded in data, if there are any implausible values,
and how frequent are those. Maximum and minimum achieve something similar for
numeric values.

Example 1.4: How good is Global Shark Attack File?

Global Shark Attack File (GSAF, see Section B Global shark attack file, page 463)
is a dataset of all known shark attacks on humans. It contains date and location
of the attack, and information about the victim.

As an example, let’s look at variable Country. Although the dataset is not
documented, it strongly suggests that it describes the country where the attack
took place. Below is a small subset of the complete table (that contains 206
entries):

Count
AFRICA 1
CEYLON (SRI LANKA) 1
Coast of AFRICA 1
SOUTH AFRICA 585
SRI LANKA 14
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Table 1.2: A few country names in GSAF data. Not all of these are countries, and
some of the country names are written in different ways.

The small excerpt reveals two problems: first, Sri Lanka, the country, is written in
two different ways, in one case using its historical name “Ceylon”. It is important
to understand how exactly are geographic locations spelled in data, for instance
the country we usually call “Korea” may be written as Korea; South Korea;
Republic of Korea; Korea, Republic of and in many other ways.

Second, “Africa” and “Coast of Africa” are not countries at all. But the
table also reveals that the number of questionable entries is fortunately small, in
this example it is only three. Importantly, we also have a conceptual problem.
Namely, as shark attacks tend to happen on sea, not on land, it may well be that
it occurs outside of any jurisdiction.

Next, let’s analyze a numeric variable. We’ll pick “Year”. In these data, the
maximum year is 3019 and the minimum year is 0. Neither of these figures is
reasonable. In case of maximum, this is probably a data entry error (typing “3”
instead of “2”). This is confirmed by the corresponding ”Date” that is 26-Mar-
2019. The minimum, year ”0” is also suspicious. Let’s print a small sample of
the corresponding dates:

No date, Before Mar-1995; No date (3 days after preceding incident) & prior
to 19-Jul-1913; 1990 or 1991; 1941-1942; No date, Before 1963

We can see that these are cases where date is uncertain so that the correct
year is not known.

In case of an actual analysis with these data, one should perform a much more
extensive descriptive analysis.

1.3 Descriptive statistics

This section discusses descriptive statistics. We assume that we have addressed the
data coding and quality issues, and the averages and ranges that we calculate below
are computed on valid values only.

Descriptive statistics is largely a data description. It serves multiple purposes,
including to familiarize the analyst and the reader with the data, and to provide an
easy overview of the traits in the data that are central for the analysis. In this sense
it is a part of exploratory data analysis. The descriptive analysis should target the
question we want to analyze. For instance, if we are interested in the relationship
between education and income, then we should describe both education and income,
and maybe also their relationship. Sex and geography are irrelevant–unless we also
want to analyze those.

Here we focus on three traits in data: central tendency, such as average; variability,
such as range and variance; and distributions in the form of histograms and quantiles.
We also discuss inequality measures.
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1.3.1 Central Tendency: what are the typical values
What are the “typical” values is one of the first things we want to know data. And
sometimes we want to describe the “typical values” with just a single number. Aver-
age, median and mode are the most popular such numbers.

Average

Average (mean)6 is the most popular way to describe the location (the “center”) of the
data. Here we discuss arithmetic average, for N observations x1, . . . ,xN it is defined
as

x̄ =
1

N

N∑
i=1

xi. (1.3.1)

Average is very intuitive measure and humans have good innate abilities to estimate
mean value by just looking at the sample (see Exercise 1.2).

Computing the average requires the values to be of interval measure, otherwise the
addition operation is not defined. However, it is also often sloppily applied to ordered
measures when comparing distributions. In that case, the average is, strictly speaking,
not a central tendency measure but just a test statistic that we are comparing across
distributions.

A major disadvantage of average is that it is sensitive to outliers and missing
values. For instance, consider data 2.1, 2.2, 2.3. Its mean is x̄ = 2.2. However, if there
is a data entry error and we have 2.1, 2.2, 23 instead, the mean will be 9.1. If any
data point is missing then mean cannot be computed at all. Average is not a robust
statistic.

Average may correspond to a non-existing or even impossible case. For instance,
we may find that an average family has 0.5 children. One cannot conclude from this
number that industry should supply more kids’ “half-beds”. But in order to evaluate
the demand for daycare or school places, this number is very much applicable.

Average is a good description for data that is fairly concentrated. For instance, if
all employees have income between 40,000 and 60,000, the mean would describe all
these salaries fairly well. But if our sample contains 100 people in poverty (income
10,000) and one billionaire (income 1,000,000,000), the average (9,900,000) is not
very informative. One may wrongly assume that everyone in this sample has income
around 10M, and hence poverty is not an issue.

Average is the sample analog of expected value. When talking about RV-s, we often
denote the average of N realizations of a RV X as X̄N . See more in Section 1.4.5
Expected Value, page 57.

Exercise 1.2: Humans understand average well

Humans are very good with evalu-
ating the averages. Look at the lines
on the figure here and tell: what do
6I prefer to use “average” instead of “mean”, but sometimes I use these interchangeably. This is

because “mean” is often used to denote the expected value of a random variable (See Section 1.4.4
Random Variable, page 54) or of a distribution. “Average” is solely used to denote sample average.
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you think, what is
• the average line length?
• the total length of all lines com-

bined?
Which task is easier in your opinion?

Answer at page 472.

Median

Median is another popular measure to describe typical values. It is the “middle value”,
a value where there is an equal number larger and smaller values in the data. For
instance, in a dataset 1, 2, 3, 4, 10, median is 3 as there are two smaller and two larger
values. If there is no such datapoint, e.g. in a sample 1, 2, 3, 4, the median can be
defined in different ways, one encounters values 2, 2.5 and 3.

Median is much less sensitive to outliers than mean. If we take the example above
where instead of 2.1, 2.2, 2.3 we observe 2.1, 2.2, 23 due to a data entry error, we can
see that the error leaves median, 2.2, unchanged. Median is a robust statistic. Median
is also less affected of missing values. For instance, consider the same data but now
assume the last observation is not wrong but missing: 2.1, 2.2, NA. While we cannot
say anything about the mean, we can still say that 2.1 ≤ median ≤ 2.2: if the missing
value is larger than 2.2 then median is 2.2, if it is smaller than 2.1 then median is
2.1, and if it is somewhere in between, then the unknown value is also the median.
We are not quite sure about the median value but in this example we can give fairly
narrow bounds. Computing median involves just comparison and no addition as in
case of mean. So it can be computed on ordered measures, interval properties are not
needed.

Median describes well “typical” values in data but fails to capture information
about “non-typical” values. For instance, in case of the poverty-billionaire example,
the median income will be 10,000. The median person is in poverty. However, median
does not provide any hint about the fact that we also have a billionaire in the sample.
In a similar fashion, if we find that median household does not have any children, we
cannot conclude that no household have any kids. In order to design family policies
we have to incorporate other values than median.

Mode

The third popular measure of data location is mode. Mode is just the most common
data value. For instance, if data looks like 1, 2, 2, 3, 3, 3, the mode is 3. Computing
mode only requires comparing equality, so mode is well defined even for nominal
measures. However, mode may not work well for continuous values. In case of discrete
outcomes, there is only a limited set of possible values, but in continuous case it is
unlikely that many data points have exactly the same value. Computing mode for
continuous variables typically includes some sort of smoothing, and thereafter finding
the maxima of the smoothed values.

Many types of data are unimodal, i.e. they have a single mode, often around
the middle of the values (given the data is ordered). Figure 1.21 gives examples
of such data. Other types of data are bimodal or multimodal, i.e. they have two
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or more different values that are most common. Normally one talks about bimodal
distribution even if the two modes do not have the exact same frequency, but are
clearly separated with less common values, see, e.g. Figure 1.2 left.

Example 1.5: Education and income in NLSY data: central tendency

Imagine you want to analyze the relationship between education and income.
Dataset heights (see Section B Heights, page 465) contains income (yearly income
in USD) and education (years of completed education). The table below displays
their mean, median and mode:

Mean Median Mode
Education (years) 13.22 12 12
Income ($1000) 41.2 29.59 0

Table 1.3: Mean, median and mode of education and income. Dataset heights.

We can see that the median education is 12 years, corresponding to HS degree. So
at least 50% of the sample does not have college degree. HS degree is also mode,
the most common single type of education in these data. Finally, the average
education is over 13 years, suggesting that the sample contains more people with
long education than those with less than HS degree.

In case of income, we see that the most common value is zero–individuals
have no income at all. However, as this is continuous data, we are not quite sure
how to interpret it. In any case, it does not mean that it is more common not to
have income, compared to have income. The percentage of 0-income persons is
just 0.248, so roughly one quarter.

Exercise 1.3: Mean, median, mode

Consider data x = (1, 2, 3, 3, 3, 5, 5, 10). Compute
1. mean
2. median
3. mode

Now assume that the first observation is missing: x = (NA, 2, 3, 3, 3, 5, 5, 10).
What can you tell about mean, median and mode?

Solution on page 471.

1.3.2 Variability
While humans have very good intuitive idea of typical values such as average or
median, our understanding of variability is not as good. We can understand the
concept of range fairly well, but variance and standard deviation are much harder to
grasp.
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Range

Range is perhaps the simplest measure of variability. As range, we mean both the
smallest and the largest value in data.7 Range is easy to understand and easy to
compute. But it has two important downsides. First, range is very sensitive to
outliers. Even more, range is outliers. By definition, range is the minimum and
maximum value, and will always pick up any outliers there are in data. Second, range
is oblivious about how is the rest of data distributed between these two extreme
values. For instance, two data vectors x1 = (0, 0, 0, 0, 0, 10) and x2 = (0, 2, 4, 6, 8, 10)
have identical range. The values are distributed very differently, in the first case “10”
is clearly an outlier, while in the second case the datapoints are distributed in an
uniform fashion over the whole range.

Range is one of the most important tools to test quality and encoding of numeric
(or more generally, ordinal) data. As the numbers must be in a “reasonable range”,
just by checking the range one can immediately tell if any of the values are not of a
realistic value. For instance, in Titanic data, the age ranges from 0.17 to 80. Both
of these values are realistic–it is perfectly feasible to have a two month old and a 80
year old passenger. Hence all other age values must be in this plausible range too.
However, if we find the smallest age to be, for instance, −7, or the oldest person being
of age 200, then something must be wrong. But what exactly is wrong needs a further
analysis. It may be as simple as data entry error—for instance, in Example 1.4 above,
we found that the largest year is in Shark Attack Data is 3019. It may also be our
misunderstanding. Negative age values may have some sort of specific meaning, for
instance −7 may be the investigator’s guess. We may also misunderstand the units
of measurement, e.g. “200” may be age in months, not in years. One cannot tell
without learning more.

Sample variance

Figure 1.1: Range is determined by outliers:
in case of dataset a) (red crosses), range is a
good indicator of variability in data. In case
of b) (black circles), it fails to indicate that
most datapoinst are clustered fairly close to
the center. Variance captures this better.

Variance is another widely used measure
of variability in data. Sample variance is
defined as the average squared deviation
from sample mean:

s2 =
1

N

N∑
i=1

(xi − x̄)2 (1.3.2)

where x̄ is the sample mean. So it
is a certain average deviation, we may
think of it as the “typical” squared devi-
ation from the mean. It is, admittedly,
not an intuitive measure, for intuitive
understanding it is better to use stan-
dard deviation (see Section 1.3.2 Stan-

7Range is often understood as the difference between the maximum and minimum value,
max−min. However, in this book we understand it as both min and max value.
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dard deviation, page 23). Sample variance does not have standard notation but s2 is
often used.

Variance has two advantages over just data range:

• Variance is much less sensitive to lone outliers. It is still somewhat sensitive
though—the definition involves the deviation squared so large deviations have
overly large influence—it also includes an average over all other data points. So
variance is “made” of all data, not just of the two most extreme observations.
For instance, returning to the examples we presented regarding range above,
x1 = (0, 0, 0, 0, 0, 10) and x2 = (0, 2, 4, 6, 8, 10), we can compute the variance of
the first sample s21 = 13.889 and of the second sample s22 = 11.667. One can see
that in the second sample, “typical” data points are closer to the average than
in the first sample.

• Variance, in particular its analogue for random variables (see Section 1.4.5), is
an extremely important theoretical concept. Many common statistical tests,
including z-test and t-test, are based on variance.

Variance can be computed using definition (1.3.2) above. Let us compute variance
of data vector (1, 2, 3). We do this in an explicit way by constructing a table for the
auxiliary results (Table 1.4). The first column in the table just displays the data,
average of which, x̄, is in the last row. The second column displays the deviation
from the average, x − x̄, and the last column displays the deviation squared. The
average of the latter is variance, in this example s2 = 2/3. Note also that the middle
column, x − x̄, averages to 0. This is always true by the definition of mean, and
explains why we want to compute average of the squared the deviations instead of
the average of deviations.

Table 1.4: Computing variance. The last row displays the averages, the average of column x
is just the sample average x̄ = 2, and the average of the last column is the variance s2. Note
that the average of the middle column x− x̄ is 0, this is always true through the definition
of mean.

x x− x̄ (x− x̄)2

1 -1 1
2 0 0
3 1 1

average 2 0 2/3

This approach, based on the definition (1.3.2) is easy enough when coding, but
when computing variance manually, then it is easier to use the shortcut formula

s2 = x2 − (x̄)2. (1.3.3)

This formula is equivalent to the definition (1.3.2) above. So variance can also be
computed as the difference between mean of x2 and the square of mean of x. For the
example in Table 1.4, we see immediately that (x̄)2 = 4, x2 = (1 + 4 + 9)/3 = 4 2

3 ,
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and hence their difference is s2 = 2/3, the same number we found when using the
definition (1.3.2).

Proof 1: Where the shortcut formula is coming from

The shortcut formula can be derived from the definition of variance (1.3.2). We
start by opening the parenthesis and re-arranging the terms:

1

N

N∑
i=1

(xi − x̄)2 =
1

N

N∑
i=1

(x2i − 2xi x̄+ x̄2) = (1.3.4)

=
1

N

N∑
i=1

x2i +
1

N

N∑
i=1

(−2x̄ xi + x̄2) = . . . (1.3.5)

Here we already have the first term, x2. Now we use the fact that x̄ does not
depend on i and can be take out of the sum:

. . . = x2 − 2x̄
1

N

N∑
i=1

xi +
1

N
N x̄2 = . . . (1.3.6)

Here we have used the fact that as
∑N

i=1 x̄ = N x̄. And finally, using the definition
of mean we have

. . . = x2 − 2x̄ x̄+ x̄2 = (1.3.7)

= x2 − x̄2.

This is the shortcut formula.

Exercise 1.4: Properties of variance

Consider two sequences of data:

x1 = (0, 0, 0, 4) and x2 = (0, 0, 0, 40)

1. Compute variance of x1

2. Compute variance of x2

3. Compute variance of (0, 0, 0, 4λ) where λ ∈ R is an arbitrary number.
4. Consider an arbitrary sequence y that has variance s2y. What is variance of
λy, a vector where every element is multiplied by λ?

The last point is extremely important when computing the variance of sample
mean (see Section 1.6.2 Theoretical Confidence Intervals, page 98).

Solution at page 473

It also appears that the results computed from (1.3.2) on a small sample tend to
underestimate the variance of a larger sample of the same data. This can be easily
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understood when looking at a sample of a single observation only. Obviously, in this
case x̄ = x1 and hence (x1− x̄)2 = 0 and we have the sample variance s2 = 0. This is
definitely an underestimate for anything besides constant values. The solution is to
compute the corrected variance, often called population variance

s2 =
1

N − 1

N∑
i=1

(xi − x̄)2. (1.3.8)

The difference between (1.3.8) and (1.3.2) is just value N − 1 instead of N in the
denominator. This inflates the sample variance estimator, and now the estimates are
not too small even on small data. For instance, in our single observation example,
this formula would give 0/0, an undefined value.

The two variance concepts, sample variance and population variance, are a source
of a lot of confusion. The confusion is carried over to the software realm, e.g. the
default function for variance in R and Pandas, var(), uses (1.3.8) while the same
function in numpy uses (1.3.2). It is beyond the scope of this book to explain the
difference between these two ways to compute variance. Fortunately, in anything
resembling a respectable dataset, the difference is minimal. In this book we use the
sample variance in the form of (1.3.2).

An additional source of confusion is caused by the theoretical concept correspond-
ing to population variance that is also called variance (see Section 1.4.5). These
concepts are related in a similar way as sample average and expected value, but
unfortunately they share the same name.

Standard deviation

There are two main disadvantages of variance: first, it is not an intuitive concept
despite of its theoretical importance, and second, it is measured in squared units.
For instance, if we are working with human age data, variance is measured in years
squared. This is not a unit that we can understand. Fortunately, this problem is easy
to ameliorate–we can just take square root of variance, that will be measured in the
same units as data. This is called standard deviation or standard error. Standard
deviation of human age is measured in years, and we understand years well. The
difference between these two concepts is beyond the scope of this book. Here we
use “standard deviation” primarily in the context where we talk about variability in
data, and “standard error” when the variability describes uncertainty of our results.
Standard deviation is denoted in various ways, in formulas often as s (as square root
of sample variance s2), in text and tables it is often written as std.dev (or std.err for
standard error). So we can define standard deviation as

s =
√
s2 =

√√√√ 1

N

N∑
i=1

(xi − x̄)2. (1.3.9)

In a similar fashion as variance, standard deviation describes a certain average de-
viation from the mean. But unlike the variance, it is deviation from the mean, not
squared deviation from the mean. We can call it as “typical deviation”.
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Example 1.6: Education and income in NLSY data: variability

We continue the Example 1.5 above, and compute the range, variance and stan-
dard deviation of education and income in heights data (see page 465).

The results are in the table below

Min Max Var Std.dev
Education (years) 1 20 6.76 2.60
Income ($1000) 0 343.83 3123.93 55.89

Table 1.5: Range, variance and standard deviation of education and income. Dataset
heights.

We see that education ranges from 1 to 20 years. The latter corresponds to an
advanced degree, but the former, just a single year of schooling for and adult,
seems somewhat suspicious. More analysis is needed to tell if it is indeed a correct
value. We also see that variance of education is 6.76 and its standard deviation
is 2.6. The latter can be understood as the “typical” deviation from the average
education value, 13.22 (see Example 1.5). But in any case, these figures are hard
to interpret.

Income, on the other hand ranges between 0 and 344,000 (US dollars yearly).
The maximum value is actually not the maximum income, the documentation
reveals that this is the average income of the top-2% of incomes. This is referred
to as top coding, and it is a common feature of datasets that include individual
income.

It is hard to interpret the variances, but we can compare standard deviations
with the mean. For education, std. deviation, 2.6, is much smaller than the
corresponding average 13.22. But for income, this is the other way around–
standard deviation is 56,000, more than the average 41,000. Below, we see that
this is because these two variables describe rather different kind of features, with
income inequality substantially larger than education inequality.

1.3.3 Distribution

Mean, range and variance and other descriptive figures give a few numbers that are
useful in understanding both the typical and extreme data values. But sometimes
we want to know more: which values are more common and less common? How
common are values near the extremes? Are there a lot of large values? Below, we
discuss the distribution of data that can answer all these questions. Distributions are
often represented visually using histograms and density plots, but they can also be
described with quantiles and other measures.
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Histogram

Histograms are just counts of data points in bins of different values. Typically the
variable range is split into bins of similar width, and thereafter one counts how many
observations fall into each bin. It is also common to present the histogram not as
counts per bin, but as density, i.e. percentage of observations per unit width for each
bin. The advantage of this is that the numeric values are approximately constant
when changing the data size and number of bins.
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Figure 1.2: Histogram describing the age distribution of Titanic passengers (left panel)
displayed as counts, and the distribution of fare they paid (right panel) as density. We can
see that while age is approximately normal, fare is highly skewed.
In practice, a good choice of the number bins is often the square root of the number of data
points, this will usually give a visually appealing plot.

Figure 1.2 depicts such histograms for age (left panel) and fare (right panel) of
Titanic passengers (see Section B Titanic, page 468). We can immediately see that
these two variables are distributed in a rather different way. Age is broadly normally
distributed (see Section 1.5.3 Normal distribution, page 75) while fare is extremely
right-skewed: most people paid around 10£ but a few passengers paid much more (in
fact, the highest fare paid was 512£). We can also see that the age distribution is
bimodal: typical passengers were 20 to 40 years old, but we also see a peak among
the very young travelers. These are probably children of the adult passengers.

Histograms allow us to quickly grasp several interesting features of the distribu-
tion, and in this sense they offer a much more detailed view than mean or variance.
However, just by eyeballing the plots we may not be able to estimate certain relevant
features of the distributions, e.g. we may not be able to tell if mean of one sample
differs from the mean of another sample. Another problem with histograms is that
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partitioning data values into discrete bins may obscure or amplify certain discontinu-
ities in the distributions.

An alternative is to display data as density plots (Figure 1.3). These are concep-
tually similar to histograms, just displayed as continuous curves, where the density
value depends on the number of datapoints nearby. Density plots do not bin data
and hence do not show related artifacts, but smoothing over nearby values may create
other problems.
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Figure 1.3: Age and fare distribution in Titanic data, displayed as density plots. It is exactly
the same data as in Figure 1.2, just displayed differently.

Density plots are some times displayed vertically for different groups. Such plots
are called violin plots. Figure 1.4 (left) shows one such plot, namely passengers’ age
for different passenger classes. One can see that second and third class passengers are
of broadly similar age, the second class passengers are just slightly older. However,
first class passengers lack a peak at age range 20-30 alltogether, the most common
age group for this class is 30-50 instead.

A simplified version of violin plot is boxplot. Figure 1.4, right, shows the same
information as the corresponding violin plot, just now in the form of a boxplot. The
three boxes depict the three passenger classes.

Quartiles are 25th, 50th, and
75th percentiles, see Section 1.3.3
Quantiles, page 28.

Boxes cover 50% of the observations,
from the lower quartile to the upper quartile, the horizontal bar represents the sample
median. The whiskers extend up to 1.5× the box height above and below from the
box–up to the largest and smallest data point in this range. All cases that reach
beyond the whiskers are called “outliers” and marked with separate dots. As you can
see, the boxplot provides broadly the same information as the violin plot–2nd and
3rd class passenger age is distributed in a similar fashion, just 2nd class passengers
are slightly older. But 1st class passengers are much more old, and their distribution
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Figure 1.4: Titanic age distribution by passenger class. Violin plot (left) and boxplot (right).

spans a wider age range.

Example 1.7: Education and income in NLSY data: distribution

The figure below compares the distribution of income and education, based on
NLSY data (dataset heights, see Section B Heights, page 465):

0

1000

2000

0 5 10 15 20
Education, years

C
ou

nt

0

500

1000

1500

2000

0 100 200 300
Income ($1000)

C
ou

nt



28 CHAPTER 1. INTRODUCTION TO STATISTICS

Figure 1.5: Histogram of education (left) and income (right) in heights data.

Education (left panel) shows a strong peak at 12, corresponding to the high school
degree. Minor peaks are visible at 14 and 16 years, corresponding to the 2-year
and 4-year college respectively. Income (right panel) has two prominent peaks: at
zero, and at $340,000. The former is true data, in the sense that there are indeed
many people who do not earn any money. The latter, however, is an artifact of
top coding, in reality there are people in this sample who earn much more than
this, just their income is replaced by this number. When ignoring the peaks,
the income distribution shows a hump with a thin but long right tail. Income
is typically log-normally distributed, see Section 1.5.3 Log-normal distribution,
page 77.

Quantiles

A popular method to quantify certain aspects of distributions is by using quantiles.
Quantile is relative location in data. For instance, 0.2-th quantile is such a number
that 20% of observations are smaller than it, and 80% of observations are larger than
it. This quantile is often denoted as q0.2. There is a sibling measure of quantile, called
percentile. These two are equivalent, 0.2-th quantile is exactly the same thing as 20th
percentile. In order to compute q0.2 (20th percentile), we can first arrange data in an
increasing order, and thereafter remove the first 20% of it. The smallest number that
is left is the quantile value.

In practice we have to define it slightly differently to deal with cases where the
quantile does not correspond to any particular data point:

Definition 1.1: Sample quantile

τ -th quantile is a number qτ , such that fraction τ of values is no larger than qτ ,
and fraction 1− τ of values are no smaller than qτ .

For example, consider sample (1, 1, 1, 2). Its 0.5th quantile q0.5 is 1: a half of the
values (1 and 1) are no larger than 1; and the other half (1 and 2) are no smaller than
1.

However, this definition is still not unique. For instance, 0.5-th quantile of (1, 2)
can be anything in the interval [1, 2]. Usually this does not matter in applications,
but one must be aware of possible surprises, in particular if many data points take a
small number of discrete values. Also, different software packages may define quantiles
differently, or they allow you to choose between different definitions. In the case of
this example you may find numbers like 1, 1.5 and 2, depending on what is exact
definition is used.

Certain quantiles have common names:

• Median is 0.5-th quantile q0.5: it is the middle value, i.e. a half of the sample is
no larger than median, and the other half is no smaller than median.

• Tertiles (or terciles) are 1/3 and 2/3-th quantiles, q1/3 and q2/3.
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• quartiles are 1/4, 1/2 and 3/4-th quantiles
• quintiles are quantiles that split data into five parts (0.2, 0.4, 0.6, 0.8-th quan-

tile).
Quantiles that are close to median are quite robust with respect to outliers, but

extreme quantiles (such as q0.01 or q0.999) may be very sensitive.

Example 1.8: How to compute quantiles

Consider data (1,−2, 3, 1). Let’s compute median, lower quartile and upper
tertile (q0.25, q0.5 and q2/3).

First, we want order the data–this will be (−2, 1, 1, 3). The figure below shows
the ordered datapoints (above the line), and sample quantiles corresponding to
the data points (below the line). The smallest and the largest point correspond
to quantiles 0 and 1, and the other two, marked on the figure as the 0.333-the
quantile (q1/3) and 0.667-the quantile (q2/3), split the interval [0, 1] into three
equal parts.

Ordered datapoints

Quantiles

-2

0

1

0.333

1

0.667

3

1

0.25 0.5

Figure 1.6: How to compute quantiles: order the data first, and then find the closest
datapoints on both sides of the the desired quantile (or points that overlap with it).

Median, the 0.5th quantile, is the midpoint between the lower tertile (q1/3 = 1)
and the upper tertile (q2/3 = 1). Hence the median must be 1.

The lower quartile, 0.25th quantile, is between 0-th quantile (q0 = −2) and
0.333-th quantile (q1/3 = 1). Hence it can be any number between −2 and 1.

Finally, the upper tertile, 0.667-the quantile, is exactly determined by a data
point q2/3 = 1. Hence it is 1.

Different software packages may define the default way to compute quantiles
differently. For instance, both R’s and nympy’s quantile() function with default
arguments results in 0.25, 1, 1; but when specifying “type 1” quantiles, it gives
-2, 1, 1.

For large samples where the data points define a large number of fine-grained
quantile values, such a detailed approach may not be necessary. But when a
large number of points tend to cluster at a few values only, we still need such a
detailed definition.

Exercise 1.5: Compute sample quantiles

Consider data (1,2,3,1,2,1).

1. Which quantiles are defined by the data points?
2. Compute 0.5-th quantile (median)
3. 0.8-th quantile (upper quintile)
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4. 0.333-th quantile (lower tertile)

Solution on page 473.

Exercise 1.6: Robustness of quantiles

Consider data x = (1, 1, 2, 1, 2, 1). However, due to a typo, you receive an erro-
neous data vector x̃ = (1, 1, 2, 1, 21) instead.

1. Compute mean, median, and q0.9 for both x and x̃.
2. Which of these characteristics (mean, median, q0.9) is less affected by the

typo? Which one is the most affected one?

Solution on page 474.

1.3.4 Other descriptive measures
Inequality

Another common feature we analyze in data is inequality. There are various ways to
measure it, e.g. by Gini coefficient, the quintile share ratio, Pareto ratio, and many
others.

Ratio measure has well-defined
zero. See Section 1.1.1 Measures:
Possible Mathematical
Operations, page 3.

Note that inequality is well defined for ratio measures only, this is because
when comparing inequality, we almost invariably think in relative terms when talking
about inequality. For instance, we feel that $100,000 difference in income describes
very different inequality for two persons who earn $50,000 and $150,000, compared to
two persons earning $1,050,000 and $1,150,000. This is why we need ratio measures
to discuss inequality.

A number of inequality measures also cannot handle negative and zero values: it
is true that someone owning $10 owns infinitely more in relative terms than someone
with no money, but such ratios are typically not useful for any practical applications.
We’d consider both persons extremely poor.

Below, we look at two measures–quintile share ratio and Pareto rule.

Quintile share ratio Quintile Share Ratio (QSR, also S80/S20) is a popular and
simple inequality measure. It is the ratio of the total wealth owned by the wealthiest
20% to the total wealth owned by the poorest 20%. It can be computed as a sum
of all values above the 0.8-th percentile, divided by the sum of values below 0.2-th
percentile.

Obviously, we can compute QSR for all sorts of different variables, not just wealth.
For instance, look at the house prices in Windsor, ON (see B). The distribution is
shown in Figure 1.22, page 78. The average house in the dataset costs $68,100, and all
in all, we have data about 546 homes. The botton 20th percentile of the house values is
$47,000 and the top 20th percentile is $87,000. The total value in the bottom quintile,
the total price of all 107 homes with price below $47,000 is $4,145,400. The total value
of the top quintile, the total value of 109 homes above $87,000 is $12,021,700. Hence
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the quintile share ratio
QSR =

$12,021,700

$4,145,400
≈ 2.9. (1.3.10)

For the house values example, QSR is well defined and easy to understand. This is
because in normal housing market, all houses command a positive price. But certain
distributions have a large number of zeros. If the distribution contains more than 20%
of zero values, the total value in the bottom quintile is zero and QSR is infinite. It
carries little information in such case. Unfortunately, zero values are very common in
all kinds of income, wealth, and popularity data. For instance, those who do not work
have no income. Those who do not own a home have zero housing wealth. Websites
that are not accessed have zero number of hits. In that case one may compute QSR
for the positive values only, but this approach ignores the presence of zeros in data.

The problem boils down to a conceptual issue–we want to use the inequality mea-
sure to describe life quality difference between different groups of people. But no
income does not mean zero life quality, most of zero-income people are either drawing
down their own savings, or so are supported by others. Income is only a proxy for
life quality.

Pareto ratio Pareto ratio is another popular measure of inequality. It is often called
80/20 ratio after the observation that for many phenomena, 20% of the cases are
responsible for 80% of the outcomes. This includes wealth inequality (“20% of the
richest control 80% of the wealth”), but also computer code (“you spend 20% of time
to get your code to work on 80% of tasks, and you spend 80% of your time on the
last 20% of tasks...”).

The exact figure depends on the data distribution, and despite it being sometimes
called 80/20 ratio, it is not usually the case that the top 20% controls 80% of all
outcomes. If this is indeed the case, i.e. if the richest 20% control 80% of total
wealth, then we have a rather unequal distribution. For instance, in case of Windsor
housing (see Section B Housing, page 465) wealth example above, the most expensive
43% of the houses contain 57% of the housing value instead (see Figure 1.7); but
in case of research paper citations, the most cited 17.5% of papers capture roughly
82.5% of all citations. So among these datasets, housing values are much more equal
than citations. See also Table 1.10 Log-normal Pareto ratios depending on σ. For
instance, if σ = 3.29 then the upper 5% of population possesses 95% of total resources.
See Figure 1.23 for the shape of the corresponding p.d.f.-s. The last column shows the
corresponding QSR. , page 80 for related ratios for log-normal distribution.

Note that by contruction, the top 50% will always own at least 50% of the total
wealth.

Example 1.9: Education and income in NLSY data: inequality

We can also compute the inequality in education and income, using heights data.
Starting with education, we can find that the 0.2th and 0.8th quantiles are 12

and 16 respectively. The “total years of education owned” by those in the lower
20% is 10258 and by the upper 20% is 12351. Hence

QSR =
10258

12351
= 1.204.
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Figure 1.7: Pareto rule states that the top x% of the
population possesses as much as the bottom 100 −
x% of the population. The pareto ratio is where
the wealth share of the top population equals to the
share of the bottom population (the blue diagonal
line). In Windsor the most expensive 43% of houses
cost in total as much as the cheapest 57% houses.
Housing value inequality is low in this neighborhood.
Windsor house price data.
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In case of income, we’ll find the 0.2th and 0.8th quantile to be 0 and 63 (in
$1000), and the corresponding total income earned by the respective groups are
0 and 166,000. This indicates that we cannot compute a meaningful QSR: as the
lower-20% of the population does not earn any income, the QSR will be infinite.
This is a common problem when computing income inequality: as there is a large
population with no income, we need an inequality measure that can handle zeros.

But we can compute both pareto ratios: for education, it is 47.2 and for
income it is 30.2. The former means that the best-educated 47.2% of population
“owns” 52.8% of total years of education. Although mathematically correct,
this sounds weird as “owning” years of education is not how we usually think
about education inequality. In case of income, we have that the richest 30.2% of
population earns 69.8% of total income. This is a perfectly meaningful claim.

Hence, at least based on Pareto ratio, income is more unequal than education.

Cheatsheet 1.2: Descriptive Statistics

Central tendency What are the “typical” values.
Mean (average) x̄ = 1

N

∑
i xi. Need interval measure. Easy and intuitive, good

for aggregate data; sensitive to outliers, the value may not exist.

Median middle value: value where half of the sample is smaller than this, and
another half is larger than this. Need ordinal measure. Less sensitive to
outliers; less intuitive.

Mode most common value. Any measure will do. Intuitive for discrete values,
needs assumptions for continuous values.

Variability How are the values spread around.

Range minimum and maximum value. Need ordinal measure. Easy and intuitive;
extremely sensitive to outliers.
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Variance average squared deviation from mean: s2 = 1
N

∑N
i=1(xi − x̄)2. Very

important theoretical measure; not intuitive, measured in squared units
that are hard to interpret.

Standard deviation square root of variance. Measured in the same units as data;
less desirable theoretical properties. Can be understood as the “typical
deviation from average”.

Distribution What values are more common and less common.
Histogram count and plot values in pre-determined bins:
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Density plot Compute and show density of data points
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Boxplot Simplified vertical representation of density
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Quantile 0.2-th quantile is such a number so that 20% of values are smaller than
that, and 80% of values are larger than that.

Inequality

QSR (quintile share ratio) is the ratio of total value of top 20% cases (top quin-
tile) and the botton 20% of cases (bottom quintile). For instance, In total,
the top 20% of jobs pay 8 times more than bottom 20% of jobs in total.

Pareto ratio x so that the largest x% of cases “owns” 100 − x% of total value.
For instance, the richest 30% own 70% of all wealth.
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1.4 Basics of Probability Theory
This section discusses probability theory, in particular the concepts of random vari-
able, expected value and variance. We use these concepts extensively below when
discussing statistical theory.

1.4.1 Events and Sample Space
Before we get into discussing the concepts in more details, we should make clear
what are we analyzing. The two central concepts in probability theory are events and
probability.

Event is something that may or may not take place, and where we typically do
not know if it occurs. Sure, we can also talk about things that take place for sure
(certain events) or that will never take place (impossible events), but we do not really
need the concept of probability to analyze such cases. A few examples of events we
may be interested in include

Flipping a coin is a popular way
to create random
outcomes–heads or tails.
Historically, one side of the coin
frequently represented the head
of the monarch, the tail side
depicted other symbols of power.
Five roubles in gold, Nicholas II
of Russia. By Unwrecker, CC
BY-SA 3.0, via Wikimedia
Commons

• Flip a coin. An event is get heads;

• We play a dice game and roll two dice. We may be interested in an event get at
least one six;

• We are going to pick up a friend at airport. We are concerned about the event
flight arrives in time.

When talking about events in the probability theory sense, we are always thinking
about some kind of stochastic phenomenon, or a stochastic experiment. Stochastic
refers to phenomena that are not completely predictable, at least not in terms of
the information and tools that we have at our disposal. For instance, your friend’s
arrival time may be very well predictable if we know the exact position and speed of
the airplane, the wait time at immigration, and whether all the luggage bands at the
airport are working. But as we don’t have this information, we may just go to the
airport in time and hope for the best. Arrival time is a stochastic process from our
perspective.

All possible events together form sample space S. So sample space is a set of
all kind of events that can occur in the phenomenon we are considering. Although
the concept may feel trivial, it is extremely helpful when thinking about random
outcomes. Here are a few examples:

• Toss a coin. There are only two options, heads and tails, so S = {H,T}

• Roll two dice. Each die can come up with sides 1 to 6, so the sample space is a
set of tuples (ordered pairs)

S =


(1,1), (1,2), . . . , (1,6)

(2,1), (2,2), . . . , (2,6)

. . .

(6,1), (6,2), . . . , (6,6)

 .

https://ru.wikipedia.org/wiki/%D0%A3%D1%87%D0%B0%D1%81%D1%82%D0%BD%D0%B8%D0%BA:Unwrecker
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Russian_Empire-1899-Coin-5-Reverse.jpg
https://commons.wikimedia.org/wiki/File:Russian_Empire-1899-Coin-5-Reverse.jpg
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Note that we distinguish (1, 6) and (6, 1), i.e. we distinguish between the first
and second die: in the first event the first die comes out with one and the second
with six, in the second event it is the way around. These two simple events make
a compound event one and six (see below). If both dies are similar and hard to
distinguish, then we may consider these two events to be a simple event instead.

• Flight delay. This can be any number, and we cannot really put a lower or
upper limit on it in general, so we can consider the sample space to be

S = (−∞,∞)

The first two of these examples are finite discrete sample spaces. The third one
is a continuous sample space. Note also that the first two are not numeric: when
tossing coins, we receive heads and tails, not numbers. When rolling two dice, we
receive pairs of numbers, not numbers. (Or, to be even more precise, we receive pairs
of sides with a certain dot patterns on them.) Finally, the third example, the flight
delay, is numeric, but not just numeric as it also has a unit (say, minutes). This is
because these events describe the physical world.

Example 1.10: Monty Hall Problem

The concept of sample space allows us to analyze and understand certain prob-
lems that are otherwise hard to grasp. Monty Hall problem, a game in a TV-show
hosted by TV-host Monty Hall, is the following:

You are in a room with three closed doors. You know that behind
one of the doors is the price, and the other two doors are empty. The
host knows where is the price but you do not know. You pick one
door (but do not open it). Now the host opens one of the other two
doors, one that is empty. You can either stay at your current door,
or switch to the other closed door. Finally, the door you chose is
opened, and if you picked the correct door, you’ll win the price.

Should you switch the door after the host opened an empty door?

To a big surprise for most of us, including trained mathematicians, it is worth-
while to switch. This will increase the chance of winning from 1/3 to 2/3. Why
such a counter-intuitive result?

The problem is easy to assess when using the concept of sample space. Let’s
label the doors 1, 2, and 3, and assume (without loss of generality) that the price
is behind the door 1 (see the figure below). If you first pick door 1, the host
will open either door 2 or 3, and importantly, you should stay where you are.
However, because you don’t know where the price is, you pick the correct door
only 1/3 of time; and hence 1/3 is your winning chance if you stay where you are.
However, if you pick a wrong door, for instance 2, the host has only one option
to open an empty door, namely 3. Now you should switch to door 1. You do
not know if you initially picked an empty door, but just by chance this happens
2/3 of time. So the second strategy gives you a win in 2/3 of cases, the former
strategy in 1/3 of cases.
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Figure 1.8: Monty Hall problem: you should stay at the door you picked if you picked
the right one. But that happens only 1/3 of time. 2/3 of time you should switch.

It is important to understand the role of the host. The host is not acting
randomly but instead she modifies the setup in a precise way. When you pick a
door, there is 1/3 probability that the price is behind your door, and 2/3 chance
that it is behind another door. When the host opens the other door, it is still
1/3 probability that the price is behind your door. But now all the rest of 2/3
probability is concentrated behind the other closed door. In order to make this
point more clear, you can imagine a similar game with 100 doors. Again, you
start by choosing one door and thereafter the host open 98 other doors so that
only two doors remain closed. As your initial guess was correct only 1/100 of
time, the price is most likely behind the other one.

It is often useful to distinguish between simple events and compound events.
Simple events are such events that cannot be partitioned into anything simpler, while
compound events can be partitioned. As an example, event of heads in a coin flip
cannot be divided into anything more basic. It is a simple event. But get a six when
rolling two dice can be any of (1, 6), (2, 6), (6, 6) or a number of other possibilities. It
is a compound event. In a similar fashion, plane arrives in time may mean it arrived
exactly in time, or in colloquial language it may also have arrived (exactly) 2 minutes
early. In its colloquial meaning it is a compound event.

Such distinction is often very useful when we compute the corresponding probabil-
ities. It is typically easier to compute probabilities of simple events than of compound
events. For instance, consider an experiment: Flip two fair coins. What is the prob-
ability to get exactly one head? When working with simple events, the sample space
S = {(H,H), (T,H), (H,T ), (T, T )}. Importantly, as the coins are independent, all
these four events are equally likely (with probability 1/4). Our compound event of
interest, exactly one head, is made of two mutually exclusive simple events (H,T )
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and (T,H). Hence the probability of this compound event is 1/2.

Exercise 1.7: Rolling two dice

Take the example of rolling two dice. Compute the probability of the compound
event get at least one six.

Hint: sketch the sample space in simple events. Are these events equally
likely? Which simple events constitute the compound event of interest?

Solution on page 474.

An important type of events is mutually exclusive events. It is fairly easy to
understand–events are mutually exclusive if they cannot occur at the same time. For
instance, sides 1 and 2 cannot occur in the same experiment when rolling a single die.
However event “an even side” and “2” can occur at the same time and hence these
are not mutually exclusive events. All simple events are mutually exclusive.

Another important class of events is independent events. Intuitively, two events,
X and Y , are independent if learning that X occurs does not tell us anything new
about Y . For instance, flipping two coins consists of two independent events. The fact
that the first coin shows heads does not tell you anything new about what happens
with the second coin. However, if you roll a single dice, then events X = a number
less than four and Y = an even number are not independent. If X occurs then there
is only one possible even number (2) out of three possible (1, 2, 3). Learning about
X tells us something about Y .

1.4.2 Probability
Now we have discussed the events. But probability theory is concerned about proba-
bility of events. What is probability? It turns out that it is not quite obvious. There
are at least two different answers.

The easiest answer to understand the concept is related to repeated events. Prob-
ability is “tendency” of the event to occur if we repeat the experiment many times.
For instance, when tossing a fair coin 100 times, we will get around 50 heads, i.e. in
average, we get heads in approximately 50% of cases. One can easily understand that
the average percentage of heads gets close to the true probability if we increase the
number of experiments.8 This is concept is called frequentist probability.

But not all experiments can be repeated a large number of times. For instance,
what would be a frequentist answer to the question “what is the probability that
there will be a nuclear war with North Korea”? Do you really want to poke mister
Kim Young Un 1000 times to see how many times a war breaks out? Even more,
there are a plethora of common phenomena that can never be repeated. For instance,
probability that it will be raining tomorrow. There is only one tomorrow, and in that
tomorrow it will either be raining or not. What does the probability even mean here?

In such cases we have to resort to a definition like “tendency for the event to happen
given the information we know”. In case of rain tomorrow, the “information we know”
may be a weather model. Professional weather models typically contain many random
processes, processes that are impractical or impossible to model precisely. But as we

8See also Law of Large Numbers, Theorem 1 Law of large numbers, LLN, page 59.
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know the properties of these processes in the model, we can compute the probability
of rain. This concept is related to propensity probability and Bayesian probability.

In everyday life we perform somewhat similar calculations. For instance, when
deciding when to head to the airport to pick up your friend, you may have heard that
today flights are an hour late. When you hear this, you may head to the airport a
half an hour late because you “think” that it is “unlikely” the flight is delayed by less
than 30 minutes. We do not perform explicit computations but just “feel” what is an
appropriate estimate.

Probability is defined as a number between 0 and 1 (or 0 and 100%), where 0
means that the event will happen “almost never” and 1 means it will happen “almost
certainly”. 9 All events in the sample space must must have a probability in the
[0,1] interval. Mathematically, probability is defined as a function that assigns such
numbers to each event in a sample space:

Pr : S → [0,1]. where (1.4.1)

We also require that probability of the complete sample space is 1 and that of empty
set is 0–something will happen for sure:

Pr(S) = 1 and Pr(∅) = 0. (1.4.2)

Besides of these fairly obvious requirements, there is one more, namely that prob-
abilities of mutually exclusive events can be added. For instance, when rolling a
die, the events “two” and “an odd number” are mutually exclusive–it is impossible
that both of these occur at the same time. Hence the probability of “two or an odd
number” is 1/6 + 1/2 = 2/3. Formally

Pr(A ∪B) = Pr(A) + Pr(B) if A ∩B = ∅. (1.4.3)

This is the mathematical definition of probability–what kind of values are consis-
tent with the intuitive idea of probability. In applications we are usually concerned
about measuring probability, calculating probabilites from data, and how the com-
puted probabilities depend on various other parameters.

Example 1.11: Probabilities of four-sided dice

Figure 1.9: One possible form of 4-sided
dice (Daldøs dice). Nø, CC BY-SA 4.0, via
Wikimedia Commons

Consider a 4-sided die with sides
labeled as “1”, “2”, “3” and “4”, and
the corresponding events mean these
sides come up when rolling it. It is
possible to assign probability 1/4 to
9Almost certain and almost never are actually precise concepts in probability theory. The prob-

ability zero events happen almost never, but this does not mean they are impossible! This distinc-
tion will become more clear when talking about continuous distribution Section 1.5.2 Continuous
distributions, page 72.

https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:Dald%C3%B8s_dice.jpg
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each of these events:

Pr(E) =


1/4 if E = 1

1/4 if E = 2

1/4 if E = 3

1/4 if E = 4.

This is consistent with the mathemati-
cal definition above and hence forms a
valid probability: as two sides cannot
come up at the same time, we can add
these probabilites. For instance, prob-
ability of the compound event “1” or
“2” is 1/4 + 1/4 = 1/2. Hence the
probability of all four events–the complete sample space–is 1.

But it is also possible to assign the probabilities differently: for instance, “1”
has probility 1/2, “2” 1/4 and “3” and “4” both have 1/8:

Pr(E) =


1/2 if E = 1

1/4 if E = 2

1/8 if E = 3

1/8 if E = 4.

This is also a valid probability.
Which one is the “correct” one? This depends on how does the dice look like.

If all four sides are similar, it is a fair dice and each side is equally likely. The
first probability function describes it better. But if the dice is biased, the second
one may well be the correct one. The mathematical concept does not tell this,
we need to collect data.

Machine learning is largely about computing conditional probabilities (see Sec-
tion 1.4.3 Conditional Probability and Bayes Theorem, page 43), probabilities of
certain outcomes, given the observable data. For instance, you may compute the
probability that a house costs $800,000, given it is located in a good neighborhood.
Even the modern LLM-s are no different–the chatbot will compute probability of the
next word in its response, given the previous word and the question you asked from
it.

Probability of independent events

Mathematically, events are independent if their joint probability can be factored into
a product of two individual event probability. In case of two events:

Pr(X,Y ) = Pr(X) · Pr(Y ). (1.4.4)

Take the example of two fair coins. Let H1 = the first coin shows heads and H2 =
the second coin shows heads. In case of a fair coins, the probabilities are Pr(H1) =
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Pr(H2) = 1/2. Now the probability that we see two heads is

Pr(H1,H2) = Pr(H1) · Pr(H2) = 1/4. (1.4.5)

Now let’s return to the die example at page 38. We roll a dies and have two events
X = a number less than four and Y = an even number. On a single die, the compound
event–an even number less than four must be just number “2”, its probability is 1/6.
But when we multiply the corresponding probabilities Pr(X) = 1/2 and Pr(Y ) = 1/2,
we get 1/4. The numbers do not match because these two events are not independent.

In case of more than two events, the independence condition generalizes to

Pr(X1, X2, . . . , XK) =

K∏
i=1

Pr(Xi). (1.4.6)

See Section 1.4.4 Random
Variable, page 54 for more about
random variables.

Non-independent events (or more specifically, non-independent random variables)
play an extremely important role in machine learning. After all, data only helps us
to predict the outcome if learning data will tell us something new about the outcome.
Data and outcome we want to predict must not be independent, otherwise the data
is useless.

Example 1.12: Two non-independent coins

Figure 1.10: Two coins, taped together, are
not independent.

It is easy to create coins that are
not independent. Here are two coins,
Danish 2 kroner (left) and 5 kroner
(right), taped together. These coins
have two sides, a spiral ornament S at
left, and Queen Margrethe II initials
M at right. Note that the coins are
connected so that the coins face dif-
ferent sides up when the tape is not
bent.

In an experiment of 50 flips, SS ap-
peared 8 times, MM 9 times, MS 15 times and SM 18 times. Hence the coins
facing different side up is more likely.

Cheatsheet 1.3: Events, Probability and Conditional Probability

Event A possible outcome in random experiment or phenomenon. Example:
heads H is an event when flipping a coin.

Sample space Set of all possible events. Example: sample space for coin flip is
{H,T}.

Simple event Event that cannot be divided into more basic events. Example:
roll a die, event “1”.

Compound event Event that can be divided into simpler events. Example: roll
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a die, get an even number.

Mutually exclusive events Events that cannot occur at the same time. Example:
roll a die, “1” and “2” are mutually exclusive. Probability of one of the
mutually exclusive events occuring is sum of their probabilities: Pr(A∪B) =
Pr(A) + Pr(B).

Independent events Events where learning about one gives us no information
about the others. Probability of both independent events A and B occuring
is Pr(A,B) = Pr(A) · Pr(B).

Frequentist probability tendency of an event to happen in a given percentage of
trials. Example: toss coin 1000 times, you get H approximately 50% of
times.

Bayesian probability best estimate given available information for how likely is
something to happen. Example: what is the probability it is sunny tomor-
row when I know it is raining today?
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1.4.3 Conditional Probability and Bayes Theorem
Prerequisites: events, sample space

TBD: history
Bayes theorem is a rule about computing conditional probabilities–probabilities

that something happens, given something else also happens. Conditional probabilities
play a very important role in statistics and machine learning, in a sense all supervised
learning is about computing conditional probabilities. For instance, if you are pre-
dicting house prices based on house size, you are asking questions like “what is the
probability that this house costs over $500,000 given its size is 200m2?”

Below, we’ll introduce conditional events first and conditional probability there-
after, in a similar fashion as we introduced events and probability in Sections 1.4.1
and 1.4.2.

Conditional events, Venn diagram, and conditional probability

Let us start with a simple example: you roll a die and you get an even number. What
is the probability that you got six? It is fairly obvious that the answer is 1/3: there
are only three even numbers (2, 4, 6), they are all equally likely, and hence you get
six in one third of the cases.

This example demonstrates all the basics about conditional events. We roll a
die.

Sample space is a set of all
possible events. See Section 1.4.1
Events and Sample Space,
page 35.

Its full sample space consists of six events: 1, 2, . . . , 6. However, we also have a
conditioning event, “even number”. It is a compound event containing simple events
0, 2, 4, 6, 8, . . . . The conditioning event “carves” (partitions) the sample space into
two parts: one contains the feasible events (here the even numbers that are possible
on die, i.e. 2, 4, 6) and the other partition contains infeasible events (here 1, 3, 5).
Afterward, we work on the feasible partition only, e.g. we compute the probability of
interest as one out of three feasible events.

This example is the essence of working with conditional events. We partition the
sample space into two parts: the feasible partition (conditioning event), and the rest,
the infeasible region. Thereafter we only consider what happens in the feasible region,
the region of the conditioning event. The infeasible region can essentially be ignored.
Below we introduce the idea more formally and provide more complex examples.

The conditioning of sample space is often illustrated using Venn Diagrams. Fig-
ure 1.11 displays one such Venn diagram. It is just a picture of sample space where
we mark the set of events we are interested, and the set of events we are conditioning
on. Figure 1.11 depicts the sample space S (the outer rectangle) and two events, A
and B. In this figure we have to think of both events as compound events, consisting
of single points as simple events. The events overlap to a certain extent, i.e. it is
possible that both A and B occur. But they do not overlap perfectly, so if A occurs
then it is not certain that B will occur and the way around. Finally, as the events do
not occupy the full sample space, it is possible that neither will happen.

An example of such two events may beA = it is raining, andB = the class is canceled.
Obviously, it is possible that neither of these two events happens (it is not raining
and the class is not canceled), so these two events do not make a complete sample
space. The “not raining and not canceled” is the white area, surrounding events A
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Event A Event BBoth A and B

A ∩ B

Sample space S

Figure 1.11: Venn diagram. The events A and B overlap partially, so it is possible that only
A occurs, only B occurs, and both A and B occur. As A and B do not sum to the whole
sample space (there is a white “leftover area” in the sample space box), it is also possible
that neither occurs.

and B. Alternatively, it is also possible that only A happens (it is raining but the
class takes place), only B happens (it is not raining but the class is canceled), and
finally both of these may happen too.

However, in other type of examples not all four options may be possible. For
instance, in case of coin toss, heads H and tails T are mutually exclusive events and
hence it is not possible that both of these occur simultaneously. Even more, there are
no more possible events in the sample space and hence either H or T occurs for sure.

TBD: Exercise: draw a Venn diagram of some sort of either complete event, mutu-
ally exclusive events, or maybe where the event of interest is part of the conditioning
event.

Conditional probability is basically just probability, computed on the smaller, fea-
sible partition of the sample space that was carved out by the conditioning event. We
denote the conditional probability of event A happening given event B happens as
Pr(A|B). For instance, in the house price/house size example, the question can be
written as Pr(price > 500,000|size = 200).

Formally, we denote the probabilities related to the Venn diagram 1.11 as follows.
First, Pr(A) is the probability that event A occurs and Pr(B) is the probability that
event B occurs. These are called unconditional probabilities or just probabilities, as
these are not related to any other event occuring. Next, we denote by Pr(A,B) ≡
Pr(A ∩ B) the probability that both A and B occurred. Normally we prefer the
shorter notation Pr(A,B) to denote joint events (this is also common in the literature),
but sometimes we want to stress that this is an overlap of A and B and we write
Pr(A∩B). Finally, we denote the probability that A occurs conditional on B occurring
as Pr(A|B); and the opposite probability, that B occurs given that A happens, as
Pr(B|A). In machine learning context, a major application of conditional probability
is predictive modeling. Using statistical tools we are trying to answer the question:
what is the probability of outcome Y given the data X?
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Example 1.13: Red and green, nice and bad

Consider the the following situation: Police is attempting to catch “Bad guys”.
But whether someone is good or bad will be clear first after arrest and a costly
investigation. But people are of different color, Red and Green, and the color is
immediately visible. For some reason, however, there are more nice guys among
Reds and more bad guys among Greens. It can be depicted using the following
Venn diagram:

Figure 1.12: Venn diagram of three events: Red, Green, and Bad.

The diagram displays three events, Red R, Green G, and Bad B. There is also a
fourth event, Nice, but as this is just the complement of Bad, we will not discuss
it further. In this example, R and G are mutually exclusive, but events R and
B have some overlap, and so have G and B. There are 24 reds and 24 greens, so
(unconditional) probability to get a green is Pr(G) = 0.5. In a similar fashion,
there are 24 Nice-s and 24 Bad-s, so the unconditional probability to find a Bad
person is Pr(B) = 0.5.

What is the probability that a person whom the police detains is bad? This
depends on how the police makes arrests:

• Color-blind: arrest persons at random. As there are 24 nice guys and 24
bad guys, the probability that police arrests a bad guy is

Pr(B|Arrest) = Pr(B) =
24

48
=

1

2
.

• Target greens: arrest greens only at random. As there are 8 good and 16
bad Greens, the probability of detaining a bad guy is

Pr(B|Arrest) = Pr(B|G) = 16

24
=

2

3
.

• Target reds: arrest reds only at random. Now the probability to get a bad
guy is just

Pr(B|Arrest) = Pr(B|R) = 8

24
=

1

3
.
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In this example, the police may be tempted to target greens, no matter what is
the wider impact to the society.

Exercise 1.8: First class survivors
Consider Titanic passengers. The count of passengers, by their survival and class
is

Class Survived Count

1 0 123
1 1 200
2 0 158
2 1 119
3 0 528
3 1 181

Compute:

1. Pr(survived|traveled in 1st class)
2. Pr(traveled in 1st class|survived).

Solution on page 474. See also Exercise 1.11.

Next, let’s look at the following, somewhat more complex problem: Roll two dice.
What is the probability to get at least one six, given one of the dice comes with an odd
side up? Let’s call the event of interest, “at least one six”, A, and the conditioning
event, “odd side up”, B. The corresponding sample space is shown in the Figure 1.13.
In essence it is a Venn diagram, exactly as on the Figure 1.11. It is just a more complex
one, and it is displayed as a table, not as surface areas. Every simple event in the
bottom row and in the rightmost column in the table constitutes the event of interest
A, we have colored these simple events pink. In a similar fashion, every odd row and
odd column in the table corresponds to the conditioning event B, and we have marked
it with blue. The table cells where A and B overlap, cells (1,6) and (5,6) and so on,
are marked with purple. Intuitively, it is easy to see that the event we are interested
are made of the 6 purple cells, and the conditioning event B is made of the 27 blue
(and purple) cells. As all the cells (simple events) are equally likely, the probability
of interest, denoted by Pr(A|B) is 6/27 ≈ 22.2%.

More formally, the conditioning event B partitions the sample space into two parts:
one part corresponds to B and the other part corresponds to non-B (Figure 1.14).
When conditioning on B, we are only interested in the left panel on the figure that
depicts those cells that were pink on the previous figure. The non-B events (right-
hand panel) are irrelevant. So we can just divide the count of simple events of interest
(blue cells) by the total number of feasible simple events (cells in the table, 27).

Note that conditioning is not necessarily related to timing. Events like “tomorrow
will be raining given the forecast is sunny” and “the forecast is sunny given tomorrow
will be raining” are both valid conditional events. This is despite of one of the events
(forecast) taking place today and the other (the weather being rainy) will happen
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Die 2
1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

Die 1 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Figure 1.13: Roll two dice, get at least one six (event of interest, red), given that at least
one die has an odd number (conditioning event, blue). This is Venn diagram for a discrete
sample space.

B occurs
Die 2

1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,3) (2,5)

Die 1 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,3) (4,5)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,3) (6,5)

B does not occur
Die 2

1 2 3 4 5 6

1
2 (2,2) (2,4) (2,6)
3
4 (4,2) (4,4) (4,6)
5
6 (6,2) (6,4) (6,6)

Figure 1.14: Partitioning the sample space into two subsets. The left side contains all simple
events in B, the right side the simple events not in B.

tomorrow.
Also, conditional probability is not the same as causal relationship. While house

size is definitely part of factors that determine the house price, the conditioning event
is not always a cause. For instance, when computing probability that an email is spam
given it contains the word “viagra”, we cannot say that the word “causes” email to
be spam. Email is either spam or not, and spam emails are more likely to contain
certain words than non-spam emails.

Let us now discuss Pr(A|B). Intuitively, computing conditional probability in-
volves conditioning, focusing on event B only. Essentially we now analyze a smaller
sample space, SB = S ∩ B, the blue oval in Figure 1.11 or the blue/pink cells in
Figure 1.14. This is equal to B as B ⊆ S. In this new smaller sample space, the
event A transforms to AB = A ∩ B, the red and blue overlap area in the Figure. In
the new, conditioned-on-B-world, the probability of B (or more precisely, Pr(B|B))
is one. We just ignore all events that do not involve B. One can intuitively see that
Pr(A|B) depends on the “size” of A ∩B relative to the size of B. If all points inside
of B and A are equally likely, we can find the conditional probability just by dividing
the area of A ∩ B by the area of B. The events A and B do not have anything like
“size”10 but they have well-defined probability. Hence we compute the conditional

10What corresponds to the intuitive concept of “size” is called measure in probability theory.
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probability as
Pr(A|B) =

Pr(A ∩B)

Pr(B)
≡ Pr(A,B)

Pr(B)
(1.4.7)

Example 1.14: Gender and Titanic Survival

Consider the loss of RMS Titanic in 1912. She had 1309 passengers, 843 male
and 466 female, out of whom 161 male and 339 female survived (see Section B
Titanic, page 468). Let’s compute the survival probability, given the passenger
was female. Intuitively, it is just the number of female survivors divided by the
number of female passengers:

Pr(survived |female) =
female survivors

all females =
339

466
= 0.727.

This calculation is essentially an application of Bayes theorem. Consider the
relevant events as a Venn diagram:

Survived (500) Female (466)

Survived and female

(339)

Male, did not survive (682)

All passengers (1309)

Figure 1.15: Gender distribution among Titanic passengers, displayed as a Venn dia-
gram. Out of 1309 passengers, 466 were female, 500 survived, and 339 were both female
and survived.

The sample space (the white box) is “made of” all 1309 passengers. Out of these
passengers, 466 were female (blue on the figure), i.e. Pr(female) = 466/1309 =
0.356. 500 passengers survived (red on the figure), so Pr(survived) = 500/1309 =
0.382. But there is also an overlap–the 339 females who survived (red/blue cross
shaded in the figure). We can compute this probability (out of all passengers)
as Pr(survived ,female) = 339/1309 = 0.259. However, we are not interested in
Pr(survived ,female), probability that a random passenger was female and sur-
vived, but in the conditional probability Pr(survived |female), probability that a
random female passenger survived. So we should divide the cross-shaded overlap
area with the blue female area:

Pr(survived |female) =
339/1309

466/1309
=

339

466
= 0.727.
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This is the same result we got above.

Exercise 1.9: Titanic survival and gender

Use the Titanic data in Example 1.14. Compute probability that a passenger is
female, given she survived, Pr(female|survived).

Solution on page 474

Exercise 1.10: A family has two children…

(This problem is known as two daughter problem)
Consider a family with two children. We know that one of these is a girl.

What is the probability that the other one is also a girl? Assume gender of
children is independent, and Pr(boy) = Pr(girl) = 0.5.

Hint: what is the sample space and the conditioning event in this case? If
thinking in terms of sample space in abstract terms is too hard then it is useful
to imagine it in terms of a concrete number, e.g. 100 families that all have two
children. How many of those belong to the groups of interest?

Solution on page 474.

Bayes theorem

So far we just compute the conditional probability based on the definition. Next,
we’ll discuss Bayes theorem, the way how you can use conditioning on A to find the
probability when conditioning on B.

Obviously, because the problem is symmetric–we can just swap A and B in (1.4.7)
and have

Pr(B|A) = Pr(B,A)

Pr(A)
. (1.4.8)

Note also that the probability that both events occur, Pr(A,B) = Pr(B,A). So we
can isolate Pr(A,B) from (1.4.8) as

Pr(B,A) = Pr(A,B) = Pr(B|A) · Pr(A) (1.4.9)

and insert this into (1.4.7) to get

Pr(A|B) =
Pr(A,B)

Pr(B)
=

Pr(B|A) · Pr(A)
Pr(B)

. (1.4.10)

This relationship plays quite a big role when working with conditional probabilities–
sometimes it is easy to compute Pr(B|A) but not Pr(A|B), and (1.4.10) shows how
we can get the latter from the former.

In practical applications, we often have “outcome” in place of event A and “data”
in place of event “B”. In this context (1.4.10) shows what is the probability to get
“outcome” given we have “data”. This is essentially a predictive modeling problem.



50 CHAPTER 1. INTRODUCTION TO STATISTICS

When the counts are given then computing conditional probability reduces to
dividing of the two counts of interest. This was the case with the Titanic exam-
ple (Example 1.14 above. But sometimes the probabilities are more easily available.
Consider a diagnosis problem: a doctor meets a patient with certain symptoms, e.g.
runny nose, watery eyes, and cough. Does the patient have flu? This is a diagno-
sis problem, we can also state it as a prediction problem where our task is to find
Pr(flu|symptoms). It is very much the problem the doctors face when encountering a
patient. How can we calculate this probability? First, we can use (1.4.10) to express
the diagnosis task as

Pr(flu|symptoms) = Pr(symptoms|flu) · Pr(flu)
Pr(symptoms) . (1.4.11)

What are the three probabilities we need to compute the diagnosis?
• Pr(symptoms|flu) is the probability to observe symptoms given someone has flu.

This data probably exists in hospitals.
• Pr(flu) is probability that a patient has flu. This data is also likely to exist.
• Finally, Pr(symptoms) is probability that a patient has such symptoms, flu or

no flu. This data is also likely to be present in medical records.
So given our doctor has access to medical data, she is now able to compute the
diagnosis!

Example 1.15: Probability of diagnosis

Assume we learn from the medical records that:
• Pr(symptoms|flu) = 0.3: 30% of patients with flu have such symptoms.
• Pr(flu) = 0.2: only 20% of patients have flu. These data are also likely to

exist.
• Finally, Pr(symptoms) = 0.1. Such symptoms are observed on 10% of

patients.
Now the probability of flu is

Pr(flu|symptoms) = Pr(symptoms|flu) · Pr(flu)
Pr(symptoms) =

0.3 · 0.2
0.1

= 0.6.

So given such symptoms, it is 60% likely that the patient has flu.

Let us take another look at (1.4.10). In essence it is an updating rule. The
doctor begins the diagnosis with initial probability value Pr(flu). It is called prior
probability or just prior, this is the probability of flu given the doctor hasn’t learned
about any symptoms. This is the prediction based on no data. However, if we collect
data (i.e. observe symptoms), then the prior will be updated by multiplying it with
Pr(symptoms|flu)
Pr(symptoms) . The product, Pr(flu|symptoms), the probability we are interested in,

is called posterior. So the essence of Bayesian theorem is to update the prior based
on data–if we get new information (data), we should update our initial guess (prior)
to posterior.

Bayesian theorem is foundation of Bayesian statistics–many everyday problems
can be described as updating the initial guesses based on data. But what are priors,
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the initial guesses? If computed from earlier data, as in the flu example here, it
is fairly straightforward value. But sometimes we do not have anything resembling
earlier data, and we have to come up with “just a guess”. This is one of the more
controversial sides of Bayesian statistics–we need a prior, and if we do not know much
about the problem, then we “just guess”. And guessing does not feel like a scientifically
rigorous way of doing things.

Exercise 1.11: First class given survived

What is the probability that a titanic passenger was traveling in first class given
they survived, Pr(C = 1|S = 1)? We know that the percentage of first class
passengers who survived was 0.619, percentage of first class passengers was 0.247,
and probability of survival was 0.382.

Solution at page 475. See also Exercise 1.8.

The above example assume we know Pr(symptoms), also called normalizer.11 This
was a reasonable assumption in the diagnosis problem above, but it is not always the
case. Consider (1.4.10) again, but now assume we do not know Pr(B). However,
we can compute it if we know both of the following probabilities: the conditional
probability of B given A happens, Pr(B|A), and the conditional probability of B
given A does not happen, we denote it by Pr(B|Ā). Now the normalizer can be
computed as

Pr(B) = Pr(B|A) · Pr(A) + Pr(B|Ā) · Pr(Ā). (1.4.12)

Expected value is similar to
average over a large sample, see
more in Section 1.4.5 Expected
Value, page 57.

This is essentially an application of expected value. It is intuitively a fairly obvious
rule: B may happen both in case A happens, and in case A does not happen. These
events happen with probability Pr(A) and Pr(Ā). The probability B will happen
differs by these two cases, being Pr(B|A) and Pr(B|Ā) correspondingly.

Example 1.16: Do you have cancer?

Imagine you take a routine cancer test and it comes back positive. Do you really
have cancer with all its awful consequences for the rest of your life? But tests, in
particular the first cheap tests people frequently do, are far from perfect. Maybe
the test is wrong?

True positives: one has cancer
and test is positive; false
positives: one does not have
cancer but the test is still
positive. See more
in Section 4.2.1 Confusion matrix
and related concepts, page 228.

Denote by T = 1 the event of test being positive and C = 1 one having cancer.
Assume the test is fairly good at spotting true positives, Pr(T = 1|C = 1) = 0.99,
but it also reports a large number of false negatives, Pr(T = 1|C = 0) = 0.1, i.e.
in 10% of cases where one does not have cancer, the test is still positive. Finally,
assume cancer is rare, Pr(C = 1) = 0.001, and hence no-cancer is very common,
Pr(C = 0) = 0.999. What is the probability that you actually have cancer given
you have a positive test result, Pr(C = 1|T = 1)?

We use Bayes theorem (1.4.10) to invert the conditional probability:

Pr(C = 1|T = 1) =
Pr(T = 1|C = 1) · Pr(C = 1)

Pr(T = 1)
.

From data above we know the two probabilities in the numerator, but we still
11It is called “normalizer” because it “takes care of” that the result will be a valid probability. See

more in Section 8.5 Naïve Bayes, page 345.
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have to compute the denominator:

Pr(T = 1) = Pr(T = 1|C = 1) · Pr(C = 1) + Pr(T = 1|C = 0) · Pr(C = 0) =

= 0.99 · 0.001 + 0.1 · 0.999 = 0.10089.

Now we can just plug this number into the Bayes theorem above and we get

Pr(C = 1|T = 1) =
0.99 · 0.001
0.10089

= 0.009813.

So despite returning with a positive test, it is still less than 1% likely that you
actually have cancer!

It is a somewhat counter-intuitive example, where the actual computations are
not well-aligned with the intuitive understanding (positive result means cancer).
To be more precise, it is not so much “counter-intuitive” as “non-intuitive” as
our intuition usually cannot come up with anything reasonable, we just do not
have enough experience with similar probability calculations.

Here it is fairly easy to see why the test is not very informative: because of
the very large false positive rate, approximately 100 people out of 1000 get the
positive result. This dwarfs to 1 person out of 1000 that actually has cancer.
Hence most likely (99%) likely you have no reason to worry.

Exercise 1.12: Two bags of M&M

There are two kind of m&m bags, A and B, and they are equally likely. The
probability to get a red m&m in bag A is 2/3 and in bag B it is 1/3.

1. Dai-yu takes a candy from the bag and gets a red one. What is the proba-
bility that it is an A-bag?

2. Now she takes two two candies out of a bag, and both are red. What is the
probability that this is a B-bag?
Assume that there are many candies in the bag, so the probability does not
change when one is removed.

Solution on page 475

Exercise 1.13: Smile or fight?

You are a caveman 100,000 years ago. You hear someone moving in darkness
near your campfire. Is this your friendly neighbor, or a hungry lion? Should you
wait and smile, or grab a burning stick and stand ready to fight?

Assume Pr(steps|neighbor) = 0.2 (neighbor is fairly quiet) and Pr(steps|lion) =
0.6 (lion is fairly noisy). Assume also that Pr(neighbor) = 0.9 (neighbor is around
frequently) and Pr(lion) = 0.1 (there are not many lions). Compute the relevant
probabilities, and answer the questions above.

Solution on page 476.
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Cheatsheet 1.4: Conditional probability

Conditional event one event happening given that the other event also hap-
pens. Example: roll a die, get “1” given you get an odd number.

Conditional probability Pr(A|B) probability that event A happens given that
the event B happens. Example: roll a die, what is probability of “1” given
you got an odd number?, denoted by bar symbol as Pr(1|odd number)).
Remember: conditioning event is after the bar symbol!

Bayes Theorem Pr(A|B) = Pr(A,B)
Pr(B) = Pr(B|A)·Pr(A)

Pr(B) .
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1.4.4 Random Variable
Random variable (RV) is a central concept that connects probability theory to statis-
tics. In particular, it makes numbers out of events so that one can use the mathe-
matical apparatus to analyze the random processes. The concept of RV is somewhat
complex, so we start with the easy part—it is easy to remember what RV is not.
First, random variable is not random; and second, random variable is not a variable.

But then what is RV? In essence, it is a rule that assigns a number to each event
in the sample space S. Most of the events we care about occur to our physical world
and are not numbers, but we need numbers to use the mathematical apparatus. So
we need a RV that links the outcomes of the stochastic phenomenon we are analyzing
with some sort of numbers.

RV-s are typically denoted by capital Latin letters, such as X or Z. Formally, a
RV X is a function X : S → R where S is the sample space of the phenomenon we
are analyzing. For instance, if our experiment is flipping a coin, then its sample space
is {H,T}, i.e. it contains just possible events, heads and tails. We can assign zero to
tails and one to heads, and define the RV X as

X(E) =

{
0 : if the event E = T

1 : if E = H.
(1.4.13)

Obviously, one can also define it in the opposite way X(H) = 0 and X(T ) = 1; and
in a myriad of other ways. For instance, if we want the expected value to be zero,
(see Section 1.4.5 for explanation) we can define X(T ) = −1 and X(H) = 1.

Now when we actually conduct the experiment and toss the coin, we will receive
either H or T . We use RV X to convert the realized outcome into a number and
hence we get either 1 or 0. These are two possible observed values or realizations of
the RV. Let’s repeat here: H and T are events. The corresponding numbers, 0 and 1,
are realizations (observed values). While RV-s are traditionally denoted by upper case
Latin letters, such as X or Y , their observed values (realizations) are denoted with
the corresponding lower case letters, such as x and y. If we observe many realizations
(e.g. toss the coin multiple times), we usually denote those using a subscript like
x1, x2, . . . , xN .

Definition 1.2: Random variable
So RV is not random. It is

• a random phenomenon or experiment with well-defined properties; and
• a rule how to assign numeric labels to the events in that phenomenon.

But the realizations of RV-s are random.

It is extremely important to be able to distinguish between a non-random RV
and its random realizations! Part of the confusion arises from how the word “ran-
dom” is used: random in the concept random phenomenon refers to the fact that
this phenomenon can produce random realizations. However, the properties of the
phenomenon are not random, they are fixed and well defined. But random in random
outcomes refers to the fact that the outcomes are unpredictable, random.
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Example 1.17: Random variable and realizations

We typically use RV-s to describe some kind of real world experiments or phe-
nomena. For instance, you can describe a slot machine (the type here is called
“one-armed bandit”) as a RV. When you play with it, the results are realizations.

This is the Random Variable.
(Alf van Beem, CC0, via Wiki-
media Commons)

Attempt Realization
1 lost $10
2 lost $50
3 lost $200
4 won $25
5 lost $500
6 lost $30

This is a sample of realizations

You can use the (random) sample to say something about the (non-random)
properties of the RV. For instance, you may look at the sample of previous results
to answer the question: how much can I expect to win if I continue playing on
this machine many times?

Cheatsheet 1.5: Random variable and realization
• Random variable (RV) is two things:

– a phenomenon or experiment with well-defined properties; and
– a rule how to assign numeric labels to the events in that phenomenon.

It is a rule, and it is not random.

• Realizations are numbers, resulting in a random experiment when convert-
ing the outcomes (events) to numbers using a RV. These are random.

• A number of realizations together is a sample.

Different ways to define RV-s is related to questions about the physical world we
are interested in. Take example of rolling two dice (see Section 1.4.1). For instance,
if we are just interested in different outcomes, we can enumerate the combinations by

https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:Museum_Wilhelmsbau_Aristocrat_Olympic_fruit_machine.JPG
https://commons.wikimedia.org/wiki/File:Museum_Wilhelmsbau_Aristocrat_Olympic_fruit_machine.JPG
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defining

Y (E) =


1 : if E = (1,1)

2 : if E = (1,2)

. . .

36 : if E = (6,6).

(1.4.14)

Now the RV will tell us if we got (1,5), (5,1) or (2,4). All these combinations corre-
spond to different values. However, we may not be interested in the different combi-
nations but instead in the sum of the points, whichever sides come up. Now we can
define

Z(E) =



2 : if E = (1,1)

3 : if E = (1,2) or E = (2,1)

4 : if E = (1,3) or E = (2,2) or E = (3,1)

. . .

12 : if E = (6,6).

(1.4.15)

Exercise 1.14: Rolling two dice

Take the example of two dice. Construct a random variable that answers the
question: did we get any 6-s?

Solution on page 477.

The RV outcomes have, in general, different probabilities as they correspond to dif-
ferent events in the sample space. In case of the coin-toss RV X (in formula (1.4.13)),
the value 0 corresponds only to event T and the value 1 to the event H. Both of these
events have probability 0.5 if it is a fair coin, and hence the values 0 and 1 will also
have equal probability. However, this is not the case for RV Z above that counts the
points on two dice (formula (1.4.15)). Although all the simple events in the underly-
ing experiment are equally likely, the RV values are not because those correspond to
different compound events. Value 2 corresponds only to a single atomic event (1,1)
and hence has probability 1/36. Value 3 corresponds to two atomic events, (1,2) and
(2,1) and hence has probability 2/36. Probability of 4 is 3/36 and so on.

Exercise 1.15: Find Pr(Z = 6)

Consider the RV Z as defined above. Find Pr(Z = 6), the probability that rolling
two dice will give you sum 6.

Hint: consider drawing a 6×6 table of faces and marking the sum of the dots
in each table cell.

Obviously, when the sample space is discrete—there is only a limited number of
different events—then there is also only a finite number of possible different RV values.
We talk about discrete random variables. Discrete random variables can be presented
as probability table. For instance, when tossing a fair coin and denoting heads by 1
(RV X on page 54) we can represent the values as a table:
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Value Probability
0 0.5
1 0.5

Such a table is very convenient when computing expectation, variance, and other
properties of the RV.

A few words about the notation. The random variable, the process of flipping a coin
and counting heads, or a slot machine and measuring your losses, is typically denoted
by a capital letters like X, Y and Z. Individual realizations, the actual number of
heads that we get when we roll the dice or how much money we lose when playing
on a slot machine, are typically denoted with the corresponding lower case letters x,
y, and z. As we typically consider samples of several individual outcomes, we denote
those by subscripts x1, x2, and so on. For instance, when talking about sample
average, then x1 denotes the number of heads in the first flip, x2 in the second flip
etc. But in other situations the subscripts may mean different things. For instance,
when talking about expected value (See Section 1.4.5 Expected Value, page 57), the
subscripts may denote the different possible outcomes, the lines in the probability
table. In the coin flip example, we may have x1 = 0 for tails and x2 = 1 for heads.
In this case Pr(X = x1) means Pr(X = 0), the probability that the RV X realization
is x1, the probability to receive no heads when tossing a coin. The notation can be
quite confusing, and one has to understand what exactly xi means in each case.

In case of continuous sample space we have an infinite number of possible values
and we talk about continuous random variables. For example, flight delay in minutes
or temperature in degrees are continuous random variables (given we measure not
just in minutes and degrees but also include the fractions). There are also different
ways to define RV-s in case of continuous sample space like flight delay. The first and
most obvious case is just to use the length of the delay d in minutes. Alternatively,
if we are not interested in early arrivals, we may construct a different RV: what was
the delay, given the flight was delayed?

X = max(0, d) (1.4.16)

where d is the delay in minutes.

1.4.5 Expected Value and Variance
Expected Value

The section 1.3.1 above discusses mean as a way to characterize the central tendency
in case of sample of data. Intuitively, one can easily see that as the sample grows, its
mean will converge to the “true mean”. For instance, one can immediately understand
that the “true mean” when tossing the coin should be 0.5. When thinking about
“true mean” we intuitively have in mind a more general sample, the “population”, or
perhaps a stochastic process, where the current data is sampled from. This population
or stochastic process is essentially a RV and the “true mean” is a certain property of
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this RV. The property is called expected value or expectation. It is usually denoted by
capital “E”, e.g. EX means the expected value of random variable X. Its numeric
value is often denoted by µ. Unfortunately it is also common to refer to the expected
value as “mean”, e.g. when talking about distributions. So “mean” can refer to either
sample mean or to the expected value of a RV. However, “average” is not used to
denote the expected value.

For discrete RVs, expected value can be computed as the weighted average of
possible outcome values where the weights are the corresponding probabilities:

EX =
∑
i

pi · xi. (1.4.17)

Here i enumerates over all possible outcomes of X, denoted by xi. So here xi is not a
realization but a possible outcome! See page 57 for comments on notation. Intuitively,
expected value is close to sample average in case of large samples. If the sample size
is large, like 1000, the corresponding probabilities are fairly close to how many times
you expect to see the corresponding value (divided by 1000). See also Law of Large
numbers below.

Consider the coin flip example where we assigned 1 to heads and 0 to tails, and
both of these values have probability 0.5. The expected value of X is

EX = 0.5 · 0 + 0.5 · 1 = 0.5. (1.4.18)

This is intuitively obvious: in average, we get heads half of the times.

Example 1.18: Expectation of a 3-valued RV

Consider a more complex example. Take the RV Y with three possible outcomes,
1, 2, and 3:

Y =


0 with probability 0.5

1 0.25

2 0.25.

(1.4.19)

Its expected value is EY = 0.5 · 0 + 0.25 · 1 + 0.25 · 2 = 0.75

Exercise 1.16: Expected value of die

Consider rolling a die as a RV D. Denote its values by 1, 2, . . . , 6. What is its
expected value ED?

Exercise 1.17: How many sixes do we get?

Consider an experiment of rolling two dice. We are interested in how many sixes
did we get. The corresponding RV will look like
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# Sixes Probability
0 25/36
1 10/36
2 1/36

1. Show that these probabilities are correct.
2. Compute the expected value of this RV, the expected number of sixes when

rolling two dice.
Solution on page 477.

The weighted sum in the definition of the expected value (1.4.17) transforms to
an integral in case of continuous RV-s, see Section 1.5.2 What are continuous RV-s,
page 72 and equation (1.5.12) below.

Note that expected value is not a random variable, nor is it random in any other
way. It is just a number.12 As the expected value is just a number, its expectation,
in turn, is just the same number. So when we sometimes need to compute expected
value of expected value, we have E(EX) = EX.

It is important to keep in mind that expectation is not sample mean and the way
around. Expectation is a property of random variable, a precisely defined stochastic
process. Sample mean is a property of sample. Even if expectation is sometimes called
“mean”, it is important to realize that sample and RV have different properties. For
instance, sample mean is random and it fluctuates depending on the exact realizations.
But expectation is constant and does not change. Flipping a coin a few times may
result in a different mean, but the expected number of heads is always 0.5. One can
also compute mean for every sample but not every RV has expected value (see, e.g.
Section 1.5.3 Pareto distribution, page 79 below).

It is intuitively fairly obvious that the average of a large sample is close to its
expected value. This can be stated formally through Law of Large Numbers:

Theorem 1 (Law of large numbers, LLN). 13 Let x1, x2, . . . , xN be independent re-
alizations of a RV X. Assume the expected value EX = µ exists. Now the sample
average converges to the expected value.

1

N

N∑
i=1

xi ≡ X̄N
P−→ µ. (1.4.20)

Here we use notation X̄N = 1/N
∑

i xi as the average of a sample of size N of the
realizations of RV X.

12If we want, we can imagine that numbers are degenerate RV-s where all realizations are the same,
so these RV-s will have 100% probability on the only outcome. Obviously, the expected value of such
a RV is the outcome value.

13Symbol P−→ means convergence in probability: as N grows, the probability Pr(|X̄N −µ| > ϵ) gets
arbitrarily small for every positive ϵ.
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Example 1.19: Sample average converging to expected value

Consider the coin flip example where we label heads as “1” and tails as “0”. The
figure below shows the sample average X̄N , as a function of sample size N .

0.4

0.6

0.8

1.0

1 10 100 1000 10000
Sample size N

X
N

Figure 1.16: Sample average as a function of sample size N . The expected value 0.5 is
marked by the red line.

Initially, the value fluctuates a lot, but asN increases, the fluctuations are smaller
and smaller, and the average remains close to the expected value 0.5. This is LLN
at work.

Exercise 1.18: Demonstrate Law of Large Numbers

Make similar figures on your computer:
• Replicate the image in Example 1.19.
• Use the rolling die experiment (Exercise 1.16) and make a similar figure.

Variance

While expected value is similar to the sample average, variance is similar to the
sample variance. Variance is a much less intuitive concept than expectation, in exactly
the same way as sample variance is much less intuitive than sample mean. The
naming convention is not helpful either: unlike expectation versus mean, both of
these concepts are called “variance”. Usually, the context makes it clear whether we
are talking about variance as the property of RV, or about the sample variance (is it
a sample? is it a RV?). But where needed, we indicate the type of the concept by
writing “variance of the RV” or “theoretical variance” when we talk about random
variables, and “sample variance” when we talk about data.
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Variance is typically denoted by Var , e.g. VarX is variance of the random variable
X. Its numerical values are often denoted by σ2, stressing that its definition is related
to squared deviations. As a bonus, when denoting variance by σ2 we can denote the
standard deviation by just σ.

Variance is one of the most important statistical concepts, most of the statistical
inference is in fact based on variance in one way or another. It is defined in the same
way as sample variance

Sample variance is the average
squared deviation from the mean
in a dataset:
s2 = 1

N

∑N
i=1(xi − x̄)2. See

Section 1.3.2 on page 20.

while replacing means with expectations. So variance of RV
X is defined as

VarX = E(X −EX)2. (1.4.21)
Let us explain what this means. First, EX in the parenthesis is the expected value
of X. It is just a number, a constant. Next, X −EX is the deviation of X from its
expected value. It is just X minus a number. As X is a RV, so is X − EX. Third,
(X−EX)2 is just a squared value of the deviation. As the deviation is a RV, so is its
square. And finally, E(X−EX)2 is the expected value of that RV. So variance can be
computed in a similar fashion as expectations.

RV in Example 1.18:
y Pr(Y = y)

0 0.50
1 0.25
2 0.25

Let us show how it works using the RV
from Example 1.18. Above we computed EY = 0.75. Let us now compute its variance
using the definition. The most straightforward approach is to extend the table above
with additional columns that contain the auxiliary RV-s (Table 1.6). The first two
columns represent the RV realizations y and the corresponding probabilities Pr(Y =
y), it is just definition of Y . The third column is the deviation from the expected
value, Y −EY . The fourth column is the deviation squared. The variance is just the
expected value of the fourth column. The probability values in the second column are
not affected by the other operations–computing the deviation and squaring it. Hence
the variance is E(Y −EY )2 = 0.5 · 0.5625 + 0.25 · 0.0625 + 0.25 · 1.5625 = 0.6875.

Table 1.6: Computing variance of a discrete random variable. The easiest way to compute
the variance of a RV by using the definition is to add columns for Y −EY and (Y −EY )2

in the table of RV values. Variance is simply the expected value of the last column, here
0.6875. See explanations in text.

yi Pr(Y = yi) yi −EY (yi −EY )2

0 0.50 -0.75 0.5625
1 0.25 0.25 0.0625
2 0.25 1.25 1.5625

In practice it is somewhat easier to use the shortcut formula
VarX = E

(
X2
)
− (EX)2. (1.4.22)

It is an analogue of the sample variance shortcut formula (1.3.3). This involves com-
puting the expected value of X2. It is easy to show that this formula is equivalent to
the definition of variance (1.4.21). Let us re-compute the variance we did above using
this formula. First, we have to find EX2. This is EX2 = 0.5·02+0.25·12+0.25·22 =
0.25 + 1 = 1.25. Hence the variance is VarX = EX2 − (EX)2 = 1.25 − 0.752 =
1.25− 0.5625 = 0.6875. This is the same number.
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Exercise 1.19: Compute variance of a RV

Consider a RV

x Pr(X = x)

-1 0.25
0 0.50
1 0.25

Compute its variance using a) the definition formula (1.4.21); and b) the shortcut
formula 1.4.22.

Solution on page 478

Exercise 1.20: Variance of Bernoulli RV
Bernoulli(p) RV (see Section 1.5.1 Bernoulli distribution, page 68) is a RV that
can take values

x Pr(X = x)

0 1− p
1 p

Compute its variance using both the definition formula (1.4.21) and the shortcut
formula (1.4.22).

Solution on page 478

1.4.6 Expected value and variance of functions of RV-s
Quite often we want to compute not just expected value EX but expected value of
a certain function of the RV, for instance, E 2X, E[X + Y ] or Var eX . Below, we
discuss two special cases: expected value and variance of a RV multiplied by a scalar,
and of a sum of two RV-s. We show that how to generalize it to arbitrary sums of
independent RV-s.

Functions of RV-s

Before we get to the results, a brief explanation about what does a function of RV
mean. It means performing the function on the values of the RV, while leaving the
probabilities unchanged. For instance, consider the RV, described in Table 1.6. We
compute the following functions: 2 · Y and eY (see Table 1.7 below). The process
involves in just computing the corresponding values 2yi and eyi for all possible out-
comes i. But the probabilities, Pr(Y = yi) will remain unaffected. So the result will
be a new RV with the original probabilities, but different values. Function of a RV is
a RV.

The story is somewhat different when we combine different RV-s–in that case we
need to manipulate probabilities too. Take again the example of flipping two coins
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Table 1.7: Functions of RV-s. The table shows the RV Y , and values of the corresponding
functions 2Y and eY .

1 2 3 4
Y 2Y eY

yi Pr(Y = y) 2yi eyi

0 0.50 0 1.0000
1 0.25 2 2.7183
2 0.25 4 7.3891

and counting heads. Call the corresponding RV-s X1 for the first coin and X2 for
the second coin. Both of these can take values 0 and 1 with probability 0.5. But
what are the possible values of Z = X1 +X2? And what exactly does X1 +X2 even
mean? This means a) summing the possible realizations of X1 and X2, and b) finding
the probabilities of these sums. In case of flipping two coins, the options are shown
in Table 1.8. The table shows all possible combinations of X1 and X2 realizations
(columns 1 and 3) and their corresponding sum z (column 5). Columns 2, 4, and 6
display the respective probabilities. As there are two lines that correspond to z = 1,
we need to combine those two, and hence the final result will be

Z =


0 with probability 0.25

1 with probability 0.5

2 with probability 0.25

. (1.4.23)

Table 1.8: Sum of two independent RV-s: Z = X1 +X2. The table shows how to compute
the values and probabilities. As the final step, one needs to combine two rows of Z = 1 into
a single one, with probability 0.5.

1 2 3 4 5 6
z Pr(Z = z)

x1 Pr(X1 = x1) x2 Pr(X2 = x2) x1 + x2 Pr(X1 = x1, X2 = x2)

0 0.5 0 0.5 0 0.25
1 0.5 1 0.25

1 0.5 0 0.5 1 0.25
1 0.5 2 0.25
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Exercise 1.21: What makes X1 and X2 independent?

The example in Table 1.8 assumes that X1 and X2 are independent. Where in
the computations above is the independence assumption used?

Solution on page 478.
Note that the result holds for dependent RV-s too, just the table will not be

correct.

RV multiplied by a scalar Expected value of a RV multiplied by a scalar
Scalar is just a number.

is the
original expected value multiplied by the same scalar. For instance, if we flip a coin
and label heads as 1 and tails as 0, then the expected value is 0.5. If we multiply
the RV by two, i.e. we label heads by 2 and tails by 0, then the expected value
will be 1. In case of 2Y in Table 1.7 (column 3), we need to compute E[2Y ] =
0.5 · 0 + 0.25 · 2 + 0.25 · 4 = 1.5.

We can state this as a theorem
Theorem 2 (Expected value of RV multiplied by scalar).

Eλ ·X = λ ·EX. (1.4.24)

The proof is fairly obvious and is left as exercise.
But note that this only applies to multiplication by scalar. In general, E f(X) ̸=

f(EX).

Exercise 1.22: Prove theorem 2
1. Prove the theorem 2 for a general discrete RV.
2. Consider a discrete RV X. Compute VarλX?

Hint: see Exercise 1.4.

Solution on page 478.

Exercise 1.23: Show that E eX ̸= eEX

Consider the RV Y in Table 1.7. Show that E eY ̸= eEY .

Sum of two RV-s As in case when multiplying the RV-s by a scalar, the outcome
here is fairly intuitive. Imagine you flip two coins and label heads with 1 and tails
with 0. What is the expected number when you add the values together? As both
coins will have an expected value of 0.5, the sum of their outcomes will just be sum
of these expected values, i.e. 1. We state the intuitive result here as a theorem, and
prove it thereafter.
Theorem 3 (Expected value of sum of RV-s). Expected value of sum of two RV-s, X
and Y is the sum of their corresponding expected values:

E[X + Y ] = EX +EY. (1.4.25)
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Proof 2: Proof of Theorem 3

(1.4.17): EX =
∑

i pi · xi

Let X and Y be two discrete random variables where X has possible outcomes
x1, x2, . . . , xN with the corresponding probabilities p1, p2, . . . , pN ; and Y has pos-
sible outcomes y1, y2, . . . , yM with the corresponding probabilities q1, q2, . . . , qM .
By definition (1.4.17), the expected value of X + Y is

E[X + Y ] =

N∑
i=1

pi

 M∑
j=1

qj(xi + yj)

 =

=

N∑
i=1

pi

xi M∑
j=1

qj +

M∑
j=1

qjyj

 =

=

N∑
i=1

pixi +
∑

piEY = EX +EY. (1.4.26)

The proof uses the following facts:
• as qj is not related to i, we can sum just compute the

∑M
j=1 qj = 1.

•
∑M

j=1 qjyj = EY by the definition of the expected value.

TBD: some sort of example, exercise

Cheatsheet 1.6: Expected value, mean, variance

• Sample mean (aka average) is just an average of the random realizations,
the sample.

Realization is the actual outcome
you get in a random experiment,
such as coin toss. See
Section 1.4.4, page 54.

Mean of x1, x2, . . . is often denoted by x̄.
Example: toss coin 4 times and mark the heads as “1” and tails as “0”. The
realizations (sample) may be 0, 0, 1, 0. The sample mean x̄ = 0.25.

• Expected value (aka expectation, mean) is a property of random variable,
the random process we are analyzing. It is not random, i.e. it is not related
to sample. Expected value of RV X is denoted by EX, in discrete case it
can be computed as

EX =
∑
i

pi · xi

where i counts the different possible outcomes and pi is the corresponding
probability.
For instance, if you toss a fair coin then the expected value EX = 0.5.
Properties:

– E(λX) = λ EX

– E(X + Y ) = EX +EY
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• Sample variance (aka variance) is a standardized measure of variation in
the sample. It is often denoted by s2:

s2 =
1

N

N∑
i=1

(xi − x̄)2 = x̄2 − (x̄)2

where N is sample size. The first formula is the definition, the second one
is easier to use.
Sample variance depends on the sample. For instance, the variance of the
coin toss example above is 0.1875.

• Variance (aka variance of RV ) is a standard measure of variation of a RV.
It is often denoted by σ2:

σ2 = E (X −EX)
2
= EX2 − (EX)2

The first formula is the definition, the second one is easier to use.
It is a property of RV and does not depend on sample. For instance, the
variance of the RV that describes tossing a fair coin is 0.25.
Properties:

– Var (λX) = λ2 VarX

– Var (X + Y ) = VarX +VarY if X and Y independent.

Note that the word “variance” may mean both sample and RV variance.
The word is the same but the concepts are different.

• Law of Large Numbers tells that if sample gets large, sample mean and
sample variance will be close to the corresponding expected value and vari-
ance.
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1.5 Probability distributions
Applied work often involves describing the real world processes with RV-s, and using
data–a sample of realizations–to describe their properties. Two of the most useful
and most widely used properties are expected value and variance, discussed above
in Section 1.4.5. But often we need more information, sometimes even the complete
information about random variables. This is where distributions come into the play.

For RV-s, distributions describes the “frequency” of different values. In a similar
fashion as we have pairs of concepts like expectation and mean to describe the RV
and the sample, we can talk about distribution (in case of RV) and histogram (in
case of sample). When the sample size gets large, the histogram becomes similar to
the distribution, in a similar fashion as sample mean approaches the expected value.
But note that in practice the word distribution means both, the property of RV-s and
the sample histogram (in a similar fashion as “variance” means both RV and sample
property).

In applied work, researchers typically use a selected “theoretical distributions”,
RV with certain “nice” properties, such as normal distribution. If the distribution
is well selected, the fact that actual data does not follow that distribution exactly is
usually not a big concern (see examples on Figure 1.21).

We start with discrete RV-s where the corresponding function, probability mass
function (p.m.f.), corresponds to the theoretical frequency of different values, and
move to continuous RV-s thereafter where probability density function (p.d.f.) has
a slightly different interpretation. Another popular measure, cumulative distribu-
tion function (c.d.f.) gives the probability that the observed values is less than its
argument.

1.5.1 Discrete distributions
Let’s start with the coin flip example: flip two coins and count heads. The outcomes
and their probabilities are in Table 1.9. This table essentially describes what is known

Table 1.9: Possible outcomes when flipping two coins, and the corresponding probabilities. x Pr(X = x)

0 0.25
1 0.5
2 0.25

as probability mass function (p.m.f.). p.m.f. is a function that assigns probability for
each possible value of x:

f(x) = Pr(X = x) (1.5.1)

So we can, somewhat trivially, restate the table as p.m.f.:

f(x) =


0.25 if x = 0

0.5 if x = 1

0.25 if x = 2

(1.5.2)
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If you think this very much resembles the description of the corresponding RV, then
you are right. p.m.f. contains the same information as the RV. They are equivalent.14

Exercise 1.24: Realization or possible value

What does x in Table 1.9 denote? Are those realizations or possible values?
Answer on page 479.

In a general case, we need a table like the one above to describe p.m.f. How-
ever, there are numerous processes that generate p.m.f.-s with a well-knows structure,
for instance flipping two coins results in a binomial distribution, more precisely in
Binom(2, 0.5) (see Section 1.5.1 Binomial distribution Binom(S, p), page 70).

Another widely used function is cumulative distribution function (c.d.f.). It an-
swers the question “what is the probability that the outcome is no larger than a given
number”:

F (x) = Pr(X ≤ x). (1.5.3)
If f is the p.m.f., one can easily compute the corresponding c.d.f. as

F (x) =
∑
x′≤x

f(x′). (1.5.4)

In the example case above we have

F (x) =


0 if x < 0

0.25 if 0 ≤ x < 1

0.75 if 1 ≤ x < 2

1 if x ≥ 2

(1.5.5)

Exercise 1.25: Measure for c.d.f.
What kind of measure–nominal, ordinal, difference, or ratio–must X be for its
c.d.f. to be well defined?

Answer on page 479.

Bernoulli distribution

Bernoulli distribution is perhaps the simplest useful distribution. It describes a pro-
cess that can result in two events: event E with probability p, and event non-E with
probability 1− p. Normally we denote E by 1 and non-E (Ē) by 0. An easy example
is flipping a fair coin: with probability p = 0.5 the event “heads” will occur, and
with probability 1 − 0.5 the event “heads” will not occur. This is often written as
Bernoulli(0.5) process. Figure 1.17 demonstrates the corresponding p.m.f..

Bernoulli RV is widely used in practice because many interesting questions can be
described as the interesting event occurs versus it does not occur. For instance: does

14This is a simplification–the distribution (p.m.f.) is only about numbers, while RV is also related
to the sample space–the random experiment or a phenomenon. But if we are only interested in the
numerical properties, then they are indeed equivalent.
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Figure 1.17: Bernoulli(0.5) p.m.f.. Event E (1) occurs with
probability 0.5, and the event Ē (non-E, 0) also occurs with
probability 0.5.
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a patient have the illness or not? Will the customer buy the product or not? Does
this image depict a cat or not? Many other processes are based on Bernoulli (e.g.
Binomial), or partly based on Bernoulli process (e.g. zero-inflated distributions).

The expected value of Bernoulli is simple and intuitive but its variance is not. It is
good to know how to compute it because it is so widely used in practice. This will be
important below when computing standard errors for sample fraction in Section 1.6.3
z-test: is the sample mean equal to a given value?, page 102.

The expected value of Bernoulli process is very intuitive:

EX = p · 1 + (1− p) · 0 = p. (1.5.6)

Its variance is also simple although not intuitive (see Exercise 1.20). We can compute
it from the variance formula (1.4.22):

VarX = EX2 − (EX)2 = p− p2 = p(1− p). (1.5.7)

We used the fact that for Bernoulli distribution, X2 = X as we only have values 0
and 1, and hence EX2 = EX = p.

Example 1.20: Bernoulli distribution

Bernoulli distribution describes a plethora of very basic phenomena. For instance,
a politician may be interested if the electorate will support a particular policy.
A famous historical example was the South African referendum to end apartheid
in 1992. It resulted in 1,924,186 “yes” votes (69%, to end the apartheid) and
875,619 “no” votes (31%, to preserve the system).

We can describe the individual voters as realizations of Bernoulli(0.69) RV,
with sample size of approximately 2.8 million.

Note that reality was somewhat more complex–there were also 5,142 invalid
votes. We can ignore this small number (0.18%) for crude calculations. But if
we want to be precise, we have to specify that the Bernoulli process describes
either “yes” and “non-yes” (including invalid votes), or “no” and “non-no” events.
We can also describe the process using multinomial distribution, i.e. a discrete
distribution with more than two possible outcomes.
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Exercise 1.26: Bernoulli distribution
Which of the following problems can be described by Bernoulli distribution?

1. Who survived Titanic disaster?
2. Who were admitted to an elite college?
3. Which majors did students choose?
4. How many years it took for students to graduate?
5. Did they drop out?
6. Were engineering students more likely to drop out?
Hint: some of the questions are vague, try to understand the relevant events.
Solution on page 479.

Binomial distribution Binom(S, p)

Binomial distribution is what you get if you repeat independent Bernoulli experiments
S times and count successes. In these S experiments, you can get 0, 1, ... up to S
successes. For instance, if you flip a coin twice, you can get 0, 1 or 2 heads. Obviously,
this is equivalent to flipping two separate coins.

Binomial distribution is another most widely used distributions. It can be used
to describe the questions like

• Out of 10 randomly selected candidates, how many are suitable for the job?
• What is the probability that at least one candidate is suitable?
• What is the probability that the weather is good in two of the selected three

days?
• How likely it is that in the class of 70 students, we have 10 math majors?

There are, obviously, many more similar applications.
Next, we’ll compute the corresponding probabilities. In case of two unbiased coins,

the possible outcomes are HH, HT , TH and TT . Importantly, they are all equally
likely as the coins are unbiased and independent. So there are one way to get two
heads, two ways to get one heads, and one way to get no heads:

Heads 0 1 2
Chances 1 2 1
Probability 0.25 0.5 0.25

In this case it is easy to see that there are “two chances”, i.e. two ways to get one
heads: either the first coin comes up with heads and the other one with tails, or
the way around. In case of unbiased coins, the probability of heads is 1/2, and the
probability of tails is 1/2 too. Hence the probability that the first coin shows heads
and the other tails is 1/2 · 1/2 = 1/4, and the same is true for the opposite case. So
the probability to get one heads is 1/4 + 1/4 = 1/2.

But how can we compute the “chances” and “probabilities” in a more general case
where we flip S biased coins? Denote the probability of heads for an individual coin
as p, hence the probability of tails is 1 − p. We want to compute the probability to
receive nh heads and nt tails, where nh + nt = S.

For any particular combination of heads and tails, the probability is just pnh · (1−
p)nt . This is not the probability to get nh heads, this is the probability of an event



1.5. PROBABILITY DISTRIBUTIONS 71

where for every single coin you have decided whether that coin shows heads or tails.
For instance, it might be probability that the first coin shows H, the second coin T ,
the third one H again, and so on. In the two-coin example above, if nh = 1, it can
correspond to either HT or TH, but not to both of these! And if you have three
coins, a penny, a dime and a quarter, then it might be the probability that both the
penny and the dime show tails, but the quarter will show heads. The coins must be
distinct, and the distinction must be decided before the experiment.

But we are interested in the total number of heads instead. So we need to take
into account that to get a single heads, either the penny, the dime or the quarter can
show heads while the other coins show tails. How many such combinations do we
have? For three coins, it is 3. In a general case, where we are looking for n heads
when flipping S coins, the answer is(

S

n

)
=

S!

n!(S − n)!
. (1.5.8)

(See Section A.1.3.) The notation
(
S
n

)
(or sometimes CS

n ) is called binomial coefficient,
combinations of n elements out of S. And hence the binomial probability

Pr(X = n) =

(
S

n

)
pn(1− p)S−n =

S!

n!(S − n)!
pn(1− p)S−n. (1.5.9)

Example 1.21: How many Spanish speakers?

Assume that 30% of students speak Spanish. What is the probability that a
group of 10 randomly picked students contains three Spanish speakers? The
answer is

Pr(X = 3) =

(
10

3

)
0.33 (1− 0.3)10−3 =

10!

3!(10− 3)!
0.33 · 0.77 = 0.267.

For binomial distribution to be applicable, two conditions must be fulfilled: first,
each individual event must have the same Bernoulli(p) distribution; and second–the
individual events must be independent. For instance, if everyone in the “Advanced
Spanish” class speaks Spanish, then if you always pick one student from that class,
and one from somewhere else on campus, the result will not be binomial. There is
no way to get zero Spanish speakers into your sample. The distributions are not the
same–the “Advanced Spanish” class student is not Bernoulli(0.3) but Bernoulli(1).
But if you do not pick the students independently, but from a group of friends, then
it is more common that you either get all Spanish speakers, or no Spanish speakers in
your sample. This is because people with similar background tend to group together.15

15Also described as “birds of feather flock together”. This applies to many different human traits,
and is commonly called homophily.
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Exercise 1.27: Weekly orders

You have a small internet shop where you sell your hand-made soaps all over the
world. The probability to receive any orders in a given day is 0.5.

• What is the expected number of days where you receive an order in a (5-day
business) week?

• What is the probability to receive no orders in a given week?
• What is the probability to receive an order in all five days?
• You find the you receive no orders in a week more frequently than what

you expect–in 10% of weeks. What may cause the deviation from binomial
distribution?

Solution on page 479.

1.5.2 Continuous distributions
What are continuous RV-s

Many phenomena can have not just a limited set of values, but values that are every-
where in a continuous interval. For instance, flight delay, human height, or human
income can be essentially every single number (within a reasonable range). Hence we
cannot create a table of possible values like in Table 1.9. First, there are infinite num-
ber of possible values, and second, every particular value is extremely rare. How often
it happens that your flight is delayed by exactly 54.321 minutes? Such phenomena
are described by continuous random variables.

But we can still get close to the frequency tables and p.m.f. plots. The trick is
to partition the sample space into “bins” and treat the bins as discrete values. The
more data we have, the narrower bins we can create, and as a result we get smoother
and smoother pictures. Figure 1.18 displays this process. On the two upper panels
we have 25 realizations. The top-left plot puts the results into five separate bins. The
tallest bins are in the middle with the corresponding counts being 9 and 12. All other
counts are much smaller. On the top-right panel we repeat the process with 100 bins.
Most of the bins are empty now, but we still see that the tallest bin contains three
realizations.

The two lower panels repeat the process with 10,000 realizations. The bottom-left
panel splits the values into four bins, and now the result is fairly symmetric around
zero. Bottom-right panel uses 100 bins that display a fairly smooth bell-curve. Note
that the bottom figures do not display counts but density—counts in each bin, divided
by sample size N and by the width of the corresponding bins. We do this because
density remain roughly the same if we use a large number of narrow bins instead of a
small number of wide bins, or if we use a large sample instead of a small sample. A
bin of a half of the original width will contain roughly a half of the cases of the original
bin, but by dividing the count by 0.5 of the original width, we retain (roughly) equal
frequency.

We can continue this process as we get more and more data. At the limit, the
sample size goes to infinity and we are looking at infinitesimally narrow intervals.
The result, how the density value of each infinitesimal bin depends on x, is called
probability density function (p.d.f.). This is the RV counterpart of histogram, exactly
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Figure 1.18: Moving from discrete to continuous values. All histograms display random
normal realizations. On the left panels we partition the value range into a small number of
intervals, and on the right panel into a large number intervals. We are effectively looking at
a discrete distribution with that many possible values. The upper panel displays a sample of
25 random values, the lower panel 10,000 random values. The upper panel displays counts
of values in each bin, the lower panel the relative frequency.

as expected value is the RV counterpart of the sample average. In a similar fashion
as the sample average converges to the expected value as N → ∞, the histogram
converges to the p.d.f. as sample size approaches to infinity.

p.d.f. is often denoted by f(x) and can be defined as

f(x) = lim
dx→0

Pr(X ∈ [x, x+ dx))

dx
. (1.5.10)

p.d.f. can also be defined as integral: integral of p.d.f. over an interval is the proba-
bility that the value falls into this interval:

f(x) : P (x ∈ B) =

∫
B

f(x) dx (1.5.11)

Example 1.22: Standard uniform distribution

Standard uniform is a continuous distribution where all values between 0 and 1
are equally likely, and other values are impossible. Here is a sample of numbers
that are uniformly distributed:

0.35246, 0.74205, 0.22743, 0.23644, 0.50441, 0.49287, 0.18817, 0.30947
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And here are histograms of three samples–of size 10, 100 and 1000.
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Figure 1.19: Histogram of standard uniform samples of 10 (left), 100 (middle), and
1000 (right) realizations.

What is the corresponding p.d.f.? As the uniform probability does not de-
pend on x, the probability must just be equal to the interval width δx. Hence
from (1.5.10), the p.d.f. is f(x) = 1 in the interval [0,1].

Expected value for continuous RV-s is defined essentially in the same way as in
case of discrete RV-s, just we have to replace the sums with the integral:

EX =

∫ ∞

−∞
f(x)x dx. (1.5.12)

As in case of discrete RV, the expected values is a weighted average where the weights
are the probabilities, expected value for continuous RV-s is a weighted average where
weight is the corresponding p.d.f. Variance is defined in exactly the same way as for
discrete RV-s

VarX = E[(X −EX)2] = E[X2]− (E[X])2, (1.5.13)

just keep in mind that the expectation must now be calculated using the integral (1.5.12).

Example 1.23: Expected value of uniform RV

Let’s calculate the expected value for standard uniform RV. Its p.d.f. is just
f(x) = 1 in the [0,1] interval, so we can integrate it over the interval:

EX =

∫ 1

0

1x dx =
1

2
x2
∣∣∣∣1
0

=
1

2
. (1.5.14)

This is an intuitive result: if all values between 0 and 1 are equally likely, we get
the average between these numbers.
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Exercise 1.28: Quantiles of standard uniform distribution

In case of continuous distributions, τ -th quantile qτ is defined as such a number
that probability to get a realization smaller than qτ is τ . Formally, qτ : Pr(X ≤
qτ ) = τ . For instance, 0.05th quantile is defined as such a number, so that you
get a realization that is smaller than that number with probability 0.05 (5%).

Consider standard uniform distribution

f(x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise
(1.5.15)

Find the theoretical quantiles q0.025 and q0.975.
Solution at page 480

1.5.3 Popular continuous distributions
This section discusses a few commonly used continuous distributions.

Normal distribution

Normal distribution is one of the most widely used continuous distribution. It de-
scribes quite well a plethora of phenomena where “average values are most common”.
The examples include height of humans, temperature, agricultural yields, measure-
ment errors and many others.
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Figure 1.20: Standard normal p.d.f..

The p.d.f. of normal distribution
is described by the well-known “bell
curve”, a bell-shaped curve where the
most common values are in the middle
(Figure 1.20). The p.d.f. of the normal
distribution is

f(x) =
1√
2πσ

exp

(
−1

2

(x− µ)2

σ2

)
,

(1.5.16)
where µ is mean of the distribution (the
location of the central hump) and σ is its
standard deviation (width of the hump).
Its expected value is

EX = µ (1.5.17)
and its variance

VarX = σ2. (1.5.18)
Normally distributed RV-s are often denoted by N(µ, σ2), for instance, if a RV X

is normally distributed with expected value µ and variance σ2 then it is written as
X ∼N(µ, σ2).

Figure 1.21 shows examples of approximately normally distributed values. A few
other examples are human height (Figure 1.29), age of Titanic passengers (Figure 1.2,
left) and education in years (Figure 1.5).



76 CHAPTER 1. INTRODUCTION TO STATISTICS

0

25

50

75

4 5 6 7 8 9
House size (rooms)

co
un

t

0

20

40

60

−10 0 10 20 30
Economic growth (pct)

co
un

t
0

5

10

15

40 44 48 52
Approval rate (pct)

co
un

t

0

5

10

15

0 10 20 30 40
Game score

co
un

t

0

5

10

1.00 1.25 1.50 1.75
Petal length (cm)

co
un

t

0

20

40

60

80

04:00:00 06:00:00 08:00:00
Marathon time

co
un

t

Figure 1.21: Examples of (approximately) normally distributed values. Clockwise, from
top left: average house size across Boston neighborhoods (Boston housing data); Economic
growth (pct) across countries (World Bank data); Game score of 65 games by the NBA
basketball player James Harden (Basketball-reference.com data); Marathon finishing time
(Marathon data); Petal lenght of setosa flowers (Iris data); Approval rate of the U.S. presi-
dent Barack Obama (Obama approval data).
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Why are so many apparently very different phonomena distributed normally? The
answer is related to CLT–the sum of many independent RV-s tend to be normally dis-
tributed. All these pictures depict phenomena where the actual value is a result of
many different processes. For instance, the average house size is related to the neigh-
borhood age, the wealth of people living there, land price, availability of contruction
materials, family size... A basketball players game score is a result of many many
different opportunities, encounters with the opponent, and mistakes; and so on.

Another reason why normal distribution is very important is also related to CLT.
Namely, a large number of statistical methods require computations that are similar to
sample average–by CLT, the result will be approximately normally distributed. This
makes normal distribution (and a few closely related distributions like t-distribution
and χ2-distribution) extremely important for statistical inference (see more in Sec-
tion 1.6.2 Theoretical Confidence Intervals, page 98).

Exercise 1.29: Normal p.d.f.

Use computer to make a plot of normal p.d.f. that is similar (in terms of the
location and width of the hump) to a few histograms in Figure 1.21. Use the
location (mean) and the width (variance) parameters!

Do this once by manually coding the normal p.d.f. (equation (1.5.16)), and
once by using the dedicated normal density function.

Solution on page 480.

Log-normal distribution

Normal distribution has wide range of applications, but there are important classes
of phenomena that are rather different from normal. Examples include price (Fig-
ure 1.22) and income (Figure 2.13 at page 168). Intuitively, it is easy to understand
that these two example cannot be normally distributed—both price and income can-
not be negative, so there is a clear lower limit. Normal distribution does not have
such a lower limit. Most income and price values tend to be close to “typical” values,
there exist extremely rich people and super high prices. So in both cases we expect
to see a right-skewed distribution with a long right tail.

It turns out that in case of price and income, if we take logarithm of these values,
i.e. analyze log income instead of income, we get a distribution that looks quite close to
normal. This is the idea of log-normal distribution: a RV is log-normally distributed
if it’s logarithm is normally distributed. The p.d.f.

p.d.f. is probability density
function, see Section 1.5.2
page 72.

of log-normal distribution
(red line on Figure 1.22, left panel) resembles a normal curve, just it’s left side is
compressed and the its right side stretched: this is because exponentiation compresses
small numbers and stretches large numbers. It’s p.d.f. is given by

f(x;µ, σ) =
1√
2πσx

e−
1
2

(log x−µ)2

σ2 (1.5.19)

where µ and σ2 are mean and variance of the corresponding normal distribution (dis-
tribution of logX). Log-normally distributed RV-s are often denoted by LN (µ, σ2).
If you are using computer to work with log-normal values, these two parameters may
be called “scale” and “shape”.
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Figure 1.22: House prices in 1987 in Windsor, Canada. The left panel shows price histogram,
the right panel log-price histogram. As the latter looks broadly normal, we conclude that
the price distribution is approximately log-normal. The red lines show the best-fit smooth
log-normal density (left) and normal density (right). Log-normal density can be imagined
as a normal bell curve that is squeezed from left and stretched from right. Both red curves
match data well.

The expected value and variance of log-normal are

EX = eµ+
1
2σ

2

VarX = e2µ+σ2

(eσ
2

− 1). (1.5.20)

Figure 1.23 shows the p.d.f. for a few combinations of the parameters µ and σ.
Why do some phenomena follow log-normal instead of normal distribution? There

are two partial explanations:

• Neither price nor income can be negative. Hence whatever distribution these two
phenomena follow, it cannot contain negative values. But normal distribution
stretches to negative values.

• It appears that the processes that create income and price are not additive but
multiplicative: instead of a sum of many independent random processes, these
phenomena seem to be better described as a product of independent positive
random processes. Hence log values look like normal as logarithm transforms
the product to a sum.

The parameter σ of log-normal distribution describes different degree of inequality:
on Figure 1.22, typical houses cost $50k, but some houses are over $150k (CAD). This



1.5. PROBABILITY DISTRIBUTIONS 79

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4
x

D
en

si
ty

σ

0.2

0.5

1

1.683

µ

0

1

Figure 1.23: Example log-normal p.d.f.-s. σ changes the concentration of the distribution:
small σ corresponds to a fairly concentrated values that are distributed in a rather normal
fashion, large σ in turn describes a distribution with heavy right tail. µ changes scale, the
example curves with µ = 1 are of similar shape as the corresponding curves with µ = 0, just
more stretched out. See Table 1.10 for the corresponding inequalities.

means the most expensive houses cost thrice as much as typical houses.16

Pareto ratio: upper x% of
population possesses 100− x% of
all ressourse, e.g. upper 20%
owns 80% of all wealth. See
Section Section 1.3.4 Pareto
ratio, page 31.

However,
the inequality in house prices are not very large: the pareto ratio for this distribution
tells that the most expensive 43% of houses in Windsor contain 57% of total housing
value in that neighborhood. In this case σ = 0.372. Surprisingly, the UK income
distribution in Figure 2.13 is more equal, the Pareto ratio is 47.2/52.8 as σ = 0.142.
But Titanic ticket prices are more unequal. Here σ = 0.909 and 32.5% of passen-
gers paid 67.5% of the total ticket revenue. A few more Pareto ratios are given in
Table 1.10. We see that case of large σ, the right tail is very long and indicates the
presence of super-wealthy: in case of σ = 3.29 the upper 5% of population owns 95%
of the resources.

Pareto distribution

Log-normal distribution is a good approximation for individual income. But there
are phenomena that are much more extreme. For instance, human influence, web site

16If looking at log-prices instead of prices, we can say that the most expensive houses cost ap-
proximately 5 (the unit is log $1000 CAD) while typical houses cost 4 (log $1000 CAD), i.e. 20%
more. But this figure is not robust with respect of measurement units. If we measure the price not
in thousands of dollars but in dollars, the most expensive house would be only 10% more expensive
than the mean log-price.

This is because the price is ratio measure but log-price is only interval measure. In order to define
inequality in this way we have to be able to compute ratios.
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Table 1.10: Log-normal Pareto ratios depending on σ. For instance, if σ = 3.29 then the
upper 5% of population possesses 95% of total resources. See Figure 1.23 for the shape of
the corresponding p.d.f.-s. The last column shows the corresponding QSR.

σ Top share (pct) Owned wealth (pct) QSR
0.20 46.02 53.98 1.75
0.50 40.13 59.87 4.08
1.00 30.85 69.15 17.18
1.68 20.00 80.00 138.13
3.29 5.00 95.00 55124.26

popularity, and size of cities tend to be distributed in a much more inequal manner.
For such phenomena, Pareto distribution can be a better distribution than log-normal.

The p.d.f. of Pareto distribution is given by17

f(x) = αxα0 x
−α−1, x > x0. (1.5.21)

It has two parameters: “scale” x0 and “shape” α. As p.d.f. is proportional to x risen
to power −α− 1, Pareto distribution is often called power law.

Figure 1.24 shows a few examples of the p.d.f. with different α using linear scale
(left panel) and log-log scale (right panel). Shape controls the spread of the values–
Pareto values drawn from a large α distribution are fairly concentrated (green line
on the figure). When α gets smaller, the values are more and more spread and
contain larger and larger outliers and the values display increasing inequality. Scale
x0 determines the “beginning” of the distribution–there must be a minimal value,
otherwise the p.d.f. will get to infinity at 0. On Figure 1.24, x0 = 1. The expected
value of Pareto RV is

EX =
α

α− 1
x0, α > 1. (1.5.22)

If α ≤ 1 then the expected value does not even exist–there are too many too large
outliers, so that the sample mean will not converge, and the few richest persons in
the sample control almost all the wealth.

The other parameter, x0 describes the cutoff point. Pareto distribution needs
a cutoff, otherwise it would go to infinity at zero. Sometimes one uses a shifted
version of Pareto where the cutoff is shifted to 0. This is called Pareto-II or Lomax
distribution.

An interesting characteristic of Pareto distribution is the fact that the p.d.f. looks
like a straight line in log-log scale. It is easy to see by taking logarithm of p.d.f.
(1.5.21):

log f(x) = log (αxα0 )− (α+ 1) log x. (1.5.23)

One can immediately see that log f(x) is a linear function of log x because α and x0 are
constants (see the right panel of Figure 1.24). This gives a good way to tell whether a
distribution is more like log-normal or more like pareto: log-normal histogram tends

17Strictly speaking, this is Pareto-I distribution where values start from x0. It’s close sibling,
Pareto-II (or Lomax) distribution shifts the starting point to 0. See below.
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Figure 1.24: Pareto p.d.f. for different shape parameter α. Linear scale (left) and the same
distributions in log-log scale (right). These distributions may be hard to tell apart on linear
scale, but on log-log scale all of them are just straight lines at different angle. All these
examples have scale x0 = 1, the cutoff point on the left hand side.

to look like normal in density–log x scale. Pareto tends to look like a straight line in
log density–log x scale.

As lines in log-log scale do not have any features, all places on the line always
look the same, the distribution is sometimes called scale free distributions. In scale-
free distribution, wherever you are the picture looks similar: most observations are
much smaller, but there are always cases that are much larger. This may explain
some of the frustration with career people have: however successful you are, there
are always others who are much much more successful. And as you typically socialize
with those who are at the comparable level, you do not even notice how far up in the
career ladder you are. But you always see those who are much more successful than
you–stars shine bright and are visible to everyone.

Pareto ratio: top x pct owns
100− x pct of wealth,
see Section 1.3.4 Pareto ratio,
page 31; QSR: quintile share
ratio, see Section 1.3.4 Quintile
share ratio, page 30.

Table 1.11 shows Pareto Ratio and QSR for Pareto distribution for different shape
α values.

Exercise 1.30: Expected value of Pareto RV

Assume the scale x0 = 1. Use the Pareto p.d.f. (1.5.21) and the definition of the
expected value for continuous RV-s (1.5.12) to prove the expected value (1.5.22).

Where is the requirement α > 1 come from for the expected value to exist?
Solution on page 481.
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Pareto Ratio
α Cutoff Upper Lower QSR
3 1.325 43.0 57.0 2.47
2 1.618 38.2 61.8 4.24
1.5 2.148 31.8 68.2 8.16
1.2 3.506 22.2 77.8 20.95
1.1609 4.001 20.0 80.0 26.27
1.1 5.427 15.6 84.4 26.27

Table 1.11: Inequality in Pareto distribution. For instance, if shape α = 3, then wealthiest
43 pct of population, those who have more than the cutoff 1.325, control 57 pct of resources;
the corresponding QSR = 2.47. (Assuming scale x0 = 1.)

1.5.4 Central Limit Theorem
Central Limit Theorem (CLT) plays an extremely important role in statistical infer-
ence. It is somewhat similar to Law or Large Numbers, but unlike LLN, our intuition
does not help much with CLT. While LLN describes what happens to the sample
average when sample size increases, CLT describes the shape of the sum of random
variables, and tells that under certain assumptions, sum of RV-s is approximately
normally distributed. So if we add up (literally!) a lot of random numbers, the result
will be normally distributed. Even more, its variance is proportional to the num-
ber of realizations we summed. We first explain and demonstrate CLT at work, and
thereafter define it formally and discuss the assumptions behind it.

Why sum tends to be normal

We use Pareto distribution with parameter α = 5 (Section 1.5.3 Pareto distribution,
page 79) to demonstrate how CLT works. Pareto(5) distribution (Figure 1.25 top left
panel) does not resemble normal distribution much, it has its most common values
near x0 = 1, and the larger values are increasingly less common. In this sense it is
more similar to exponential distribution. However, when we start averaging these
variables, we can see that the values near 1 become increasingly less likely, and the
values near the average (1.25) tend to be more and more common. When averaging
S = 100 Pareto(5) RV-s (bottom right panel), the result looks very much like a
normal.

Before we explain why this happens, let’s make clear what exactly do these his-
tograms depict. In the upper-left image we just generate R = 1000 random Paretos
with shape α = 5 and scale x0 = 1.

Expected value of Pareto(5)
distribution is α/(α− 1) = 1.25,
and variance

α
(α−1)2(α−2)

= 0.1042.
Section 1.5.3 Pareto distribution,
page 79.

The second panel (S = 2) shows R = 1000
replications of average of two Paretos. First we generate two Pareto realizations and
take the average of them. But computing average of two numbers would yield a single
result only, and we cannot say much about the distribution based on just a single
number. So we replicate this R = 1000 times. In the third panel we generate S = 3
random Paretos, take average of those, and again, in order to see the distribution,
we repeat this R = 1000 times. And so on, displaying averages of samples of S = 5,
S = 25 and S = 100 random Pareto(5) realizations. In each case this is replicated
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Figure 1.25: Histogram of means of Pareto(5) RV-s. The upper-left panel shows that of
a single Pareto(5) RV (i.e. sample size S = 1) while the bottom-right panel shows the
histogram of means of S = 100 Pareto RV-s. The shape of the distribution is getting more
and more normal as S increases. The orange line indicates the average of the sample of
means. All figures depict the histogram of 1000 replications.

R = 1000 times to make the distribution visible. CLT tells us that the distribution
will look more-and-more like normal as we average over more and more realizations.
This is what the sample size S means. The number of replications R is not related
to CLT, we use a large R just to get sufficiently smooth histograms. Remember–the
distribution is the property of a RV but histogram is a visualization of the sample.
Average of RV-s is also a RV, and its properties are not related to the sample size.18

But why does the image turn more-and-more normal when we add more RV-
s? One might intuitively think that adding Paretos will still result in a long-tailed
distribution with maximum near 0. After all, values near 0 are the most likely ones?
True, values near 0 are the most common ones, but that is not the whole story. If
we want to take mean of two Paretos and still get close to 0, we need to get both of
these numbers to be close to 0. But it is more likely to get one of these close to zero
and the other not close to zero. The logic is exactly the same as in case of binomial
distribution: when tossing two coins it is more likely to receive one heads and one
tails, rather than receving two heads or two tails. So instead of our average of Pareto
pairs piling up at 0, it will pile up at a somewhat larger number. This is what we see
on the S = 2 panel: the values near 0 are still fairly common, but now the peak at 0
is less prominent than in the first panel.

18Average is the result of two operations: addition, and multiplication by scalar. Those were
discussed in context of RV-s above in Section 1.4.6 Functions of RV-s, page 62.
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When averaging more than two RV-s, the same logic applies more-and-more.
When computing the sum of 100 RV-s, then we can pretty much guarantee that
we get a value somewhere in the middle—in average, we get an average number. In-
deed, the chances to get a value near 0 for 100 times is very-very small. This is why
we have more and more prominent hump in the middle of the plot–we have arrived
to a distribution that is similar to normal.

Formal definition of CLT and assumptions behind it Now it is time to look at the
formal definition of CLT. 19

Theorem 4 (Central Limit Theorem, CLT). If X1, X2, . . . , XS are independent and
identically distributed random variables with expected value EX and variance VarX
then, as the sample size S →∞, the distribution of their average

X̄S denotes the average of
sample of size S of RV X, see
Section 1.3.1 Average, page 17.

X̄S = 1
S

∑S
i=1Xi:

a) is normally distributed X̄s ∼ N(µ, σ2), with expected value µ and variance σ2.

b) The expected value of the sample mean, E X̄S, equals to µ = EX

(Expected value of average is the same as expected value of individual RV.)

c) Variance of the sample mean, Var X̄S, equals to σ2 = 1
S ·VarX

(Variance is inversely proportional to the sample size.)

Let’s discuss individual claims in a more detail now.
The claim a) tells that the mean is normally distributed. For instance, if we take

the example of S = 5 in Figure 1.25, CLT states that the distribution is approximately
normal with mean 5/4 = 1.25 and variance 0.1042/5 ≈ 0.02. One can see that
the distribution somewhat resembles normal, but as S = 5 is far from infinity, the
distribution is also visibly different from normal distribution. But when we take
S = 100 (the bottom-right panel), then our eyes cannot tell that the result is not
normally distributed.

The result b) tells us that we can average a large number of random values and
the expected value will still be the same. For Pareto(5) RV, EX = 1.25, and hence
E X̄5 = X̄100 = 1.25. You can easily see that the sample averages, reported in the
figure, are all approximately 1.25. This is handy when computing–we do not even
have to compute!

But the result c) tells us something even more important: the larger the sample
size S, the smaller the variance of its mean, Var X̄. More precisely, variance of mean is
inversely proportional to the sample size. For instance, for Pareto(5), VarX = 5/48 ≈
0.1042. But for average of sample of five Pareto(5) values, VarX = 5/48/5 ≈ 0.0208.
If we measure precision by standard deviation, the root of the variance, then the
precision increases as the root of sample size. Four times larger sample gives us twice
as precise results; if we want 10 times more precise results then we need a 100 times
larger sample. This is illustrated in Figure 1.26. The original sample of 100 gives
the distribution width 3. 2.25 times larger sample narrows this down to 2, but to get

19Strictly speaking, only the result a) is part of the CLT. b) is law of large numbers, and c) is a
direct result of definition of variance for independent random variables. We list here together for
compactness.
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to width 1 we need a nine times larger sample. CLT tells that all these curves will
resemble the normal distribution.

Figure 1.26: Standard deviation as a function of sam-
ple size. In case of sample size 100 (green curve), the
resulting distribution has width 3. When we increase
the sample size 2.25 times to 225, the width will be 1.5
times smaller. But three times narrower width requires a
9 times larger sample.

The result b) can be explained in a fairly intuitive manner. Imagine R airlines
are flying to a destination, and each of these will do S flights a day, so there are
R · S flights in total. Each flight is delayed by a random amount, this is the RV
X. The overall average delay can be computed as just average over all R · S delays
(realizations of X), whatever the airline. This is the analog of EX. Alternatively, we
can compute the average delay for each airline (this is X̄S) and then average over the
average delays (this is analogous to E X̄S . The analogy is not perfect, but it helps to
see intuitively why E X̄S = EX.

Exercise 1.31: Replicate Figure 1.25 with Beta distribution

Beta distribution is a distribution with two shape parameters. Show that the
average of Beta(0.5, 0.5) RV-s (where both shape parameters are 0.5) converge
to normal: replicate the Figure 1.25 with beta distribution on your computer.

Result on page 481.

You should be aware the CLT is not universally true–it relies on a few assumptions.
In particular, it applies if

• The random variables X1, . . . , XS are independent. This matters for the argu-
mentation we gave above: it must be less likely to get two small values, than
one small and one large value. In case of correlated data this may not be true.
For instance, when doing 1000 temperature measurements in a hot summer day
we should not expect the result to reflect the yearly average temperature well.
These values are highly correlated.

• Both expected value and variance of Xi must exist. Although in practice we
do not encounter heavy-tailed distributions so often, it is good to know that
long-tailed distributions we do encounter may converge at a much slower rate.
So if we have so far worked only with well-behaved variables like number of
children or log income, then it may come as an unpleasant surprise that our
experience does not carry over to an analysis of city size or twitter tweets. The
errors are much larger than expected.
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Why CLT is so important There are two main reasons why CLT has such a central
place in statistics. First, it tells us that when doing computations on large samples,
we can use the properties of the normal distribution instead of a huge number of
different tailor-made rules for Bernoullis, binomials and Paretos. This is what we
usually use for confidence intervals, t-tables, and so on.

Second, it explains why many natural values, such as human height or temperature
are approximately normally distributed. For instance, height is a sum of a large
number of factors, some genetic, some environmental, some pulling us taller, other
pushing us shorter. But when averaging over all those factors, the typical humans
tend to be of about the average height. And when we see a different distribution, e.g.
that of human wealth, this indicates that some of the assumptions behind CLT are
violated. In case of wealth it is probably independence—the economy seems to work
in the way that the rich get richer. Factors that influence wealth are not independent,
the wealthy ones seem to be more prone to encounter the opportunities that are even
more favorable to wealth accumulation.
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1.6 Statistical Inference
This section discusses statistical inference. Inference refers to statistically sound con-
clusions based on data that can be generalized to the whole population. The statistical
methods we discussed in Section 1.3 Descriptive statistics, page 16 are sound, but do
not allow generalizations. Descriptive statistics describes data using statistical tools.
For instance, we may find that in our sample, mothers who smoke give birth to smaller
babies. If this is all we are interested in, we can stop here. But can our data tell
something about another sample of mothers and babies? Or about all mothers and
babies? Yes, the current sample can tell something about other samples, and about
the whole population. Inferential statistics does exactly that.

If you think that using one dataset to tell something about the whole population
is confusing then you are right. Statistical inference is much more complicated, and
more error-prone than descriptive statistics. That’s why we denote much more space
on it.

1.6.1 Statistical Hypotheses and Hypothesis Testing
In this section we introduce a lot of concepts: confidence intervals, confidence levels,
significance levels, statistical hypothesis and hypothesis testing, and different types
of errors. This section just introduces the concepts, how to actually compute the
confidence intervals is discussed in Section 1.6.2 Doing Statistical Inference, page 95
and Section 1.6.3 z-test: is the sample mean equal to a given value?, page 102.

Hypothesis testing and confidence level

Statistical inference is typically done through statistical hypotheses and hypothesis
testing. Statistical hypotheses are claims about the world, claims that may or may
not be compatible with data. If data contradict the claim, we reject the hypothesis,
if data are compatible with the claim, we do not reject the hypothesis. Unlike many
other fields, statistics normally does not give definite answers. For instance, while
economists typically want to say that unemployment rate is “11.2 pct”, a statistics-
based answer will include a measure of uncertainty. A statistically correct answer
may be “with 95% confidence we can say that unemployment rate is between 10.8
and 11.6 pct”.20 Such answers are pretty much the only type of results that statistics
can offer.

What does such a claim mean? There are two components here:

• We don’t know what exactly is the unemployment rate, but we are “reasonably
certain” it belongs to the interval [10.8, 11.6].

• The “reasonably certain” means we are 95% certain.

As one can see, understanding such somewhat fuzzy claims requires a bit of statistical
literacy.

20You may have noticed that such interval-based claims are also quite common in sciences. Often
(but not always) those originate from statistics-based methods.
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Intervals like [10.8, 11.6] are very commonly reported in statistical practice and
hence they have a distinct name–confidence intervals. If we are 95% confident that
the true value falls into this interval then we call it “95% confidence interval”. See Sec-
tion 1.6.2 Doing Statistical Inference, page 95 for how to compute confidence intervals.

A statistical hypothesis, often denoted as H or H0, is a claim, usually stated in a
definitive manner. In the example above, a hypothesis might be H0: “unemployment
rate is 11.2%”, or perhaps instead H1: “unemployment rate is more than 10%”. The
hypotheses can either be rejected (it means it is incompatible with data) or not rejected
(if it is compatible with data). Note that hypotheses cannot be confirmed! Hypotheses
can only be rejected or not rejected at certain confidence level. Confidence level means
the probability that the rejection is the correct decision. It is based on data quality,
sample size and other factors. In applications we typically look at confidence levels
95% or 99%. If a hypothesis is rejected, we can consider it “wrong”–given our data
and methods was correct. If a hypothesis is not rejected, it is compatible with the
data. It may be correct, or it may still be wrong if our dataset is too small or too
noisy.

Hypotheses are often presented in pairs, where one is called null-hypothesis H0 and
the other alternative hypothesis, often denoted by H1 or HA. The null hypothesis is
the original claim we are testing and potentially rejecting, HA is the alternative that
must be true when H0 is false. For instance, when analyzing mothers’ smoking habits
and babies birth weight, H0 might be “smoking and non-smoking mothers give birth
to babies of equal weight in average”. The alternative HA in this case will be “Birth
weight of babies, born to smoking and non-smoking mothers, differs in average”. Note
that HA does not claim that babies of either one or another group weigh more. If
the weight is not equal, it must differ. If one wants to test if the weight differs in a
certain way, that is a separate hypothesis. While certain sources always state H0 and
HA explicitly, other studies either only discuss H0 or leave the hypotheses implicit.
In that case it is often obvious from question that is analyzed.

Example 1.24: Rejecting and not rejecting a statistical hypothesis

Assume we analyze unemployment data and conclude that with 95% confidence
the true unemployment rate is between 10.8 and 11.6 pct with the best estimate
being 11.2.

Now consider the government, that always prefers to paint a bit more rosy
picture, claims that the rate is just 8.9%. We can treat this as a statistical
hypothesis H0 : u = 8.9 (where u means unemployment rate). The government’s
claim is clearly incompatible with our data (and model), after all, according to
our analysis, we are 95% confident that the rate is at least 10.8%. So we can
reject H0 and accept the alternative HA : u ̸= 8.9. But note that we were just
95% certain that u ∈ [10.8, 11.6] and hence we cannot reject it definitively, but
only with 95% confidence.

However, the politically independent Central Bank has no incentive to make
the figures any better than they are and publishes it’s own analysis according
to which u = 11.4%. This can also be written as a statistical hypothesis H1 :
u = 11.4.a What can we say about this? The number 11.4 fits squarely inside
our confidence interval and hence the result is compatible with our data. So we
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cannot reject H1. But neither can we tell that it is correct–it is just compatible
with data, maybe correct, maybe not correct.

aHere we use H0 and H1 to denote different hypotheses. H1 here is not the alternative to
H0, the alternative were HA : u ̸= 8.9.

But what is a good hypothesis to test? There are many-many possibilities, which
one should you choose? As a rule of thumb, we want to test a hypothesis that is
related to the problem we are interested in, and that we can reject. The first point–
hypothesis should be relevant–is obvious. The second point, however, is related to the
fact that we can only reject hypotheses, not confirm them. And if we fail to reject one,
then we essentially learn nothing. It is like hearing a Claim And Replying “Perhaps.
What you say may be true but I don’t really know.” While technically correct, such
an answer will not help us to learn much about the world. So a good hypothesis is a)
relevant, and b) we can (possibly) reject it.

For instance, when returning to the unemployment example, assume that extended
benefits are available if u ≥ 10%. Now it is obviously important to know if the
government should provide the extended benefits. We can try to test it in a number
of ways:

• H0: u = 10%. This hypothesis is problematic–if we reject it, we can say that
unemployment is not 10%, but we cannot tell if it is less or more. We still do
not know if the benefits should be available.

• H1: u ≥ 10%. Now if we reject it, we find that unemployment is below 10%.
This is a valuable result: extended benefits should not be available.

Exercise 1.32: Is this a good hypothesis?

What about the hypothesis H2: u < 10%? Is it a good hypothesis?

Which hypotheses can be rejected depends on data quality—how much relevant
information there is in data, and on the analysis—how well can we extract that
information. The lower the data quality, the less can we tell, the fewer hypotheses
can we reject. In the extreme case where the data contains no information (or we do
not have any data), we cannot reject anything.

Example 1.25: Unemployment example with bad data

Now imagine we only have access to inferior data and our results are much less
precise. We are only able to conclude that unemployment must be in a range
of [7, 14]%. Can we now reject H0 : u = 8.9 (the Government’s claim) and
H1 : u = 11.4 (the Central Bank’s claim)? As both of these fit into our interval,
we cannot reject either of them. Both claims are compatible with our low quality
data. But we can still say that a scaremongerer who claims u = 30 is wrong.

However, if we do not have any data, the only thing we can say is that
u ∈ [0,100]–this must be true by definition. Now even the scaremongerer can go
unopposed, we just have no way to evaluate that claim.

Statistical hypotheses and hypotheses testing is closely related to the concepts
of RV and sample. Namely, in statistical models we imagine that the world is the
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RV and the statistical hypothesis is a claim about its properties. Now we use a
sample and compute the corresponding property on the sample. If H0 is correct, the
sample property should be close to what we claimed in H0. How close exactly, can
be computed from the properties of the RV, and the way the data was collected. For
the model to work well we need all these three components to match:

• The RV must describe the real world well
• We must know the way the sample (data) is collected, and incorporate it into

the model correctly.
• The hypothesis must be relevant and informative.

Example 1.26: Unemployment rate as RV

Bernoulli RV: the event occurs
with probability p and does not
occur with probability 1− p. See
Section 1.5.1 Bernoulli
distribution, page 68.

The RV that is used for data modeling is often not stated explicitly. Re-
turning to the example of unemployment, we can imagine that every worker in
the economy can be either unemployed or employed. Unemployment occurs with
probability u and employment with 1 − u. If this is the model, then we are
implicitly using Bernoulli RV (Bernoulli(u)).

Now we can use Labor Force Survey—a sample of workforce—to compute ũ,
the unemployment percentage in the sample. u, the unemployment rate in the
whole economy, the property of the RV, will probably be fairly close.

But RV and data alone are not sufficient to evaluate the claim (to test the
hypothesis). We need to know how are data collected. Was it through uniform
random sampling? Or are, for instance, employed workers more likely to end up
in the sample? Obviously, in the latter case we expect the sample proportion of
employed workers to exceed that in the whole economy.
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Confidence level, significance level, and p-value

Significance level is the mirror image of confidence level. It is the probability that we
reject H0 even if it is correct (called type-I error, see below). We normally want this
number to be small. Significance level is frequently denoted by α and often chosen to
be α = 0.05.

Significance level is not something computed from data. It is a choice that should
be done before beginning the analysis: when are we willing to say that the hypothesis
is not compatible with data and reject it? If our data and model suggest that H0 is
only 1 percent likely, are we willing to reject it? What if it is 10% likely?

Hypothesis testing is typically done by computing a test statistic, such as z-value
or F -value. If H0 is correct, the test statistic tends to have certain kind of values,
often small values near zero. But if H0 is not correct, the test statistic will have
other, “more extreme” values. But as we are working with random processes, such
extreme values may also occur even if H0 is correct, just it is not that likely. This
is the idea of p-value. p-value is probability that at a test statistic value that is at
least as extreme than you see in data, is observed even if H0 is correct. If we want to
reject H0, we must have p-value smaller than the significance level, p < α. So p-value
is about observing test statistic that is as extreme as what you see in data.

Sometimes people understand p-value as “the probability that H0 is correct”. This
is not quite right. But for someone who are just getting into statistics, it is often a
good enough definition of what p-value means. So if you cannot remember the correct
definition, try to remember this, and be aware that “there was something more in it”.
Let not the perfect be the enemy of good!

Example 1.27: Significance and p-value

Imagine we are analyzing whether smoking is related to birth weight. We collect
data about mothers’ smoking behavior and their babies’ birth weight. We choose
H0: “mother’s smoking is not associated with birth weight”. We also have to
decide a significance level, here α = 0.05 is an appropriate choice.

A suitable test statistic is z-value (see Section 1.6.2 Confidence interval for
normally distributed values, page 98). z-statistic behaves in the way as described
above—if H0 is correct, we expect to see mostly small values, and only rarely
large values. We find, say, z = 2.8. From the z-value table below we find that
the corresponding p-value is 0.005. This means that if H0 is correct—there is no
relationship, the probability to see a z-value 2.8 or larger is just 0.005, once in
200 trials. As this probability is less than our chosen significance level α = 0.05,
p < α, we reject H0 and conclude that smoking and birth weight are related.

Table 1.12: Critical z values depending on the (two-
tailed) significance level α.

α zcr

0.200 1.282
0.100 1.645
0.050 1.960
0.010 2.576
0.005 2.807
0.001 3.291
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However, if we find z = 1.6, then the table suggests p = 0.1 instead. This
means we have 10% probability to observe this large number even if H0 is correct.
As now p > α, we cannot reject H0, so we cannot conclude that smoking and
birth weight are related.

It is important to choose significance level before the analysis. Otherwise one may
inadvertently adjust the level up or down, depending on how the p-value turns out in
data, and what is the desired outcome.

Exercise 1.33: z-test
You are a statistician in cosmetics industry. Your task is to evaluate the hydration
of the new production run of hand cream. The specification tells the level must
be 60% but the actual level fluctuates from tube-to-tube. You open a number of
cream tubes and measure the hydration level, you find the average value is 66%.

1. Does this mean that this run produces cream above the target hydration
value?

2. What is a good H0 to be tested?
You also compute the z-value, this turns out to be 2.01.

3. Can you reject H0 at 1% significance level? (Use the z-value table in
Example 1.27.

4. What does it mean if you can reject H0 at one but not at another signifi-
cance level?

Solution on page 482.

Type-I and Type-II errors

The statistical models can go wrong in multiple ways. We may use a RV that does not
describe the actual world well. Or we may get the assumptions about data collection
wrong. But even if everything with our model is good statistical models can still give
wrong results. As these models deal with randomness, sometimes we may get wrong
results just because of “bad luck”. Here we discuss such errors.

Remember–statistical models provide results through hypothesis testing. Usually
H0 is chosen in a way that if it is rejected, this means there is something interesting
going on. This can go wrong in two ways:

1. We reject H0 even if it is correct. These errors are called type-I errors or false
positives. This typically means that we see an interesting effect even where there
is nothing. We just see noise and think that there is something in there.

2. We fail to reject H0 even if it is incorrect. Such errors are called type-II errors
or false negatives. This is the opposite–the effect we are looking at is drowned
in noise.

The words “positive” and “negative” are commonly used in medicine, e.g. with
COVID tests. Test being “positive” means the test indicates the patient has the
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disease, negative test means no sign of the disease. But no test is perfect and some-
times a person who does not have COVID will receive a positive result. This is type-I
error or false positive. In an analogous fashion, if the test fails to discover COVID
(it comes back negative despite the patient having COVID) then we made a type-II
error (false negative).

There is always a trade-off between type-I and type-II errors. If we pick very
low confidence level (large significance level α), we immediately reject H0 as soon
as it does not look quite right, even if the reason is just random noise in our data.
There will be many type-I errors but few type-II errors. In contrary, if we pick a very
high confidence level (small α), we often fail to reject H0 even if it is wrong. We
do many type-II errors but few type-I errors. In the extreme case where significance
level α is 0.0, we reject all H0-s, and if α = 1.0, we never reject anything. The
optimal choice, obviously, is somewhere in between. How to balance false positives
and false negatives depends on the associated costs. If false positives are cheap but
false negatives expensive, we want to use a small significance leve α to avoid false
negatives. It the opposite is the case, we set α to be large.

Example 1.28: Type-I and type-II errors in doping tests

Doping tests are normally done by testing certain substances in athletes’ blood
or urine. Nissen-Meyer et al. (2022) describe how canoeist Adam Seroczynski
was tested positive for clenbuterol at 2008 Olympics in Beijing. The testing lab
had found a minuscule quantity of the substance (0.4 ng/L) in his urine. His
defense team argued that the substance originated from food, as it is commonly
used in meat production. However, the International Olympic Committee (IOC)
insisted that because the World Anti-Doping Association (WADA) guidelines
do not specify any minimum allowed quantity, any amount of it constitutes a
violation, and suspended Serczynski for two years. This is despite the fact that
WADA guidelines only require the labs to be able to test quantities of 2 ng/L, so
in many WADA-compliant labs, the measured level 0.4 ng/L would have remained
undetected.

As the modern methods can find incredibly small quantities of substances, the
results will be sensitive to random effects, such as consuming contaminated food
or using certain cosmetics. Doping test is essentially a test for H0 : the body does
not contain the banned substance. IOC interpretation of the test–there must be
no measurable quantity of the substance–is equivalent to setting the critical test
value (such as zcr) to zero. This produces many false positives (type-1 errors)–
“clean” athletes unfairly accused for using doping. But there will be fewer false
negatives (type-2 errors), athletes who use doping but will pass the test.

To make the matters worse, the minimum detectable quantity differs from lab
to lab, this leaves a lot of room for subjective evaluation, corruption and politics.

The authors conclude that WADA should establish minimum allowed levels
of substances to increase transparency and trust, and to leave less room for
subjective evaluation. The minimum levels should take into account of costs of
type-1 and type-2 errors.
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Exercise 1.34: Type-I and type-II errors

Consider the following hypotheses: 
• H0 consuming three eggs a day does not provide adequate health benefits

for an infant.
• HA Consuming three eggs a day provides adequate health benefits for an

infant. 
What would the type-I and type-II errors be in this circumstance? What concerns
might you have from making a Type I error?

Solution on page 482

Cheatsheet 1.7: Summary of the concepts regarding statistical hypotheses

The statistical inference section above introduced a large number of concepts.
Here is a summary of the most important ones.

Null hypothesis a claim about the world we want to test, usually by trying to
“reject” it based on data. It is rejected if it is incompatible with data.
Often denoted by H0.

Confidence interval is the interval where the true value most likely belongs. If
we are 95% certain that the true value is between 10.6 and 11.8, then we
say that “95% confidence interval is [10.6, 11.8]”.

Confidence level is the probability that you do not falsely reject H0, often chosen
to be 95%.

Significance level is the probability that you do falsely reject H0. It is often
chosen to be 5% and denoted by α. It equals to 100% − significance level.

Test statistic a number computed from data. If H0 is correct, then the test
statistic value is typically small. But because of the randomness in data,
we can sometimes encounter larger values.

p-value probability to find test statistic at least as extreme (as large) if H0 is
correct. This means if p-value is small, H0 can be rejected.
It is sometimes understood as “probability that H0 is correct”, this is only
“approximately right”.

Type-I errors (false positives) erroneously rejecting H0.

Type-II errors (false negatives) erroneously not rejecting H0.
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1.6.2 Doing Statistical Inference
In the previous section we talked a lot about confidence intervals, confidence levels,
and p-values. But we did not discuss how can we actually compute those figures.
The central task in this section is to do exactly that, namely to devise methods to
compute the confidence intervals. We start with a somewhat trivial task, namely
making statistical claims about individual random variable realizations. This helps
us to build the necessary machinery for more complex problems later.

Consider a RV X. What would be a statistically sound claim about its realization
x? Imagine X is the temperature tomorrow, and we do not know the actual value
(realization) x before tomorrow. But we can still say something like “with 95%
confidence the temperature tomorrow will be between 14 and 17 degrees”. How can
we find the boundaries 14 and 17, and where is the 95% coming from?

The Simulation Approach

Confidence level is the
probability that rejecting H0 is
the correct decision. See
Section 1.6.1 Hypothesis testing
and confidence level, page 87,
and Cheatsheet 1.7.

Let’s start with the “95%” first. This is the confidence level, the mirror image of
significance level. We have to decide it before the analysis. In the current case, the
confidence level means the probability that our prediction is correct, so in 95% of
cases, the temperature will fall in the [14, 17] interval. This is the 95% confidence
interval for our weather forecast. We can imagine an implicit H0: the temperature
tomorrow we will be x degrees.
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Figure 1.27: Temperature distribution from a hypothetical weather model. The expected
value is 15.1, the central 95% confidence interval is between the dotted vertical red lines.

All these values are uniquely determined by the distribution of X. In case of
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weather forecast, the distribution is originating from the weather model we are us-
ing. Such models include random components to account for the fact that we cannot
predict weather perfectly. Assume we run the model 1000 times and receive 1000
temperature predictions as in Figure 1.27. The distribution in that example is some-
what right skewed, and individual predictions range between 13 and 19 degrees, with
the expected value being 15.1. But other values than 15.1, such as 14 and 16 also
look perfectly feasible. But which values do we consider feasible? For instance, 18
degrees seems to be unlikely, and even warmer weather seems even less plausible.

A common answer to this question is to look at the central 95% of the predictions.
Central 95% of the observations means that we consider the leftmost (the coldest)
2.5% and the rightmost (the warmest) 2.5% predictions to be unlikely. Given 1000
predictions, we can just remove the 25 coldest and 25 warmest predictions, and we
are left with the central 95% of the predictions.

τ -th quantile is such a value that
fraction τ of the sample is
smaller than it, and fraction
1− τ is larger than it. See
Section 1.3.3 Quantiles, page 28.

This is equivalent to preserving only
values between the 0.025-th and 0.975-th sample quantiles. In case of this sample,
the corresponding quantiles are 13.52 and 17.32 degrees (dotted vertical lines on
the figure). This interval, [13.52, 17.32] is confidence interval (CI), more precisely
95% confidence interval for the predicted temperature. So 95% CI is the interval
that contains the actual value with 95% probability, given that our weather model is
correct. The values in this range are considered likely, and those outside this range
are considered unlikely. So we may say that 16 degrees will be quite likely but 18 will
be unlikely. We can reject H0: “temperature will be over 18C” at 5% significance
level.

As the 95% CI are only correct 95% of time, one may be tempted to improve on
the type-I error and report 99% or 99.9% CI instead. This is fair, but unfortunately
the result will be less informative. If I say that temperature tomorrow will be between
-100C and +100C then I am correct 100% of time (well, at least on Earth). However,
such a prediction has little practical value, such as to help us to decide what to wear
tomorrow. This is the trade-off between providing precise estimates and avoiding
errors. 95% is often a good choice, but sometimes one may use a much higher level.
Claim that is sometimes incorrect is better than another one that is always correct but
devoid of any usable information. Sometimes one can compute the optimal confidence
level by considering the costs of type-I (false positives) and type-II (false negatives)
errors, and choosing a confidence level that leads to the smallest overall loss.

But why did we select the central 95% interval as our confidence region? Why
not leave out the largest 5% and pick the smallest value till 0.95-th quantile as the
confidence region? Or the other way around? And what about picking both extremes
and leaving a narrow 5% gap in the middle? There are a few reasons for this, some
of those more theoretical, some more practical.

• First, we are usually interested in a confidence region that is as concentrated as
possible: we want the 95% of possible outcomes to have a small error margin.
The narrower my temperature forecast, the better idea you have what to wear
tomorrow. The obvious choice is to pick the region on the histogram with
highest chances and not to leave a gap in the middle where the values are most
likely.

• Second, in typical applications the distribution is symmetric and unimodal (usu-
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ally close to normal because of CLT). Both tails are thin and it makes sense to
cut the 2.5% of observations in both tails if we want to get the most concen-
trated confidence region. But if it is not symmetric, we may actually choose a
different percentages in different tails.

• But what about cutting off the top 5% of temperature predictions instead of
the middle range? This is sometimes the desired approach. If you want to
know what is the maximum likely temperature with 95% confidence, then you
may look at one-tailed confidence interval. But this approach means we do not
care about how cold the weather can be. This is related to one-tailed tests, the
central CI is related to two-tailed tests. We do not discuss one-tailed tests in
this book.

Example 1.29: MH-370 flight: complex confidence region

The relevant region where the true value most likely belongs does not have to be
an interval. Indeed, in more than one dimension, it cannot even be an interval!
For instance, in case of a geographic location, it must be a region on map. Below
is the most likely crash site of the flight MH-370, a complex confidence region,
consisting of two separated arcs.

MH-370 was a scheduled flight on March 8, 2014 from Kuala Lumpur to
Beijing. In less than an hour after take-off, the aircraft suddenly turned west,
and all communication was lost. Satellite data indicates that it continued flying
for several more hours before crashing into Indian Ocean. The exact crash site
was never found.

Figure 1.28: Flight MH-370 most likely endpoint region. The bright red arcs denote
the most likely crash site, based on satellite data; these are surrounded by a somewhat
less likely region in medium red.
Pechristener, Furfur derivative work: CommonMarks, CC BY-SA 3.0, via Wikimedia
Commons

https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:Theoretical_Search_Area_MH370.v2.en.svg
https://commons.wikimedia.org/wiki/File:Theoretical_Search_Area_MH370.v2.en.svg
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The figure above depicts the most likely crash location, based on satellite data.
It must have ended its path near one of the bright red arcs, quite likely within
the medium red area surrounding these arcs. These areas form what is essentially
confidence region, a region where the value (here the crash location) most likely
falls into. We cannot assign a meaningful confidence level to the region though
because we do not understand enough what happened during the flight.

Theoretical Confidence Intervals

Next, we discuss how to compute confidence intervals theoretically in certain impor-
tant cases. In order to do it, we typically have to know the stochastic process that
generates our data (the statistical model), and based on that we can often compute
the theoretical quantiles. Sometimes this can be calculated easily like in case of uni-
form distribution, sometimes one has to consult tables, for instance in case of normal
and t-distribution.

X ∼ N(0,1) means that RV X is
normally distributed with
expected value 0 and variance 1.

Confidence interval for normally distributed values For standard normal RV X ∼
N(0,1), the lower 2.5% quantile q0.025 = −1.96 and the upper 2.5% quantile is q0.975 =
1.96 (q1−α = −qα because standard normal is symmetric). It is just a property of
normal distribution: for standard normal, 95% of cases are between value −1.96 and
1.96. It is the same figure as the critical z0.05cr = 1.96 in Table 1.12. This is how
critical z values are determined–they are just standard normal quantiles.

X ∼ N(µ,σ2) means that RV Y
is normally distributed with
expected value µ and variance
σ2.

If X follows
a general normal distribution, X ∼ N(µ, σ2), then the corresponding quantiles are

q0.025 = µ− 1.96σ and q0.975 = µ+ 1.96σ. (1.6.1)

It is basically the same “1.96”, but now scaled by standard deviation and shifted to
the location of the expected value µ. Nowadays, statistical software packages provide
function to easily compute normal quantiles, but these can also be looked up in the
tables, such as Table 1.12.

Example 1.30: Confidence intervals for human height

Look at sons’ height in fathers’ and sons’ height data. The distribution as a
histogram is shown on the figure below, overlapped with the fitted normal density
curve (red).

https://bitbucket.org/otoomet/lecturenotes/raw/master/data/fatherson.csv.bz2
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Figure 1.29: Distribution of son’s height in fathers-sons data. It is well approximated
by normal distribution (red line) with mean µ = 174.5 and standard deviation σ = 7.2.
Human height, as well as other measures of adult animals, are often well approximated
by normal distribution. Dotted vertical lines mark the 95% confidence interval.

As evident from the figure, most observations are concentrated around the mean
174.5 cm, roughly in the interval of 160–190cm. More precisely, the lower 2.5%
observations are shorter than 160.3 and the upper 2.5% of observations are taller
than 188 cm. This means that the middle 95% of the observations fall into the
interval [160.3, 188]. This is the 95%-confidence interval (CI) for sons’ height.
If data were exactly normally distributed with a similar mean and standard
deviation, the corresponding theoretical quantiles were q0.025 = 174.5−1.96·7.2 =
160.4 and q0.975 = 174.5+1.96·7.2 = 188.5 As one can see, the deviations from the
theoretical values are rather small. Normal distribution is a good approximation
for human height.

Exercise 1.35: Confidence intervals for normally distributed values

Replicate Example 1.30 using
• Average number of rooms in Boston housing data (variable rm);
• Petal length of setosa flowers in iris data.

See Figure 1.21 for the respective histograms.
In each case
1. Compute the sample quantiles using 2.5 and 97.5 percentiles;
2. Compute the sample mean µ and standard deviation s;
3. Compute the theoretical CI using (1.6.1).
How close are the theoretical CI to the ones, based on the sample quantiles?
Answers on page 482
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1.6.3 Confidence interval for sample average
Now we move to a more important task, namely finding the confidence interval for
the sample average. Why is it a more important task? This is because here we cannot
rely on sample quantiles–we need a different approach to compute the CI. This is also
true for many statistical models, including regression models that we analyze below
in Chapter 2 below.

Below, we first discuss how to compute CI for general sample average, and there-
after explain in more detail how to compute it for sample proportion–a specific aver-
age. Finally, we discuss z-test, an alternative to CI.

General sample average

See Section 1.5.4 Formal
definition of CLT and
assumptions behind it, page 84.

Above, in Section 1.6.2, we computed the CI using sample quantiles. But for the
average, it cannot be done—each sample has a single average, and hence the quantiles
are meaningless. We need a different approach. The most popular way of doing this
is based on CLT.

Consider a RV X with expected value EX and variance VarX. We use this RV
to model some kind of real world phenomenon, for instance sea level or income of a
certain population group; and in this example EX will describe the average sea level
and VarX its variability. These are the figures we want to know. See Section 1.6.3
below for another step-by-step example.

LLN is Law of Large Numbers,
see Theorem 1 Law of large
numbers, LLN, page 59

Now we collect data—a sample of size S ofX. We can calculate its average (denote
it by µ) and variance (denote it by s2). From CLT and LLN we know that

a) sample average µ tends to be normally distributed;
b) the variance of its average is inversely proportional to sample size

Var X̄ =
1

S
s2 (1.6.2)

c) the average in large samples µ tends to be close to the expected value EX;
d) sample variance s2 tends to be close to the RV variance VarX.21

X ∼ N(µ,σ2) means that RV X
is normally distributed with
expected value µ and variance
σ2.

If we put all these four facts together, we have that sample average is distributed as22

X̄S ∼ N
(
µ,
s2

S

)
. (1.6.3)

Its expected value is µ and its standard deviation is s/
√
S.23 Accordingly, from (1.6.1),

the 95% confidence intervals of a mean of normals is[
µ− 1.96

s√
S
, µ+ 1.96

s√
S

]
. (1.6.4)

21Sample variance s2 is close to VarX, by Var X̄ we denote the variance of sample average.
22µ is the average of the given sample, the dataset of size S. It is a number, like 0.82 in the quality

example below. X̄S is a RV, computed as an average of S other RV-s So µ is a realization of X̄S .
See Section 1.4.6 Functions of RV-s, page 62.

23Again, this is a simplification. µ is not the expected value but our best estimate for the expected
value. We do not know the correct number so we have to estimate it from the sample.
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This is the same formula as (1.6.1), just now we use the fact that the standard
deviation of sample mean is s/

√
S. As we compute the CI for the sample average, we

need to use its standard deviation instead of the sample standard deviation s.

Example 1.31: Sample mean of sons’ height

Lets revisit Example 1.30–sons’ heigth, but this time we are not concerned of in-
dividual sons’ height, but the average heigth of four random sons. As a reminder,
sons’ average height is 174.5 and it’s standard deviation is 7.2. A sample of 4
sons might look like (171.7, 177.3, 171.4, 180.1) with average height 175.12. If we
take a similar sample 1000 times we get 1000 sample means, and we can plot the
results on a similar histogram as in Example 1.30. Many samples are only needed
to be able to compute many sample means, and to plot their distributions.a
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Figure 1.30: Distribution of mean height of four sons. The distribution of means are
well approximated by normal distribution (red line) with mean µ = 174.4 and standard
deviation σ = 3.5. Dotted vertical lines are the boundaries of the 95% confidence
intervals.

The figure is plotted in a similar scale as Figure 1.29. It reveals that the result
is well approximated with a normal density, however this time the spread is
narrower. The sample of means has mean value µm = 174.4, almost exactly
the same as the sample of individual heights µ = 174.5. Its standard deviation
σm = 3.5 is only half of that for the heights, σ = 7.2. This is to be expected as
the standard deviation of a sample of four should be 1/

√
4 = 1/2 of the standard

deviation of individual values. Accordingly, both the quantile-based confidence
intervals [167.2, 181.3] and theoretical confidence intervals [167.5, 181.4] are only
half as wide.

aCLT says that distribution of average of independent random variables of all kinds tend to
be normal if N → ∞. However, if X is normally distributed, the result is exactly normal even
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if N is small. So average of just four heights here will result in a distribution that is very close
to normal.

z-test: is the sample mean equal to a given value?

Above we discussed how to compute confidence intervals for a sample mean. The
next task is to test if it is equal to a certain value. This is a very common problem
in practice, for instance if we are interested in percentage of voter who will vote for a
certain party, or percentage of products that pass the quality control.

To make the task more easy to follow, let’s work with the following example:
imagine that you are working for a delivery firm. The management requires that
in average, 90% of orders must be processed in 12 hours. If you process less, you
need to improve your performance. If you process more, then there is room to cut
costs. Today, your department processed only 82 orders in time, out of 100 in total.
Does this mean your team is lagging behind? Or maybe it exceeds the expectations?
Obviously, today your department was lagging behind, but maybe this is just an
one-time blip? Let’s use the statistical testing methodology to answer this question.

Bernoulli RV: the event occurs
with probability p and does not
occur with probability 1− p. See
Section 1.5.1 Bernoulli
distribution, page 68.

Let’s use RV X to denote if the order is processed in time. It takes two values,
“0” if the delivery was delayed, and “1” if it was done in time. Now the requirement
can be stated as EX = 0.9. This is a Bernoulli RV with p = 0.9. This means that
the expected value, the long-term average, should be 0.9. In any single day it may
be more or less, depending on the exact nature of the orders. As the requirement is
what we want to test, good H0 is H0 : p = 0.9.

So your in statistical terms, today your department produced a sample that con-
tains of 100 numbers, 82 “1”-s and 18 “0”-s. These are the realizations of the RV
X. We use this sample to test H0. This can be done in a similar way as above
in Section 1.6.3 General sample average, page 100—remember: sample proportion is
just mean of a sample of ones and zeros. Below, we’ll do it in three ways: first by
simulations, thereafter by applying CLT, and finally through z-test.

Simulations First, imagine that your department is exactly meeting the requirement:
EX = 0.9. But orders arrive randomly and some are easier to fulfill than the others.
What may you see when you look at a sample of 100 random orders? Obviously, if
EX = 0.9, then also the sample average X̄100 should be close to 0.9. But how close
do you think it may be? Can it be 0.8? Can it be 0.7? can it be 1.0? Obviously, it
can be any number between 0 and 1–just because of bad luck, you may land with 100
orders that are extremely hard to fulfill. So more important question is–how often do
such bad luck events happen?

Intuitively, we can simulate the process as follows:
1. Create a sample of S = 100 random Bernoulli(0.9) realizations;
2. Compute the average of the sample;
3. Repeat the previous two steps a large number R times;
4. Check how often do you get values that are “far off” from the expected 0.9.

Perhaps the most unclear part here is how to determine if the result is “far off” from
the H0 value 0.9. This can be approached in different way–for instance, how often it
happens that you get a number 0.82 or less? Alternatively, you can ask how often it
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happens that the number is “off” by at least 0.08? And finally, you can also directly
ask about confidence intervals: into which range do 95% of such sample averages fall
into?
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Figure 1.31: Histogram of 1000 simulated sample averages. The 95% CI (0.84, 0.95) are
marked with orange vertical lines. The black line marks the value observed in data, 0.82.

Figure 1.31 displays results of 1000 such simulations. The histogram looks “hairy”,
because in a sample of 100, there are only limited number of possible averages. For
instance, 0.90 and 0.91 are possible, but 0.905 is not possible. The orange vertical
lines mark the 95% confidence interval, here (0.84, 0.95). This answers the question
“how far off” is the result “likely” to be from the “true” value 0.9. Based on these
simulations, the values can be off by 0.06, in both direction.

In this example, the observed value 0.82 is outside of the CI. So we’ll reject it at
5% significance level. If your department’s actual performance is 90% as required, it
is very unlikely (less than 1 in 20 cases) that you will see such a figure in data. We
can conclude that it is unlikely that your department is up to the task to fulfill 90%
orders in time.24

24Before jumping to the conclusions, we should also ask if the statistical model is correct. It is hard
to argue that Bernoulli RV is a good way to model data, the implicit assumption of independence—
we created S independent Bernoulli realizations—may be problematic. If data is not independent,
e.g. if problematic orders tend to arrive in groups, the confidence interval may be much wider. More
complex statistical models are beyond the scope of this book. See also Section 1.7.1 Correct model
of the stochastic process, page 119.



104 CHAPTER 1. INTRODUCTION TO STATISTICS

CLT instead of simulations

If you think that the histogram on Figure 1.31 resembles normal distribution, then you
are right.

See Section Section 1.5.4 Central
Limit Theorem, page 82

By CLT, the average of large sample is normally distributed, and here the
sample size 100 is large enough. Hence, instead of simulations, we can use the prop-
erties of normal distribution, the same approach that was discussed in Section 1.6.3
General sample average, page 100. Now let’s walk that approach over again, but this
time using the quality control example above. Remember, sample average X̄S is nor-
mally distributed, with the expected value E X̄S = EX and variance Var X̄S = VarX

S .
We also know that for normal distribution, the 95% CI stretches 1.96 times the stan-
dard deviation to both sides of the mean. (See above for the details.) Now we can
use these ideas instead of simulations. Let’s do it step-by-step.

• To begin with, assume that H0 is correct. Hence E X̄100 = EX = 0.9.

• We can compute VarX either by just computing the sample variance if we have
a sample, or in this case we can also just use the Bernoulli variance (1.5.7):

VarX = p(1− p) = 0.09

• From VarX, we can find variance of the sample mean

Var X̄S =
VarX

S
= 9× 10−4

• And from here, the standard deviation of the sample mean is

sd X̄S =
√

Var X̄S = 0.03

• The CI width is
1.96 · sd X̄S = 0.0588

• And finally, the CI is

[E X̄S − 1.96 · sd X̄S , E X̄S + 1.96 · sd X̄S ] = (0.841, 0.959)

Simulated CI is (0.84, 0.95)

The results are very similar to what we found above through simulations. This is the
power of CLT: instead of running thousands of simulations, we just “know” what are
the properties of the simulated experiments!

Let’s repeat what did we just do. Look at Figure 1.32. This is the analog of
Figure 1.31, just this time drawn based on theoretical results, not on simulations.
First, CLT tells us that the simulated averages are normally distributed, with mean
0.9 and variance 9 × 10−4. This is the pale blue hump that corresponds to the pale
blue histogram in Figure 1.31. Second, we use the normal properties, that tell that
95% of realizations will in the interval (µ− 1.96σ, µ+ 1.96σ). This is marked by the
orange lines in both figures. The actual data, 0.82, is marked with a black line.

As you see, the figures are very similar, even the CI is almost the same. And the
conclusion is the same–the actual data, 0.82, is “too far” away from 0.9, and hence it is
unlikely that if H0 is correct, we see value 0.82. We reject H0 at 5% significance level
and conclude that the department is not able to maintain the expected performance.
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Simulated results
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Figure 1.32: Simulated and actual data: the smoking ban example. All simulations (the
gray hump) give results near 0, but the difference in actual data is much larger.

Exercise 1.36: Decision at 1% significance level

Repeat the above, but now use 1% significance level instead of 5% as in the
example. Compute the theoretical CI. Will your decision be different?

Solution at page 482

Such tasks are very common in statistics: compute the expected value and variance
of your measure, construct its CI, and check if it encompasses the value of interest.
For many common models, the theoretical approach is easy and precise. For other
kind of models, CLT may not apply and we may have to rely on simulations. It is
also possible that even simulations are not good enough, such as in case of complex
social processes. In such cases even the best results may be unreliable or just wrong.

z-value instead of CI

Instead of computing the CI, we can look at the problem in a slightly different way.
You claim that H0 : p = 0.9. Obviously, if H0 is correct, then the value in actual
data should be “rather similar”. But how similar is “rather similar”? The difference
between the claim and data is 0.08. Is is similar? Is it too different? It is hard to
tell, unless we know what is a good yardstick to measure the differences. It turns out
that the best yardstick is standard deviation. This is fairly easy to see.

zcr is the critical z value like
“1.96”, see Table 1.12

We know that
the CI can be expressed (from (1.6.1)) as

[µ− zcr σ, µ+ zcr σ] (1.6.5)

where µ is the sample average (0.82 in the example). The value, stipulated by H0

(0.9 in the example) falls in the interval only if |h0 − µ| < zcr σ, or, if

|z| < zcr where z ≡ h0 − µ
σ

(1.6.6)

This z is called z-value. (Note: it is z-value, not critical z-value.)
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In the numerator of (1.6.6) we have the distance between the claim (h0) and the
data (µ). In the denominator we have standard deviation of the difference. Here the
standard deviation of the difference is just the same as the standard deviation of the
sample mean. This is because h0 is just a number and does not have any error. But
in other cases, this may not be so. So z-value is essentially the difference between
data µ and the hypothesis value h0, measured in standard deviations.

This is how z-test is typically done: compute the standardized difference between
h0 and data by (1.6.6), and if |z| > 1.96, reject H0. For the performance example we
have

z =
|h0 − µ|

σ
=
|0.9− 0.82|

0.03
=

0.08

0.03
= 2.667. (1.6.7)

So our claim h0 is at distance 2.667 from data, when using standard deviation as the
measurement unit. As 2.667 > z0.05cr , we conclude that it is “too far”, and hence we
reject H0.

In case of small sample, and certain assumptions about normality, z-value is usu-
ally replaced by t-value. t-value is computed in exactly the same way as (1.6.6), just
its critical values are different. This is because of different underlying assumptions.25

In practice, it makes little difference on respectable samples and we focus on z-value
in this book.

Cheatsheet 1.8: Testing sample average

CI of sampe average Consider sample of size S with average µ and variance
s2. The CI is [

µ− zcr
s√
S
, µ+ zcr

s√
S

]
.

Be aware that s√
S

is the standard deviation of the sample average.

z-value Alternative to CI:
z =

h0 − µ
σavg

where h0 is the value specified by H0, and σavg = s√
S

is the standard
deviation of the sample average.

z-test i) compute z; ii) reject H0 if z > zcr.

t-test Similar to z-test, but the critical values tcr are different because of different
assumptions.

1.6.4 Comparing Distributions
One of the most common tasks that leverages statistical inference is to compare
distribution of certain variables across different groups, datasets or time periods.

25t-test assumes the underlying feature (here the difference p − X̄S) is normally distributed, but
the sample size is finite. z-test assumes it is normally distributed with large sample size. Both
assumptions have their merits and issues.
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For instance, can we say that police treats African-Americans differently than white
Americans? We can easily compute how often either group is stopped by the police
and compare those figures, but aren’t those numbers just a statistical blip, just random
noise that may go the other way the next day?

In order to answer this and other similar questions we have to approach it through
formal statistical hypothesis testing. We model the “treatment” as RV-s: police’s
treatment of one group is one RV X and police’s treatment of the other group is
another RV Y . We want to know if both groups are treated similarly, i.e if X = Y .
But we do not have access to information about the underlying treatment, X and Y .
What we can observe is just samples: how were members of one group and the other
group treated. We have to work with these samples.

In practice, it is hard to test if two random variables are equal, if X = Y . It is
easier to test if certain characteristics, such as expected values, are equal. Hence we
set our null hypothesis to beH0: EX = EY . This can be worded as “the police treats
both groups in a similar manner, in average”. Next, we can look at data (samples of
realizations) and see if we can reject the H0. This can be done using t-test.

Obviously, if the RV-s are similar, then they should result in samples with similar
average. This is often enough for applied work, e.g. if we are testing mean inde-
pendence assumption (see Section 3.5.2 More about identifying assumptions: mean
independence, page 205). The cases that are relevant for applications tend to have
fairly similar distributions. However, be aware that this is just a necessary but not
sufficient condition: RV-s may still differ even if both have similar expected value.
For instance

X =

{
−1 with probability 0.5

1 with probability 0.5
and Y =

{
−2 with probability 0.5

2 with probability 0.5

(1.6.8)
have both expected value EX = EY = 0 and hence they generate samples where
mean tends to be 0. But they are obviously different.

Comparing Proportions: Is Smoking Ban Associated with Less Smoking?

One simple but widely used average is sample proportion. Below, we look at the
proportion of smokers in two samples.

Bernoulli: “success” occurs with
probability p, “failure” with
1− p. See Section 1.5.1 Bernoulli
distribution, page 68

Smoking is a very simple RV–someone either
is a smoker or not.26 Hence smoking can be described with a Bernoulli RV, and the
only parameter we need to compute is the proportion of smokers.

Sample proportions are rather important in the applied work. For instance, we
may want to test what proportion of patients recovered depending on the care they
got; whether workplaces that offer certain amenities have more female workers; or
whether there are more years of major heatwaves in 21st century. All these questions
can be analyzed in a similar manner as what we do below.

In the Western World, regulations about smoking have become increasingly re-
strictive over the recent decades. In particular, smoking is banned in many common

26The real world, obviously, is more complicated. One may be either casual or heavy smoker, or
maybe just recently quit smoking, and there are many other possibilities. But in these data, there
are only two options: smoking or not smoking.
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indoor areas, such as restaurants or workplaces. SmokeBan data (see Section B) pro-
vides data for 10,000 workers who work either on a workplace with or without smoking
ban, and who are either smokers or non-smokers. A simple analysis suggests that a
smaller percentage of NB = 6098 on smoking-ban workplaces are smoking, compared
to NN = 3902 who do not have such ban in their workplace. The corresponding
smoking probabilities are 21.2 and 28.96, and the difference is 7.76 percentage points.
As we have quite a large sample–10,000, it suggests that the effect is real, not just a
random fluke in our sample. But is it really the case? Let us answer this question
first by simulations, and thereafter by the stock t-test.

Our task is to compare two samples: workers on jobs where there is a workplace
smoking ban, and other workers on jobs with no such ban. This is called unpaired data
because there is no obvious correspondence between individuals across the samples.
We can answer the question by testing H0: average percentage of smokers in both
types of workplaces is the same.

First the statistical model and some notation. Let B denote the set of individuals
who are working at smoking-ban workplaces, and N the set of workers at no-ban
workplaces. Let SB and SN be the Bernoulli RV-s, denoting the smoking behavior
of individuals (“0” means not smoking and “1” means smoking) for smoke-ban work-
places (SB) and no–smoke ban workplaces (SN ). We will test the hypothesis that
the expected value of these RV-s is the same, H0 : ESB = ESN , or equivalently,
H0 : ESB −ESN = 0. Define sample averages

||B|| denotes the number of
workes in the smoke-ban
workplaces (number of elements
in the set B).

S̄B =
1

||B||
∑
i∈B

SB
i and S̄N =

1

||N ||
∑
i∈N

SN
i (1.6.9)

for smoking-ban and the no–smoking ban workplaces.
Remember: even if expected
values are the same
ESB = ESN , the sample
averages S̄B and S̄N may differ.
See Theorem 1, Law of large
numbers on page 59.

If H0 holds, then ESB =

ESN ≡ ES where ES is the expected value of overall smoking at all workplaces.
We can approximate the latter by sample mean as

S̄ =
1

N

∑
i

Si (1.6.10)

where the sum is taken over the whole dataset, i.e. over both smoke-ban and no-
ban workplaces. In SmokeBan dataset the overall smoking propensity is S̄ = 24.23
percent.

We model smoking by Bernoulli(S̄) distribution: it is a discrete RV with only two
outcomes (smoker or non-smoker), where “smoker” occurs with probability S̄. This
is the best we can do with current data as smoker/non-smoker is the only piece of
information we have for smoking. We do not know how much someone smokes and
how important is smoking for them.

First let’s simulate the results. We can create a synthetic dataset by creating 3902
random workers on non smoking-ban workplaces and 6098 workers on smoking-ban
workplaces, both using the Bernoulli(0.2423) process. We stress again that we use
exactly the same probability for smoking-ban and no-ban workplaces as this is what
our H0 claims. Thereafter we compute the average smoking tendency among our
synthetic workers for both types of workplaces. As both sets of workers were created
through an identical process, the difference can only be attributed to the random
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noise. Finally, we repeat the simulations many times, and see how often we get a
difference that is at least as large as we see in data, 7.76 percentage points. If such
big difference is rare enough (say, it occurs less often than in 5% of cases), we can
reject H0 at the corresponding significance level (5% level in this example).

Table 1.13: Simulated smoking habits (percent of smokers) at smoking-ban/no-smoking-ban
workplaces for 5 random simulations. The difference in data is 7.76 percent. We can see
that simulated differences in these 5 examples are much smaller than what is visible in the
data (in absolute value).

Ban (pct) Non-ban (pct) difference (pct pt)
1 24.22 23.96 0.26
2 24.71 24.66 0.04
3 24.88 25.30 -0.42
4 23.27 24.93 -1.66
5 23.32 24.22 -0.90

Table 1.13 shows five example simulations. In all cases the the simulated difference
is much smaller than the actual difference 7.76 percentage points. This supports our
intuition, telling that the sample is large enough to distinguish a 7-percentage point
difference. But this was only 5 simulations. Do the results still hold if we run more
trials? Indeed they hold. Figure 1.33 shows a histogram of 10,000 such simulations.
The maximum value obtained in these simulations is 3.32 (in absolute value), well
below the observed 7.76, and the 95% of the results are in the interval [−1.69, 1.74].
For the reference, we also record that the average difference over all simulations is
0.002 and its standard deviation is 0.874. We can conclude that chances to observe
such a value under H0 are extremely low, less than 1 in 10,000. Hence we can reject
H0 at 5% confidence level (we could also reject it at 0.01% confidence level). This
suggests that H0 is not correct. But note that, strictly speaking, we cannot claim it
is incorrect, based on these data we can only say that it is extremely unlikely.

This is about as far as we can get through statistical methods. We can say that a
hypothesis is “unlikely” at a given significance level, but we cannot say it is “wrong”.

Although the simulation approach we did above is intuitive, it is often too complex.
Fortunately we can replace it with a simple formula. This can be done through the
following steps:

• First, note the differences in Figure 1.33 are approximately normally distributed.
This is a direct result of Central Limit Theorem, and the fact that sum (or
difference) of two normal RV-s is normal:

•
See Section 1.5.4 Central Limit
Theorem, page 82.
X ∼ N(µ, σ2) means X is a
normal random variable with
expected value µ and variance
σ2.

Both S̄B and S̄N are averages of i.i.d random values, and hence, because of
CLT, they are both approximately normally distributed under H0 as

S̄B ∼ N
(
ES,

VarS

||B||

)
and S̄N ∼ N

(
ES,

VarS

||N ||

)
. (1.6.11)

We do not know the expected value ES and variance VarS but we can approxi-
mate these with the sample average S̄ = 0.2423 and sample variance s2S = 0.184.
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Figure 1.33: Histogram of 10,000 simulation runs. One can see that the most common
values are close to 0, values above 3 are extremely rare. Orange vertical lines mark the 95%
confidence intervals. The maximum observed value in these simulations is 3.32 (in absolute
value), well below 7.76 in data. We conclude that encountering such a big difference under
H0 is extremely rare. Hence we reject H0.

• Finally, the difference d = S̄B − S̄N is difference of two independent normals
with equal expected value, and hence normally distributed with mean 0 and
variance

σ2
d =

σ2

NB +
σ2

NN (1.6.12)

(we do not discuss how this is derived.)
When we plug the numbers in, we get the variance

σ2
d =

σ2

NB +
σ2

NN = s2S =

(
1

NB +
1

NN

)
=

= 0.184

(
1

6098
+

1

3902

)
= 7.72× 10−5 (1.6.13)

or the standard deviation

σd = 0.00878 or 0.878 percentage points. (1.6.14)

zcr is the critical z-value, for 95%
it is 1.96. See Table 1.12 and
related text.

So we can compute the CI of d under H0 using (1.6.1):

(−zcr σd, zcr σd) = (−1.96 · 0.878,−1.96 · 0.878) =
= (−1.722, 1.722) (pct points). (1.6.15)
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This is very similar to the interval we received above through simulations.
The observed difference is way outside of this range, so we can reject H0 at sig-

nificance level of 0.05.
As we can see, both approaches resulted in very similar confidence intervals and

in the exact same conclusion. This is to be expected: one approach used explicit
simulations to come to the conclusion, the other approach implicitly did the same.
Just instead of computing all the random numbers, we used the theoretical results
from CLT and normal distribution.

Finally, although we can reject H0: smoking behavior does not differ with the
smoking ban, we cannot tell that smoking ban “causes” workers to smoke less. It is
possible that the observed effect is due to reverse causality (few smokers at workplace
make it feasible to introduce the ban) or confounding factors are possible (see more
in chapter 3 Causality, page 187). Our conclusion is pure correlational: smoking ban
and smoking are “associated”.

Example 1.32: Smoking and birth weight

The previous example was about sample proportion, the percentage of smoker in
different workplaces. The same approach can also be used to compare continuous
values. Here we compare the birth weight of babies, 126 born to smoking and
873 to non-smoking mothers, using North Carolina births’ data. The figure (left)
displays the weight birth weight distribution for both types of mothers.
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Figure 1.34: Babies’ birth weight depending on whether their mom is a smoker or
not (left); simulated mean difference between these two samples, assuming the average
weights are the same (right).

In average, the babies of smoking mothers weight 6.829 lb, and for non-smoking
motheres 7.144 lb, and the average difference between these two groups is 0.316 lb.
The corresponding standard deviations are 1.386 and 1.519.

We are interested if smoking is associated with birth weight. Hence we choose
H0 : w̄S = w̄N , i.e. the average birth weight of babies, born to smoking and non-
smoking mothers, is the same. If we can reject H0, then the answer will be “yes”.
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Equivalently, we can write that H0 : w̄S − w̄N = 0.
The figure shows that the weights are approximately normally distributed.

Hence we can simulate “smoking babies” as N (6.829, 1.386) and “non-smoking”
babies as N (7.144, 1.519). We simulate these two groups 1000 times and each time
compute the difference between the average simulated weights. The distribution
of the difference displayed on the right panel. 95% of the simulated differences
are in the interval [−0.289, 0.287]. Based on these simulations, we can reject H0

at 5% level: the observed difference 0.316 lb does not fit into the CI, and hence
the two groups differ by weight in average.

Instead of simulations, we can use the formula for variance of the mean (1.6.12).
We get

σ2
d =

σ2
S

NS
+
σ2
N

NN
=

1.921

126
+

2.306

873
= 0.018

or
σd = 0.134.

The corresponding CI are

[−1.96σd, 1.96σd] = [−0.262, 0.262].

The result is very similar to the simulations.

TBD: Exercise: repeat, compute can you reject it on 99% level?
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1.7 Lies, Damned Lies, and Statistics
Statistics is often colloquially accused of being unreliable, and sometime one can
hear claims that “anything can be proven with statistics”. There are obviously many
reasons for such unfavorable image for statistics. One broad category of problems is
related to the fact that humans are just not good at understanding uncertainty. There
are a number of fallacies related to probability and statistics, such as Prosecutors
fallacy many people, including those who are highly educated in mathematics, will
get trapped into.

But the fact that humans are not good in understanding uncertainty has not gone
unnoticed by those who are interested in pushing their own agenda while disregarding
the truth. Statistics has been widely misused by various players in order to “prove”
the claims behind their ambitions.

1.7.1 Statistical Fallacies
Statistical language is heavy

Statistics works with uncertainty. Even more, most of the statistical results are un-
certain. A typical result of statistical analysis reads like “it is more than 95% certain
that the average difference between Reds and Greens is at least 1”. Such language
is hard to understand and requires both statistical literacy and willingness to think
for a second. Both of these are often in short supply, and the audience may prefer
a simpler message “Greens are better than Reds” instead. Compare the statistical
language above with other type of results, e.g. India-Iran soccer game ended with
2:1. In the former case statistics cannot predict precise results, while in the latter
sentence tells something that is almost trivial to understand. As a result, statistical
claims are often simplified into “everyday” language in a wrong way. For instance,
the “layman’s version” of the claim above may be “the difference between Reds and
Greens is 1”. This may be incorrect.

Example 1.33: Male and female height

140 150 160 170 180
Height (cm)

Sex
F
M

The figure here displays the dis-
tribution of male versus female height
(for 18 and older) in Howell’s height-
weight data. You can see that the
tall persons tend to be male while the
short ones tend to be female (the av-
erage heights are 160.4 and 149.5 re-
spectively). How would you describe
these differences?

The common claim is that “men
are taller than women”. It is not
wrong, but it is imprecise–there are
plenty of women who are taller than many men. The same is true for “in average,
men are taller than women”—if the distributions differ, then we cannot tell if
most men are taller than most women.
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The statistically sound description of the intuitive idea is that “distribution
of male height has first-order stochastic dominance over that of females”. Unfor-
tunately, this vocabulary is comprehensive to only a few.

Probability versus plausibility

Tversky and Kahneman describe an experiment where people are told some informa-
tion about an imaginary person, and later asked what is the person doing now, years
later:

Imagine a woman named Linda, thirty-one years old, single, outspo-
ken, and very bright. In college she majored in philosophy. While a
student she was deeply concerned with discrimination and social justice
and participated in antinuclear demonstrations.

What do you think, what is Linda doing now? Please assess how likely are these
options from 1 (very unlikely) to 5 (very likely):

a) Linda is active in the feminist movement
b) Linda is a bank teller
c) Linda is a bank teller and is active in the feminist movement.

Please evaluate the probability before you continue reading!

Kahneman and Tversky showed that people tend to consider the first option the
most likely, and the second option the least likely. Linda’s description just seems to fit
well with someone who is feminist, and does not seem to fit too well to someone who
is bank teller. But this is not the same as how likely it is. First, there are quite a few
bank teller jobs, and there may well be many more bank tellers than active feminists.
But more importantly: by construction, being bank teller must be at least as likely as
being a bank teller and feminist. Feminist and bank teller are not perfectly related
events, and hence there are bank tellers who are not feminists. If Linda is a teller and
feminist, she is also a teller.

Kahneman and Tversky found that adding more details and explanations to a story
makes it considered more plausible, even if these details make it less probable. Which
story sounds more plausible: the president fires the attorney general, or the president
fires the attorney general because the latter wanted to investigate the president’s
private businesses? The second explanation, although less probable, sounds more
plausible and will be remembered more easily.

Our intuition fails when working with probability

Human intuition is not well suited to understand probabilities. Our brains and eyes
are super good in doing image recognition and motion detection–related tasks. We are
also pretty good at estimating distances, time, and average values. But in computing
simple probabilities we are mediocre at best and often hopelessly wrong. One such
example was given in Example 1.16, the case with positive cancer test result. Without
specific experience, people are almost completely clueless to evaluate the probability.
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Even the simple concept of sample space and possible events may take quite a
bit of training to understand.

Two daughters problem (see
Exercise 1.10 page 49): A family
has two kids. One of them is a
girl. What is the probability that
the other is a girl too?

For instance, most people cannot understand why the
solution of the two daughter problem is 1/3. With a slight modification of the problem
we can get even more crazy and counter-intuitive results. Although the problem is
not hard, our intuition fails completely, and even when the solution is explained to
us step-by-step, we have hard time understanding what is going on.

Example 1.34: Two daughter problem: the girl has a name

Before considering this example, make sure you understand the two daughter
problem as described in Exercise 1.10. This example assumes you are well familiar
with the problem and understand the solution.

Consider a slightly different problem:

A family has two children. One of them is a girl, called Hina.
What is the probability that the other child is a girl too?

The modified problem sounds almost the same as the original problem, except
a piece of irrelevant information, the name. However, it turns out that now we
were provided different information and the answer is 1/2, not 1/3. How came???

Before we continue with the solution, let us introduce some notation. Denote
a girl not called Hina by H̄, a girl called Hina by H, and a boy by B. Also, denote
the probability that a girl is called “Hina” as pH . More specifically, assume that
the probability that the first girl is called Hina is pH . As parents do not call
both of their children with the same name, the second girl will be called Hina
with probability pH only if the first one was called something else. If the first girl
is called Hina, the second one is never called Hina. (This rule is not central for
the solution, and we might assume the name of the second child is independent
of that of the first child.)

The table below displays the relevant events, and as the events are not equally
likely, it also displays the corresponding probabilities. For instance, probability
of (H̄, H̄) is a product of 1

4 (the family has two girls), (1−pH) (the first one is not
called Hina) and (1 − pH) (the second one is not called Hina). But probability
of (H, H̄) is 1

4pH because if the first girl is called Hina, the second one is given
a different name for sure. The last column shows the corresponding event in the
original two daughter problem context. One can check that the probabilities sum
to unity, and the probabilities for each of the events in the original problem sum
to 1

4 .
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Event Probability TD Event
a) H̄,H̄ 1

4 (1− pH)(1− pH) G,G

b) H̄,H 1
4 (1− pH)pH G,G

c) H̄,B 1
4 (1− pH) G,B

d) H,H̄ 1
4pH G,G

e) H,H 0 G,G

f ) H,B 1
4pH G,B

g) B,H̄ 1
4 (1− pH) B,G

h) B,H 1
4pH B,G

i ) B,B 1
4 B,B

The events that correspond to the conditioning information—the family has a
girl called Hina—are marked blue and we only consider these events below. The
probability of interest (G,G)—the family has two girls—is made of the two events,
(H̄,H) and (H, H̄), out of four possible events (H̄,H), (H, H̄), (H,B) and (B,H)
and hence the probability

pG,G =
(1− pH)pH + pH
(1− pH)pH + 3pH

.

It is easy to see that this probability depends on p. In particular, when pH = 1
then the answer is 1/3, but in a realistic case where pH is small, it converges to
1/2. For instance, if pH = 0.01, the answer is 0.4987, effectively 1/2.

How on earth can we get a totally different answer by just giving the girl a
name? After all, we know that all children have names, and Hina is as good as
any other name…?

The crucial difference here is that there are two simple events
Simple event: an event that
cannot be decomposed into even
simpler events. See Section 1.4.1,
page 37.

of interest: H̄,H
and H,H̄. Both of those correspond to G,G in the original problem. But now we
distinguish between Hina and all other daughters. Even more, the probability of
both events is fairly similar (given pH is small): 1/4(1 − pH)pH ≈ 1/4pH . This
explains the fundamental difference in this case: a family with two daughters has
twice as high chance that one of them is called Hina! If a family has a daughter
with a name, this is not a rare event. A family with two daughters does not have
twice the chance that one of them has a name. If the daughter is called Hina,
this is a rare event and having two daughters approximately doubles the chance
that one of them has that name. Hence two-daughter families have twice the
chance to remain in the sample after conditioning on the name. Our conditional
sample space now looks different than in case the name was not considered.
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Exercise 1.37: Make a numeric example

Humans tend to be able to understand numeric examples better than just prob-
abilities. Imagine you are living in a town where there are 400 families with
two children. Assume further that the probability that a girl is called Hina is
0.1 (you can try 0.01 too, but then you need 40,000 families to get nice num-
bers). Replicate the calculations in Example 1.34 above (in particular the table)
using these numbers–replace the probabilities with the (expected) counts of the
corresponding families.

How many 2-children families in the town have a child called Hina? How
many of them have two daughters? What is the corresponding probability?

Solution on page 483

Contrast this problem with another one: you observe a runner in a park going
behind a bush. Can you estimate where and when will she re-appear? This is an
easy task to our brain. Unless the runner turns or does other unexpected moves, we
are fairly good at estimating where and when we can see her again—although from
the mathematical point of view, this is an incredibly more complex exercise than two
daughters problem.

Incomplete/Missing Data

We seldom enjoy working with high-quality data that describes the problem we are
interested in very well. Data is often collected for another purpose, omits or under-
represents certain population groups (non-homogeneous or unknown sampling), and
only contains proxies for what we want to know (low or unknown validity). It is easy
to come to wrong conclusions when ignoring these issues.

Sometimes the analysts forget to include the features that are not in data when
they do the model or interpret the results. This is often a problem when the origin
of the dataset is unclear, or the analysts simply do not think on the full picture. For
instance, in order to analyze the efficacy of tourniquet to save life in case of severe
injuries, a study looked at its usage in Iraq war.

The data, collected by hospitals, contained information about injuries, treatment
(using tourniquet or not), and whether the injured soldiers survived. The authors
did not found any difference related to tourniquet usage. But what was missing in
the analysis? When using hospital data, they were only able to include information
on soldiers who reached hospitals. Those who died before reaching the hospital were
not included. Hence, even if tourniquet has no effect on those who reach hospital, we
cannot conclude that this is true for the first stage, between the battlefield and the
hospital.

In order to understand the limitations, it is crucial that data is well documented, in
particular the way it is collected. Perhaps most importantly, we need to understand
what a case in the dataset represents, and what is the context. In the tourniquet
example, we must know that these are injured soldiers in field hospitals during a war.
Without such knowledge, we cannot tell if the battlefield deaths are included in the
sample, or even that we are working with soldiers in the first place. Unfortunately,
such comprehensive documentation is often missing in case of many popular machine
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learning datasets. Make no mistake–these are still wonderful tools for learning the
methods, but you should not make policy recommendations based on undocumented
data.

Exercise 1.38: Damage in Allied bombers

You are a statistician, attached to the Allied air force during the WW2. Your
task is analyze the damage, done by German anti-aircraft fire to the bombers
that return from missions over the continent. Based on the damage pattern you
will make recommendations about where to place armor on the airplanes. As
armor is heavy, one cannot just armor the whole airplane, but it is feasible to
put armor on certain vulnerable places. Your analysis reveals that the planes
tend to have a lot of damage in wings and in the fuselage. You don’t see many
damaged engines and cockpits.

Figure 1.35: Hypothetical damage in allied bombers. Red dots denote damage in
any of the thousands of bombers, aggregated onto a single airframe. Original image:
Emoscopes CC BY-SA.

What is your recommendation: which parts of the airplanes should be armored?
Solution on page 483.

Ecological fallacy

In applied research and analysis, it is common to use group averages as proxies for
individual characteristics. However, this approach has clear limitations people (in-
cluding researchers) are sometimes not aware of.

For instance, imagine we analyze the relationship between crime and wealth. Po-
lice reports crime rate by neighborhoods, and if we do not have data about the wealth
of criminals, we may use average wealth across neighborhoods as a convenient proxy.

Suppose we find that there is more crime in poorer neighborhoods. It is tempting
to conclude that the poor are more likely to become criminals. However, we cannot
do this based on these data!

https://commons.wikimedia.org/wiki/File:Boeing_B-17G.png
https://creativecommons.org/licenses/by-sa/2.5
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There are several problems with this conclusion. The fact that there are more
criminals in poor neighborhoods does not mean that criminals are poor as well. The
average data does not let us to investigate who are the criminals. Such conclusion
is ecological fallacy, the tendency to assume that all group members share similar
characteristics to the group averages. Perhaps these are the richest people in the
poor neighborhoods instead? As long as the subgroup of interest (here criminals) is
small and selective, we cannot assume that what is true for the average is also true
for the small subgroup.

There are other problems with this conclusion too, for instance, it is not obvious
that criminals commit their misdeeds in the neighborhood they live in.

Wrong Assumptions/Wrong Models

As in any other analysis, not just our data but also our models must be correct to
produce correct results.

Correct model of the stochastic process In order to come up with correct results,
all your model must be a good description of how the process of interest works, and
how data is collected. Take the example of delivery department that needs to ship
90% of orders in time (see Section 1.6.3 z-test: is the sample mean equal to a given
value?, page 102). We used a statistical model to conclude that your department is
not performing as expected. But what might have been wrong there?

• First, and perhaps most importantly, the statistical model may be wrong. In
particular, the cases may be correlated. There may be some kind of seasonal
effects regarding what kind of orders are coming in. Also the department may
have correlated problems, for instance because a workers is sick.

• Second, we need to ask how is data about shipment timing collected. Is it
reliable? Is there an unambiguous “shipping time”? Are all shipments actually
recorded? How are time zones treated?

Correlation and causation A common fallacy is to forget about confounding factors
and claim causality when just observing correlation. For instance, when observing
that taller children are smarter, one might conclude that height somehow causes
cognitive skills. However, the reason may just be that taller kids are older (and we
know that skills develop rapidly as children grow). See more in Section 3.3 Causality
with data: three explanations, page 190.

Raja Ampat islands in Indonesia
have some of the most beautiful
beaches on this planet, but some
of those are also frequently
visited by sharks. Does this make
Indonesia dangerous?
Rolandandika, CC BY-SA 4.0,
via Wikimedia Commons.

Too imprecise questions Sometimes a bad answer starts with a vague question. Both
our language and our thoughts tend to be imprecise, and we may not realize that a
question cannot be answered, or can be answered in many different ways.

Consider a question: which country is more dangerous in terms of shark attacks–
China or Indonesia? What would be the answer to this question? Just count of shark
attacks in those countries? But populations differ, so perhaps number of attacks per
person? Or perhaps the number of attacks per swimmer, as the inland population
may not matter much in terms of sharks? But both of these countries contain a large

https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:Sharks_in_The_Shore.jpg
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number of different beaches, some which virtually never see any sharks? So do we
want to compute a probability to be attacked on an “average” beach if you swim
there? Is this number useful for anything?

Note that if policymakers consider installing shark nets or banning swimming on
certain beaches, they need information about particular beaches, not country aver-
ages.

Just Errors Finally, it is also possible that statistical analysis contains just compu-
tational errors or other similar errors. If the methods are feasible and well-known,
these are easy to correct.

1.7.2 Misusing Statistics
Misleading Presentation

Another common issue is to present correct results in a misleading manner. This often
includes mixing everyday language where words typically have more vague meaning,
and statistical or logical language where the words have slightly different meaning.
As an example, one may claim that certain food makes it “twice more likely” to
get cancer, and the difference is “highly significant”. However, even if both claims
are true, this alone does not give enough information for policymakers. We need
somewhat different information: given someone eats this food, how much more likely
it will be, in absolute terms (percentage points), to get cancer? For instance, if the
cancer rate grows by 1 percentage point, from 1% to 2%, this will amount to 1% of
those who eat the food. But twice as large may also mean an increase from 0.0001%
to 0.0002%, and increase of 0.0001 pct points, or one in million. In the latter case
the problem is much less urgent, and there are probably much easier ways to improve
public health. The problem here is that the words “twice as likely” and “significant”
in everyday language suggest the presence of an important effect. But this may not
be true if we interpret these words in the strict statistical sense.

This kind of misleading presentation is sometimes related to lack of statistical
literacy, but sometimes it is also a deliberate strategy to advance a specific agenda.

Exercise 1.39: How to multiply wealth of all Icelanders

Misleading presentation in sometimes deliberately used in politics. Imagine a
politician running for an office in Iceland with a slogan Vote for me! I’ll double
the wealth of all Icelanders! How can she fulfill her campaign promise if elected?
What exactly is misleading in this claim? For reference, the population of Iceland
is 360,000 and its total wealth is $38 billion.

Example 1.35: Are hospitals unsafe during the weekends?

Freemantle et al. (2016) show, based on UK data, that those who are admitted
to hospitals over weekend have more serious conditions and are more likely to die
within 30 days of the hospital admission. The excess death rate, associated with
Saturday admissions is approximately 10%, and that for the Sunday admissions
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is 15%. They also show that those who are admitted during weekends have
higher predicted mortality risk to begin with, and discuss the implications on
hospital staffing and weekend schedules. They are very open that their study is
observational and cannot tell much about causality.

However, in March 2015 the UK Conservatives made “truly seven day NHS”a

to a political slogan (Godlee, 2016). In particular, the health secretary Jeremy
Hunt claimed that these extra deaths are caused by poor staffing over the week-
ends. He also managed to upset doctors with muddled claims about pay (Craven,
2015). As a result of these political games, a poll in 2016 found that 53% of pa-
tients believe that hospitals are unsafe at weekends (Iacobucci, 2016).

These claims are far removed from the original study. The authors never
claimed that hospitals are “unsafe”, in case of a serious condition one should still
get help at a hospital, even during the weekends.

aNHS–National Health Service, the British health care system.
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Chapter 2

Regression Models

This chapter discusses regression models, in particular linear and logistic regression.
These are perhaps the most important models for both inferential and predictive
modeling, both on their own but also as components of more complex models.
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2.1 Linear Regression
2.1.1 The Problem: Why We Want Linear Regression
In both research and applied analysis we are often interested in relationships—are
larger values of x associated with larger or smaller values of y? Or maybe we already
know that the relationship exists but we may want to quantify it—by how much are
y larger for those cases where x values are larger by one unit?

123
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As a example, let’s analyze the length and width of iris sepals (from the well-known
iris data).1 Figure 2.1 (right panel) displays the length and width of of the sepals
for the iris species setosa. We see an upward trending point cloud where each point
denotes a setosa flower. The fact that it trends upward is no surprise—we expect
that the longer leaves are also wider. However, the exact form of the relationship
may not be obvious—how much wider are falls that are 10mm longer? And does the
same relationship hold for different fall lengths? Do very long leaves get wider at an
increasing pace and become more rounded? Or perhaps the way around–very long
leaves are more elongated? And sometimes we do not have any particular reason to
expect an increasing or decreasing relationship. But we can always plot data like here
and check what kind of relationship do we see.
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Figure 2.1: Flower of iris setosa (left). Sepals are the big purple falls spreading downward,
petals are thinner and grow upward. The right panel displays the relationship between the
width and length of sepals. Not surprisingly, longer petals tend to be wider. The blue trend
line is computed using linear regression.
Original image by Denis Anasimov, wikimedia commons.

More formally, we sometimes want to test if two variables are related. And if they
are, then how strong is the relationship? For instance, are variables x and y more
closely related than x and z? Another time we may know the value of one variable
and want to use this knowledge to predict the value of another one. For instance,
what is “typical” width of setosa sepals that are 5cm long? What is the “typical”
price of a house that is 200m2 large? But there are many ways how two variables
can be related. Figure 2.2 shows a few different options. Which of these curves is
“correct”? Which of these is “better”?

Obviously, there is no general answer to the “correct” and to the “better” question.
It depends on the process, data and the problem. But we want to construct a tool
that can be used to answer the following questions:

• are these two variables related? Yes or no?
1Iris flower dataset was introduced by Ronald Fisher in 1936. It contains measurements for 150

flowers of species setosa, versicolor and virginica. It is one of the most widely used statistical dataset.
(Wikipedia entry)

https://bitbucket.org/otoomet/lecturenotes/raw/master/data/iris.csv.bz2
https://commons.wikimedia.org/wiki/File:Irissetosa1.jpg
https://en.wikipedia.org/wiki/Iris_flower_data_set
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Figure 2.2: The same data as in Figure 2.1, right panel. Besides the original trend line (dark
blue), this figure indicates a number of other possible relationships. Which one of these is
better? Just by looking at the figure, we can say that the red line looks too wobbly while
we may not like the kinks of the gray line. But the blue, green, and yellow line look fairly
similar. In typical problems we prefer the simplest option with certain favorable properties,
here the original regression line (blue).

• how strong is the relationship? For many real world problems, such as predic-
tion, it is not just enough to say that there is a relationship, we need a numeric
value.

• is the number statistically significant? Maybe it is just a random blip that the
numbers look related?

• how does the relationship in one dataset compare to that in the other dataset?
Is it stronger or weaker?

• and finally, we want the tool to be intuitive and easy to use.

We stress here that in order to answer the questions above we need a mathematical
tool. Just eyeballing the data and deciding which curve is the “best” is not precise
enough and does not scale (but it is a very important starting point!). The tool should
have clear mathematical formulation and clear mathematical assumptions so we can
judge in each case if it is appropriate to use it. It should also be flexible, allowing
various tweaks to be incorporated to address problems of different flavor. And finally,
it should be simple to implement and use on computer.

2.1.2 Simple Regression
TBD: History
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Introduction

Linear regression is perhaps the most popular tool to answer these questions. It checks
all the boxes in the list above, offering both yes/no-style answers and quantitative
answers. It is also simple, intuitive, and easy to use.

Linear regression is a statistical model. Here model means a specification how the
“outcome variable” y is related to the “explanatory variable” x. A model is a necessary
tool if we want to “ask data” about the true relationship. In typical applications we
consider here, we need a statistical model, a model that contains both a deterministic
and a stochastic part. The deterministic part is what we are typically interested in, the
part of the relationship we can reliably describe and use for inference and prediction.
The stochastic part is rarely used beyond evaluating model’s performance, but it is a
necessary component that takes care of the stochastic nature of data. In many-many
common applications we simply cannot reliably predict the outcome based on the
information we have. The stochastic component of the model helps to handle such
unreliability in a consistent and precise manner.

In regression models we describe the value of the outcome variable y using the
explanatory variable x. In Figure 2.1 above we treated that data in a way that sepal
length is the explanatory variable and sepal width is the outcome variable. Sometimes,
but not here, we can interpret it in a causal sense, i.e. the regression model tells us
what happens to the outcome if we manipulate the explanatory variable in a certain
manner (e.g. make a leaf 1cm longer). There are many other way to call these
variables, e.g. endogenous variable, dependent variable, target, or just “y” for the
outcome, and exogenous variables, independent variables, features, predictors, or just
“x” for x. See Cheatsheet 2.1 on page 133.

Hence linear regression treats data in a fundamentally asymmetric way—data is
partitioned into explanatory variables and the endogenous variable. Sometimes this is
a natural approach, for instance if our task is to predict salary (y) based on education
(x), or if we are interested how drug dosis (x) affects the patients’ health (y). In other
cases, it may be less relevant. For instance, it is not obvious why we should treat
width and length of leaves in an asymmetric manner.2

Despite of being an old (over 200 years) method, it is still immensely popular,
and it is hard to see it being replaced any time soon. Linear regression is definitely
not everything a data scientist should know, there are just too many problems (for
instance, natural language processing or image analysis) that cannot be tackled with
linear regression. But linear regression wins in terms of simplicity and interpretability.
It is also a handy benchmark and a building block for more complex statistical models,
such as neural networks.

Setup

Consider the tiny dataset in Figure 2.3. It describes a data frame (left) with three
rows, labeled by i = 1, 2, 3 and two columns, x and y. The figure at right shows the

2Such asymmetric treatment of data is common to a large class of models, commonly called
supervised learning methods in machine learning literature. Certain other methods (unsupervised
learning), such as clustering or principal component analysis, do treat all data in a similar manner.
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Figure 2.3: A tiny dataset (left). At right, a plot of these same data with the corresponding
regression line (the dark diagonal line).

data points (in black), labeled as pi (i.e. p1 corresponds to the data point in the first
row and so on).

Linear regression models the relationship between the outcome variable y and the
explanatory variable x using a linear function. For these data, it is

y =
5

6
+

1

2
· x. (2.1.1)

This is the dark diagonal line in the figure (the regression line). It is as a linear
function with intercept 5/6, and slope 1/6. The intercept is often denoted by β0,
hence here β0 = 5

6 and slope is often denoted by β1, so here β1 = 1
2 . (see Section 2.1.4

below how β0 and β1 are defined.)

ŷ denotes predicted value for y, β̂
denotes estimated β value.

But this model has a problem–the regression line misses all the data points! For
instance, inserting x1 = 0 into (2.1.1), we find ŷ1 = 5/6 while y1 = 1 instead. So
the first predicted point p̂1 (marked gray) is below the true value p1 (in black), the
second point is predicted too high, and so on. While the line captures the overall
increasing trend in these data, it misses the actual data. Even more–there is no way
for the regression line to capture all data points because they are not aligned. So if
we want to model data, not the trend line, we need to adjust the model somehow. In
case of linear regression we add an additional term, ϵ, to (2.1.1):

yi =
5

6
+

1

2
· xi + ϵi. (2.1.2)

ϵ is usually called the error term (also disturbance term or noise term, see Cheat-
sheet 2.1 Prediction, page 133 for summary of the terms). This takes into account the
fact that the linear model, the black regression line, misses data. The ϵ-s are marked
as red vertical lines in the figure, spanning the difference between the gray predicted
values p̂i and the black actual values pi. So the error terms ϵ are just terms that take
care of the difference between the computed values and the actual values. In practice,
it is almost never possible to capture the actual y values precisely, and hence we need
some kind of tools to account for the discrepancy. Disturbance terms are such tools.
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Index i indicates individual observations, typically rows in the data frame. (2.1.2)
is just a shorthand notation for three equations

y1 =
5

6
+

1

2
· x1 + ϵ1

y2 =
5

6
+

1

2
· x2 + ϵ2

y3 =
5

6
+

1

2
· x3 + ϵ3.

(2.1.3)

Note that x, y and ϵ have index i but β0 and β1 do not—it indicates that each
row i has a different value for y, x and ϵ, but they all share the same parameters
(aka coefficients or betas) β0 and β1. Coefficients are a property of the model, not a
property of individual observations.

On these simple data we know that β0 = 5
6 and β1 = 1

2 . But in practice, we
usually do not know it, and then we write instead

Simple regression model

yi = β0 + β1 · xi + ϵi. (2.1.4)

This is how the linear regression model is most often defined.

Exercise 2.1: Compute ϵ

Use the 3-line dataset and the parameter values β0 = 5/6 and β1 = 1/2 as above.
Compute ϵ1, ϵ2 and ϵ3.

Solution on page 484.

Let us demonstrate linear regression using Iris data, the same dataset that was
used in Figure 2.1. Let’s pick sepal width as the outcome y and sepal length as the
explanatory variable x, as in Figure 2.1. Table 2.1 displays the first few lines of the
data. Data is all we know–we only know x and y values. We have also picked the
model–linear regression in the form (2.1.4). In the situation where we typically use
linear regression (and other statistical models) we usually do not know the “correct”
values of β0 and β1. But we know our data, i.e. all the explanatory and outcome
variable pairs (yi, xi) for i = 1 . . . N . Hence our first task is to find β0 and β1 before
we can use the model for anything else.

Now we can put (2.1.4) in a more specific form as

Sepal widthi = β0 + β1 · Sepal lengthi + ϵi. (2.1.5)

See Section 2.1.4 Formal
Definition of Linear Regression,
page 141 about what the “best”
means and how to compute
betas.

Next, we need to estimate (or fit) the model–find the “best” values of β0 and β1.
The solution here is β̂0 = −0.569 and β̂1 = 0.799. The “hat” on top of β̂ stresses that
these are not “true” values but our estimates based on data. So we can rewrite the
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Table 2.1: Example cases from Iris dataset

Sepal length Sepal width
5.1 3.5
4.9 3.0
4.7 3.2
4.6 3.1
5.0 3.6

definition (2.1.4) for the first few observations in the data as

3.5 = −0.569 + 0.799 · 5.1 + e1

3 = −0.569 + 0.799 · 4.9 + e2

3.2 = −0.569 + 0.799 · 4.7 + e3

. . .

(2.1.6)

We have replaced ϵ by e to stress that we don’t know the correct ϵ, but we can
compute e from (2.1.6).

Sometimes we are interested in the parameter values itself as these may carry
interesting meaning (see more in Section 2.1.3 Interpretation, page 134). In other
cases we do not care much about the betas, but want to use those to predict other
relevant outcomes, such as y values (see more in Section 2.1.2 Prediction, page 130).

Example 2.1: How fast does the universe expand?

By early 20th century, it was clear that certain nebuale in sky are outside of
our Milky Way galaxy and astronomers attempted to use those to determine the
Solar motion in space. By late 1920s, there was already data for both velocity
and distance for 24 “extragalactic nebuale”, i.e. galaxies. In 1929, Edwin Hubble
published a paper where he plotted velocity versus distance for those 24 objects
(Hubble, 1929).
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Figure 2.4: The original Hubble diagram. Hubble estimated the slope to be approxi-
mately 500 km s−1 Mpc−1. Despite the less-than-impressive data, and the fact that he
badly overestimated the slope, it is considered one of the most important cosmological
discoveries of all time.

On the figure, the more distant galaxies are clearly moving faster away from
us. This suggests that the universe is expanding. The expansion rate can be
estimated from the same data using linear regression

velocity i = β0 + β1 · distancei + ϵi. (2.1.7)

The estimation results are β̂0 = −40.4 and β̂1 = 453.9. The estimated value of β̂1
indicates that 1Mpca more distant galaxies move 453.9 km/sec faster away from
us (see Section Section 2.1.3 Interpretation, page 134). The expansion rate β1
is nowadays called “Hubble constant” and its modern estimate is approximately
72 km s−1 Mpc−1. We can reverse this rate and ask “how long time it takes for
a galaxy, moving 454 km/sec, to reach to a distance of 1Mpc = 3.09× 1019 km?
This gives us roughly 2 billion years, the number of years since the Big Bang
(modern estimates are 13.8 billion years). This was an important piece of evi-
dence supporting the idea that the universe is young.

aparsec (pc = 3.09×1013 km or 3.26 light years) is a distance where the Earth orbit’s radius
is visible as 1′′ arc. The closest stars are 1.3pc away from us, Milky Way disk is 50,000pc in
diameter. Mpc = 1 000 000parsec.

Prediction

Prerequisites: Section 1.4.5 Expectation, expectation as a linear operator

Imagine we have somehow figured out the “right” values of β0 and β1. Now we can
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immediately use the model for predicting the results. This amounts to answering the
questions like “what will be the outcome value y that corresponds to the explanatory
variable value x? Let’s look at the model definition (2.1.4)

(2.1.4): yi = β0 + xi · β1 + ϵi

again. We somehow know
the values of β0 and β1 (we just figured these out). We also know xi, i = 1 . . . N (this
is our data). But we don’t know ϵi, as that is an unobserved stochastic error. True,
we can compute it as in Exercise 2.1, but this is only possible in case we know y. But
as we try to predict y, then we probably don’t know it to begin with... So we cannot
compute the predicted y.

Instead, what we can do is to compute it’s expectated value E y instead. Let’s
take expected value of (2.1.4):

E y = E[β0 + β1 · x+ ϵ] = E[β0 + β1 · x] +E ϵ. (2.1.8)

As β0, β1 and x are known values, their expectations are just these values. We just
have to find E ϵ. Normally we just use an assumption

E ϵ = 0. (2.1.9)

(see Section 2.1.10 Assumptions in OLS Models.) It means that it’s expectation is
exactly zero, and hence it’s mean in a finite sample (like our data) tends also to
be close to zero. This may sound like a strong assumption but it is actually pretty
harmless in most cases. If we assume something else, say E ϵ = a for some constant
a, this would amount of shifting y values up by a. But we already have the intercept
term, β0 that plays a similar role and shifts y values up and down. As a result, the
β0 would decrease by amount a, so that β0 + a will remain constant. Our predictions
would not change.3

Note that typically we predictE y, the expected value of y. We may instead predict
something else, e.g. median or other quantiles of y, it’s minimum value, or probability
that y is positive. Such predictions may need different assumptions instead of (2.1.9).

With these assumptions in place, we can just write our predictions as

ŷ(x) = E y = β0 + β1 · x. (2.1.10)

(One often uses “hat” like in ŷ to denote estimated or predicted values for y.) It may
be written in different forms, for instance

ŷ(xi) or ŷi or ŷ(xi;β0, β1) (2.1.11)

where the first form makes the dependency on x explicit, the second form uses index
i for a short-hand notation, and the third version also indicates that the prediction
depends on the model parameters β0 and β1. Note that ŷ is a linear function in
x—this is why linear regression is called linear regression. Hence ŷ will be a line on
the x-y plane.

3Here we assume that the model in fact includes the constant term. If this is not the case, the
assumption may have major implications. See

TBD: reference to the example



132 CHAPTER 2. REGRESSION MODELS

Example 2.2: Predicted Velocity of Galaxies

NGC 4736, a galaxy in Canes
Venatici. The modern estimate
of its distance is 4.9Mpc, almost
10 times more than at Hubble’s
time. R Jay Gabany (Blackbird
Obs.), CC BY-SA 3.0, via
Wikimedia Commons.

Let us use the results from Example 2.1 to predict the speed of galaxies in the
Hubble data. We found that the model estimates are β0 = −40 and β1 = 454.
We focus on three galaxies: NGC 4736 (R = 0.5), NGC 1068 (R = 1.0) and NGC
4472 (R = 2.0Mpc). Using the estimated β-s, we can find the predicted speed
from (2.1.10) as 186.5, 413.4 and 876.3 km s−1.

The figure below shows the measured velocity in data (black) and the predic-
tions (light blue).
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Figure 2.5: Hubble data. The black dots represent the actual distance-velocity com-
binations of galaxies as known to Hubble in 1929. Light blue dots are the predicted
velocities, corresponding to the model in Example 2.1. NGC 4736, 1068 and 4472 are
marked with orange/yellow halo.

All the predicted values are on a straight line because (2.1.10) represents a linear
function. We can see that the prediction error (residual) for NGC 1068 is rather
large, but in case of NGC 4472 we have predicted almost exactly the correct
value.

When we know the true value y (for instance, on training data), we can also
compute the prediction errors, typically called residual terms, deviations, or residual
errors:4

e = y − ŷ = y − (β0 + β1 · x). (2.1.12)

4There is an important conceptual difference between residuals e and disturbance terms ϵ (but
fortunately it does not matter much in practice). Namely, if we know the correct values of β0, β1

and y, then we can actually recover the disturbance ϵ. However, when β-s are estimated from data
(as they almost always are), similar exercise will give us the residual e instead.

https://creativecommons.org/licenses/by-sa/3
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Exercise 2.2: Predict using linear regression

Demo dataset:

i x y

1 0 1
2 1 1
3 2 2

Consider the demo dataset on page 127. The parameter estimates are β0 = 5
6

and β1 = 1
2 . Compute the predicted values ŷ1, ŷ2 and ŷ3.

Solution on page 484.

Obviously, the better the model, the smaller are the residual terms. But in general
we face trade-offs–we cannot make residual error for one observation smaller without
making it larger for another observation at the same time. But errors do not nec-
essarily mean the model is imperfect. The errors in Hubble estimate originate from
three sources: incorrect speed measurements; incorrect distance measurements; and
the fact that galaxies are not just fixed to the expanding space but are also moving
relative to their co-moving space. None of these problems makes Hubble’s model bad.
It still captures the expansion factor, and it had been fairly close to the modern es-
timates if astronomers in 1920-s had had access to the modern methods for distance
estimation. After all, Hubble’s greates achievement was not to accurately predict the
velocity of “extragalactic nebulae” but to realize that the universe is expanding. The
error terms played only a minor role in that discovery.

Cheatsheet 2.1: Simple Regression: Definition

Model
yi = β0 + β1 · xi + ϵi

• y: outcome (also target, endogenous variable, left-hand variable, y)
• β0, β1: parameters (also coefficients, betas)
• β0: intercept (also constant)
• β1: slope (also effect)
• x: explanatory variable (also feature, exogeneous variable, right-hand vari-

able, feature, predictor, attribute, x). This is your data.
• ϵ: error term (also disturbance term)
• i counts observations (also cases)

The deterministic part of the model yi = β0 + β1 · xi is linear in x, i.e. depicts
a straight line on x-y plane. The error terms takes care of the fact that the data
points may be off that line.

Prediction When we know β0, β1 and x, we predict y as

ŷi = β0 + β1 · xi.

The statistical problem is to find a good combination of β0 and β1 so that the
prediction line fits the existing data well.
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Figure 2.6: Interpretation of regression coefficients. The blue dots represent the data points
and the thick line is the regression line. Intercept β0 represents the vertical intercept of
the thick regression line, i.e. the predicted y value at the point where x = 0. Slope β1

corresponds to the “climb” of the line when x increases by one unit. This figure is made
using random data.

2.1.3 Interpreting regression results
Interpretation

One of the big advantages of linear regression is its interpretability. There are other
interpretable models, such as logistic regression, but none can compete with linear
regression in terms of ease and simplicity. In many situations we are less interested
in the predicted values and more interested in understanding the underlying process,
and in such cases linear regression is often the obvious choice.

To interpret a model means to “understand” the parameter values and being able
to tell a story what do these values mean. Simple regression has two parameters,
intercept β0 and slope β1. The meaning of these parameters can easily be understood
when analyzing the predicted values.

(2.1.10):

ŷ(x) = β0 + β1 · x.

From (2.1.10) we see that if x = 0, the predicted
ŷ(0) = β0. Hence intercept indicates the expected (predicted) value of y if x = 0
(See Figure 2.6). To understand what does slope, β1, describe, we can compute the
difference

ŷ(x+ 1)− ŷ(x) = [β0 + β1 · (x+ 1)]− [β0 + β1 · x] = β1. (2.1.13)

Hence slope tells us how much larger is the prediction ŷ when x larger by 1 unit.
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Example 2.3: Unemployment versus GDP growth
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Figure 2.7: Relationship between unemployment and GDP growth across countries in
2016, and the corresponding regression line. World Bank data.

Figure 2.7 shows the relationship across countries between unemployment and
GDP growth where unemployment is measured as percentage of labor force, and
GDP growth is measured in percentages. We can model the relationship as

unemploymenti = β0 + β1 ·GDP growthi + ϵi (2.1.14)

where i denotes different countries. The corresponding linear regression estimates
are β̂0 = 7.5 and β̂1 = −0.1. Here “intercept” means that expected unemploy-
ment for a zero-growth country is 7.5 percent. For each additional percent of
growth, that number falls by 0.1 pct points. For instance, if economic growth
is 2%, the model predicts the unemployment rate to be 7.4%. The estimate for
growth seems surprisingly small (and is not statistically significant), but remem-
ber the data describes a cross-section of countries in 2016, a period of rather
robust growth, and not relationship over time for an individual economy.

Note that linear regression (nor any other statistical model) does not allow to
make causal claims. The growth estimate -0.1 cannot be interpreted that more
growth causes less unemployment, at least not based on this data.

Exercise 2.3: Income and education
You estimate the relationship between income and education in the form

incomei = β0 + β1 · educationi + ϵi

where education is measured in years and income in dollars. You find β0 = 1000,
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β1 = 5000. What does β0 tell you? Is it an interesting number? What does β1
tell?

Solution on page 484.

Exercise 2.4: Weight and height

You are analyzing the relationship between the weight and height of teenagers
using the model

weight i = β0 + β1 · height i + ϵi

where weight is measured in kilograms and height in centimeters. You find β0 =
−75, β2 = 5000. What does β0 tell you? Is it an interesting number? What does
β1 tell?

Solution on page 484.

Note that while these interpretations are always correct from the mathematical
perspective, they may sometimes carry little real world meaning. For instance, the
regression line in Figure 2.1 is given by parameters β0 = −0.569 and β1 = 0.799.
The intercept means that zero-length sepals are −0.569 cm wide. This does not make
any sense, but as none of our flowers have sepal length less than 4cm, it does no
harm when we use our model for the actual 4-6cm long flowers. But extrapolation for
small flowers may be very misleading as this example suggests. The slope parameter
β1 means that for each unit (i.e. centimeter) sepals are longer, they are 0.799 units
(i.e. centimeters) wider in average. This number is reasonable and tells us something
about the shape of the flowers.

Exercise 2.5: How is sons’ height related to fathers’ height?

The father-son dataset (see Example 1.30) contains 1078 fathers’ and sons’ height.
An example of the data looks like

Father Son
184.0 181.5
178.0 198.7
173.6 176.5
164.1 167.9

where “Father” and “Son” are the corresponding heights in centimeters. When
we estimate the regression model

Soni = β0 + β1 · Fatheri + ϵi

we get the following results: β0 = 86.1 and β1 = 0.51.
Interpret these results. Are any of these interpretations misleading?
Solution on page 485.
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Correlation and causation

One has to keep in mind that regression coefficients cannot be interpreted causally.
The regression parameter that connects sepal width and length cannot be interpreted
as for every centimeter the sepal grows in length, it grows 0.799 centimeters in width.
Linear regression5 only computes the average relationship: in our data, longer leafs
are also wider. Data alone do not tell why. These traps are sometimes easy to avoid.
For instance, the results of Exercise 2.5 would read that “if fathers grow by 1cm
then sons grow by 0.5cm”. This is obviously nonsense–even if you were able to make
someone’s father taller, this will in not affect the height of their children...

But other times a causal interpretation sounds perfectly natural. Interpretations
like “if we increase schooling by one year then income will grow by 6 percent” or “if
1 pct point more people wear masks the infection rate will fall by 1.2 pct” sound
perfectly plausible claims. The problem is that the common datasets do not tell if
such an interpretation is correct or misleading. Humans easily slip into semi-causal
interpretation, and the fact that the correct language sounds clumsy and non-natural
does not help here. Humans are also prone to interpret relationships causally even
when explicitly stated that this may not be true. It is better to re-phrase the two
previous examples as “those who attended school for one more year earn 6 pct more
income” and “regions where 1 pct point more people wear masks see 1.2 pct lower
infection rate”.

The causality-agnostic language also has a special phrase, associated with, to de-
note the correlational relationship like what is computed in linear regression. So our
sepal results may be phrased as 1 cm longer leafs are associated with 0.799 centime-
ters more width and we can say that “one year more of schooling is associated with
6 pct higher income”.

Interpreting the regression table

The statistical software we use for linear regression typically outputs not just coeffi-
cient values but a complete table of results. Table 2.2 shows an example of such a
table, computed for the setosa sepal length–sepal width regression

Sepal Widthi = β0 + Sepal Lengthi + ϵi (2.1.15)

(See Figure 2.1).
Typical software output uses the variable names to label the estimates instead

of β0 and β1. Here β0 is called “intercept” and β1 is “sepal length” as this is the
variable that β1 is multiplied by. The column “Estimate” presents the same estimated
coefficients we discussed above. Here we discuss the other columns in this table. As
it turns out, all these columns are very important.

Next column in the table is labelled “Std. Error”. This is the standard error of the
estimate. As the points do not line up exactly, we need to include certain randomness
in the model (this is term ϵ in (2.1.4)). Intuitively, depending which data points we

5This issue is not specific to linear regression only but it is a common problem with all statistical
models. In order to establish causality based on statistical analysis, we need very specific information
that is typically not present in what we call “data”. See more in Chapter 3.
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Table 2.2: Software output table from sepal length–sepal width regression. Different software
package may provide slightly different output, but the main information is very much the
same.

Estimate Std. Error t-value Pr(>|t|)
Intercept -0.569 0.522 -1.091 0.281

Sepal length 0.799 0.104 7.681 0.000

sample, our regression coefficients will be slightly larger or slightly smaller. Under
mild assumptions, these coefficients follow t-distribution and this column provides
their standard error. You can imagine that we collect different setosa flowers many-
many times. Each time we get a slightly different sample, and hence we get slightly
different estimated values. Standard error describes the variability of the estimates
obtained in this way. But in practice we do not want to do many samples (usually we
even cannot do it), so “Std. Error” is computed using the mathematical properties
and underlying assumptions instead.

In this table we can see that the intercept’s standard error is 0.522 while the sepal
length coefficient’s error is 0.104. Hence the latter is much more precisely determined
by our data than the former.

The next column is labelled “t-value”. t-values are conceptually very similar to
z-values, just based on slightly different assumptions and hence the corresponding
critical values are slightly different (see Section 1.6.3). Each coefficient has its own
t-value , computed as:

t =
Estimate

Std. Error . (2.1.16)

It is testing hypothesis: H0 : Estimate = 0, here it means testing the claim that
sepal length and sepal width are not related. But just because randomness in data,
we always see some kind of relationship. One can show that if H0 is correct and
certain assumptions hold, then t value as defined here is t-distributed (that’s why it
is called t-value) and large t values are unlikely under H0. In the table the intercept’s
t-value is -1.091 and that for sepal length is 7.681. Hence it is much more likely to see
such intercept value than such “sepal length” value just by random chance. We can
compare t values here with the critical t values from the t-value table. For instance,
for two-tailed test at 5% significance level at 50 degrees of freedom6 the critical value
is tcr = 2.01. Remember, the corresponding critical z-value is 1.96, a slightly smaller
number (see Table 1.12).

Finally, the last column “Pr(>|t|)” is p-value, how likely it is to get such a t-value
if H0 is correct. It is essentially the significance number we get if we use a t-table to
look up the t-value of the previous column. The probabilities are 0.281 and 0, so just
by playing with random data, we can get an intercept of similar size in more than

6Degrees of freedom for linear regression model is number of observations minus the number of
parameters to be estimated, here 50− 2 = 48.
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25% of cases. However, the chances of getting similar value for sepal length coefficient
are much smaller and essentially 0.

Example 2.4: Interpreting Regression Table

Consider the Hubble dataset of 24 observations. When we estimate the model

velocityi = β0 + β1 ·Distancei + ϵi

we get the results:

Estimate Std. Error t value Pr(>|t|)
Intercept -40.436 83.448 -0.485 0.633
Distance 453.860 75.246 6.032 0.000

(see Example 2.1).
We can compute t-values by dividing estimates and standard deviations as

Intercept: − 40.436/83.448 = −0.485
Distance: 453.86/75.246 = 6.032.

These numbers are exactly the same as in the table above, so usually there is
little need to compute t-values.

We can find the p-values t-value table. First, we need to find the degrees
of freedom. It is the number of observations minus the number of estimated
parameters, df = 24− 2 = 22. As the table does not have an entry for df = 22,
we pick the closest value, df = 20 (2nd line). The t-value of the intercept, 0.485,a
is smaller than any value in that row. In particular, it is smaller than 1.33, the
critical t-value that corresponds to the significance level of 20%. Hence we can
conclude that even if the true intercept is 0, there is more than 20% probability
to see that big value (-40.436 just by chance. This is considered too large, and
hence we cannot reject H0 : β0 = 0. Intercept is not statistically significant.

However, the t-value of Distance is 6.032. This, in turn, is larger than any
number in that row. In particular, it is larger than 3.85, the critical value that
corresponds to the significance level 0.1%. We can conclude that if the true
parameter is 0, there are very small probability to see such large β value as
453.86 just by chance. We cannot say how large is the probability exactly based
on the table alone, but we can say it is less than 0.1%. In most circumstance
such a level is considered more than enough to reject H0 : β1 = 0 and hence β1
is statistically significant.

Nowadays, statistical software typically also provides p-values. The output
may also be accompanied with additional information, such as significance mark-
ers or confidence intervals.

aRemember: the sign of t-value does not play a role when computing the p-value. It just
shows the sign of the corresponding coefficient.
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Exercise 2.6: Interpreting regression table

1. You estimate a linear regression model and find that β = 4 while its stan-
dard error is 1.6. Compute t value.

2. Is your estimate statistically significant at 5% level? (You can use critical
z-values instead of t-values, see Table 1.12.)

3. Is it significant at 1% level?
4. What does it mean in regression context: β is significant at 5% level?

Solution on page 485.

TBD: Example with intercept 0

Cheatsheet 2.2: Simple Regression: Interpretation

Interpreting coefficients
• Intercept β0: the y value at x = 0 (in average)
• Slope β1: the cases where x is larger by one unit have y larger by β1 units

(in average).
It is not correct to say that if we increase x by one unit, y will increase by β1
units. This claim implies causality but normally we cannot establish causality.

Interpreting regression table Consider Hubble regression

velocityi = β0 + distancei · β1 + ϵi.

Software regression output looks something like this:

Estimate Std. Error t-value Pr(>|t|)
Intercept -40.436 83.448 -0.485 0.633
Distance 453.860 75.246 6.032 0.000

first column (no name here): parameter names. Intercept is β0 and the name
of the x-variable, slope β1 of which is presented.

Estimate estimated value of the parameter
Std. Error estimated standard error of the parameter
t-value t = Estimate

Std. Error , t-value for testing H0 : Estimate = 0.
Pr(>|t|) p-value of the t-test, the probability that we observe estimate of such

size if H0 is correct.
Interpretation:

• Intercept: galaxies at distance 0Mpc move at speed −40 km/sec.
• Slope: Galaxies that are 1Mpc further away move 454 km/sec faster.
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2.1.4 Formal Definition of Linear Regression
Now we have done all the preparatory work to define the linear regression model.

Let us revisit the definition of residual term (2.1.12). We noted above (see Sec-
tion 2.1.2 Prediction) that better models tend to have lower prediction errors, but we
cannot drive all of them down to zero at the same time. Instead, we somehow have to
address the trade-offs we face. In case of linear regression, we define the “best” model
as the one that minimizes the sum of squared residuals. This is why linear regression
is often called “least squares”–the word “least” refers to minimization and “squares”
refers to the fact that we minimize squared errors.7

We can minimize the sum of squared errors (SSE) by selecting good values for
β0 and β1. This gives us an informal definition of linear regression: it is the linear
model (2.1.4) where parameters β0 and β1 are chosen in a way that the models residual
sum of squares, SSE, is minimized.

Formally, we can write the sum of squared errors as

SSE(β0, β1) =

N∑
i=1

e2i =

=

N∑
i=1

(yi − ŷi)2 =

=

n∑
i=1

[yi − (β0 + β1 · xi)]2.

(2.1.17)

Here we write SSE as SSE(β0, β1) to stress that it’s value depends on β-s. The first
line of (2.1.17) is the definition of SSE. Note that we minimize

∑
i e

2
i , not

∑
i ϵ

2
i . This

means that we do not know the true values of e, but for whatever β0 and β1 we pick,
we can always compute e. The others two expressions follow from the definition of
residuals and from the definition of predicted value. The “correct”, i.e. optimal β-s
are those that minimize SSE(β0, β1), formally written as

(β̂0, β̂1) = arg min
(β0,β1)

N∑
i=1

e2i = arg min
(β0,β1)

n∑
i=1

[yi − (β0 + β1 · xi)]2. (2.1.18)

Here we denote the optimal values for β0 and β1 by β̂0 and β̂1. This can be understood
as we play around with β0 and β1 until we have achieved the smallest possible SSE,
and then we call the corresponding values β̂0 and β̂1. Note that these values are
our estimates, not necessarily the “true” values of β0 and β1 (and we follow habit by
denote estimated balue of β by β̂). The true values are unknown, the estimates are
the best we can do based on data. In case of simple regression, one can get fairly
far with computing SSE manually by just trying different β values. Alternatively,

7The term “linear regression” and “linear least squares” are usually treated as synonyms. However,
we do not necessarily have to minimize sum of squared errors. We may choose to minimize other
functions of the residual terms, for instance sum of absolute values of the errors. The result is still
linear, and still has the property of regression to mean (Galton, 1886), but it is usually called “median
regression”, not linear regression.
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one can rely on non-linear optimization (see Section 10.2 Gradient Ascent). Linear
regression turns out to be even simpler, as here we can solve the best β-s analytically
(see Section 5.5 Solving Linear Regression Models). This is the only statistical model
where it is possible and no doubt, this has also contributed to its popularity.

Example 2.5: SSE for the iris sepals regression

Let’s compute a few SSE values for setosa sepals, for the same data we used in
Figure 2.1. Pick first β0 = 0 and β1 = 1, i.e. we assert that in average sepals
are as wide as they are long. Table 2.3 shows the relevant calculations. The
first 4 rows show the first four lines of data. The two first columns are data,
sepal length and sepal width. The third column, ŷ is the predicted width, and
given our choice of β-s, it is exactly equal to sepal length. The fourth column,
e = ŷ−Sepal width is the residual. As we are predicting way too large width, the
residuals are all positive. The final column, e2, contains the squared values of the
corresponding residuals. The last row is the sum of the corresponding columns.
Here we are only interested in the last number, the sum of squared errors.

Table 2.3: Computing SSE for setosa data. Sepal length and Sepal width are the actual
datapoints. ŷ is the predicted width, given β0 = 0 and β1 = 1. e is the corresponding
deviance and e2 is squared deviance, “squared error”. The last line gives the sum of all
rows.

Sepal length Sepal width ŷ e e2

1 5.10 3.50 5.10 1.60 2.56
2 4.90 3.00 4.90 1.90 3.61
3 4.70 3.20 4.70 1.50 2.25
4 4.60 3.10 4.60 1.50 2.25
… … … … …

sum 250.30 171.40 250.30 78.90 127.91

In this example we have SSE = 127.91, much more than 3.159 we get when
picking optimal values for β0 and β1. See Example 2.6.
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2.1.5 Model evaluation: MSE, RMSE, R2

One of the first tasks after estimating the model is to understand how good a job
does it do. Is this model actually better than just predicting the average value for
everyone? Just how much better is the model? A natural answer to this comes from
the least squares model definition: how big is it’s SSE?

But SSE alone is not a good answer. There are several problems when using just
SSE as a model goodness indicator:

• SSE grows as we add more datapoints to the model. So a large value of SSE
may either mean that the model does not describe the data well, or that we just
have a lot of data.

• SSE is measured in squared units, so for instance if y is measured in dollars,
MSE will be in dollars-squared. This is hard to interpret.

• It is also hard to compare models on different kind of data. If units of measure-
ment are different, then SSE will also be different even on the same dataset.
And sometimes the units are inherently different. For instance, income and
temperature cannot be measured in the same units, and hence we cannot tell
which one is modeled better–at least not based on SSE alone.

Fortunately, all three issues have fairly simple solutions.
In order to fix the first issue–SSE grows with dataset size–we can use not sum of

squared errors but mean squared error (MSE) instead. MSE is just average of SSE
over datapoints:

MSE =
1

N

N∑
i=1

e2i =
1

N

N∑
i=1

(yi − ŷi)2. (2.1.19)

(1.3.2): s2 = 1
N

∑N
i=1(xi − x̄i)

2.

You may notice that the formula for MSE resembles that of sample variance (1.3.2),
just instead of the average value ȳ, we use the predicted value ŷi to compute the
deviations.

The solution to the second problem is easy too: instead of MSE, we can use its
square root, called root-mean-squared-error (RMSE):

RMSE =
√
MSE . (2.1.20)

RMSE is measured in the same units as y and hence easily interpretable. If MSE
resembles variance, its square root resembles standard deviation and we can say some-
thing like “typically, our predictions are off by RMSE”. The wording—“typically...”—is
deliberately vague. As you can see from (2.1.19) and (2.1.20), RMSE is a sort of av-
erage prediction error. However, we do not call it “average” because people may then
think we are talking about the arithmetic average. But it is not the arithmetic av-
erage. Obviously, both MSE and RMSE can also be used to define linear regression
in analogous fashion as SSE in (2.1.18). A set of betas that minimizes SSE, will also
minimise MSE and RMSE.

The solution to the last issue is a little bit more involved but it leads us to the
well known R2, perhaps the most popular measure of goodness in regression models.
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We start with the observation that SSE, the sum of errors “left over” by the model,
does not tell much about the model’s performance unless we know how spread-out
are the observations (y-s) to begin with. So we define total sum of squares (TSS)

TSS =

N∑
i=1

(yi − ȳ)2 (2.1.21)

where ȳ is the average of y. Note the difference between TSS and SSE as defined
in (2.1.17): while SSE computes the error terms as the difference between the true yi
and the model prediction ŷi, TSS computes it as the difference between yi and the
average, ȳ. So TSS is a convenient measure of the total spread in the data. It is very
much equivalent to variance (1.3.2), just multiplied by N .

This gives us a measure of model goodness: if the “leftover variance” SSE/TSS
is small, the model “explains away” most of the variation in the data. For instance,
if SSE/TSS = 0.2, the model only “leaves behind” 20% of the original variation.
Traditionally, one looks at the reverted version of this measure: R2 is defined as

R2 = 1− SSE

TSS
. (2.1.22)

In this hypothetical example R2 = 0.8, and the model explains 80% of the variation
in data. Let’s think a second what this means. In one extreme case where our model
is completely useless, and our predictions are no better than just predicting the mean
value for every data point, we have SSE = TSS and hence R2 = 0. In another extreme
case where our model is able to predict every single observation exactly, we do hot
have any prediction errors and hence SSE = 0 and hence R2 = 1. So R2 gives us a
convenient and easy-to-interpret measure of prediction goodness: which percentage
of the total variation is explained by the model. Small R2 indicate the model is not
good (from the predictive perspective) and high R2 shows that it predicts well.

Unfortunately, the squared deviations SSE and TSS that R2 is based on is not easy
to visualize, but one can construct a similar measure based on range to make it more
intuitive (Figure 2.8). In this example, the “total range” in data (call it TR) is 4 and
the “error range” ER is 3. We can define a range-based R2 as R2

r = 1− 3/4 = 0.25.

Example 2.6: R2 for setosa sepals regression

We follow up Example 2.5 and compute R2 of the corresponding regression.
However, instead of picking arbitrary parameter values (0 and 1 in Example 2.5),
we compute the regression estimates. These are β0 = −0.569 and β1 = 0.799 (see
page 2.1.2 Section 2.1.2). First we present a similar table to compute deviations
and SSE as in Example 2.5:

Table 2.4: Computing R2 for setosa data. The table is analogous to the table in
Example 2.5, just this time using the actual regression coefficient values instead of 0
and 1.
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A similar measure as R2, but
based on range. The four data
points x1–x4 (colored) have to-
tal range, the vertical difference
between the topmost and the
lowermost data point, TR =
4. However, the corresponding
residuals, e1–e4 have range (“er-
ror range”) of ER = 3 only.
Hence the model decreases the
range in data from 4 to 3 and
R2

r = 1 − 3/4 = 0.25. But
note that this measure is not the
“true” R2 because it is defined
based on range, not based on
variance. This is why it is de-
noted by R2

r, not R2.
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Figure 2.8: Range-based construction of R2

Sepal length Sepal width ŷ e e2

1 5.10 3.50 3.50 0.00 0.00
2 4.90 3.00 3.34 0.34 0.12
3 4.70 3.20 3.18 -0.02 0.00
4 4.60 3.10 3.10 0.00 0.00
… … … … …

sum 250.30 171.40 171.40 0.00 3.16

As we have picked the regression estimates for β0 and β1 now, the deviations e are
small, and we see both positive and negative values now. The table shows that
SSE = 3.159, a much smaller value than 127.91 we got in the previous example.

In order to compute R2, we also need TSS (2.1.21):

TSE =
∑
i

(
Sepal widthi − Sepal width

)2 (2.1.23)

where Sepal width is the average value of sepal width. Plugging in the data, we
find TSS = 7.041, and hence

R2 = 1− 3.159

7.041
= 0.551 (2.1.24)

In this example the simple regression model explains 55.1 percent of the total
variation.
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Exercise 2.7: Compute TSS, SSE, R2

Consider data x = (0,0,2,2) and y = (1,−1, 3, 1). When you fit the regression
line yi = β0 + β1xi + ϵi, you find that β0 = 0 and β1 = 1.

Compute i) TSS;ii) SSE;iii) R2.
Solution on page 485

R2 is not an universal measure. It is computed from prediction errors e and hence
it focuses on prediction. If our task is to predict, we should strive to get as high R2 as
possible. But if our primary focus is inference, interpretation of β-s, the high R2 value
is of less importance. For instance, in the Hubble regression, the most important result
is that β1 > 0–the universe is expanding. The errors are related to the measurement
errors and to the fact that galaxies are also moving in space, not just with space. R2

describes the ratio of these factors–expansion of universe, measurement errors, and
the proper motion of galaxies; and this is much less interesting than the fact that the
universe is expanding.

Different type of data lead to different R2 values. In social sciences, it is common
to observe R2 in a range of 0.2 . . . 0.3 for ordinary regressions–this just means that
human behavior is hard to predict. Accessible data just do not have the information
needed to tell what humans are up to, something that everyone who has lived together
with a partner has probably noticed ,. If we are interested in changes over time, we
often find R2 less than 0.05, and in contrary, if we are predicting future behavior
based on the current behavior, R2 may exceed 0.9.

Finally, note that when defining SSE, TSS and R2 we did not make use of the fact
that we are working with linear regression. In fact, all these measures are well defined
for all supervised learning models with continuous outcomes. This includes nearest
neighbors, trees and related methods, and neural networks, as long as the variable of
interest is continuous.

Which of these measures–RMSE, R2, β-s or t-values should one focus on when
evaluating a regression model? It depends:

• β-s, in particular the slop parameter β1, tell us something about how x and y are
related. For instance, if we analyze income and education, then it may tell that
an additional year of education is associated with $8,000 more of yearly income.
But it tells little about how good is the model, or if this figure is reliable.

• t-values focus on the reliability part. High t-values mean that the association
between x and y is not just a random blip, but is indeed there in the dataset.
However, it is just about the statistical reliability, not the size of the association.

• R2 describes the overall model goodness from prediction perspective. High R2

(close to 1) means that the model can capture most of the variability in data,
low R2 (close to 0) means that there is a lot of variation that the model does
not capture. This is important for predictive modeling, but if our task is just
to compute β, then it matters much less.

• RMSE describes the prediction errors. It is silent about the overall model
performance, it also does not tell anything about the association between x
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and y. It just gives and estimate how much off are predictions made by this
model.

So typically β-s and t-values are more important for inferential modeling, and R2 and
RMSE for predictive modeling. We should add here that even if all four values look
reasonable, the model may still be off–this is just a part of the diagnostics one ought
to do when using linear regression.

Example 2.7: R2 of Hubble diagram: 100 years later

When Hubble published paper in 1929, the cosmological data was very primitive
from the 21st century viewpoint. We can replicate his results on modern data
and compare the models. The figure below compares the original Hubble dia-
gram (left) with the one that is based on modern data (right). Already a visual
inspection suggests that the modern data is better alinged with a line.
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Figure 2.9: The original (1929) Hubble diagram (left) and its replication using the
modern data for the same galaxies (right). A visual inspection suggests that a line
fits the modern data better than the original data. One can also see that the modern
distance estimates are up to 10 times larger than the original ones, the speed estimates
have not changed that much.

Linear regression results for both data are in the table below:

Original Modern
Intercept -40.44 -38.66
Distance 453.86 64.57

R2 0.62 0.82

We can see that the same model using modern data provides noticeably better
R2 by explaining 82% of variation instead of 62% in case of the original data.
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But is it a better model? Do we want to improve R2 even more?
These questions are a bit vague, but one may argue that the model is the same,

just in the modern case we have better data (smaller measurement errors). So R2

here is more of a data quality measure than the model goodness measure. But
can we improve R2 even more? Before improving it, we should understand why is
the measured R2 < 1 in the first place. As space is expanding uniformly (as far as
we know), the fact that galaxies are not aligned perfectly with the line is due to
two factors: measurement errors, and motion of galaxies in space (called proper
motion). We would like to improve measurement precision, but extending the
model to take into account the proper motion would require modeling the proper
motion of galaxies, something that has little to do with the overall expansion.
After all, this model is made to show that the universe is expanding, and less
than perfect R2 is not obscuring this message. Here a large R2 is a nice-to-have
feature, but not an essential one.

Cheatsheet 2.3: SSE and related terms
There are many acronyms related to sum of squared errors:

• SSE: Sum of squared errors SSE =
∑

i e
2
i =

∑
i(yi − ŷi)2

• MSE: Mean squared error MSE = 1
N SSE

• RMSE: Root mean squared error RMSE =
√
MSE

• TSS: Total sum of squares TSS =
∑N

i=1(yi − ȳ)2

• R2: how much of total variation in data does the model explain (between
0 and 1): R2 = 1− SSE/TSS

Cheatsheet 2.4: Model goodness measures

Different measures tell different things about the model:

• R2: large R2 means that model explains most of the variation in data.

• RMSE, root mean squared error is the “typical prediction error”, measured
in the same units as y.

• β shows how “strongly” are x and y related–how many units of y corre-
sponds to one unit of x. It depends on the units of measurement.

• p-values (also z and t values) show how likely it is that x and y are not
related.a

aMore precisely: what is the probability to see that large z value if there is not relationship
between x and y.
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2.1.6 Multiple Regression
Prerequisites: Section 2.1.2 Simple Regression, page 125

What is Multiple Regression

In case of simple regression we are concerned with how a single explanatory variable
x is associated with outcome y. But often we are interested in more than a single
explanatory variable. For instance, in order to predict income, we may want to include
education, but also age, gender and place of residence (rural or urban). So we do not
have just a single explanatory variable x but more than one of those. This is the idea
of multiple regression.

Technically, multiple regression is very similar to simple regression, just we allow
several explanatory variables to influence the outcome y at the same time. Say we are
interested in the effect of K explanatory variables. Now instead of (2.1.4)

(2.1.4): yi = β0 + xi · β1 + ϵi

we write

yi = β0 + β1 · x1i + β2 · x2i + · · ·+ βK · xKi + ϵi. (2.1.25)

For instance, in the income–education example above, we may have K = 4: x1 is
education, x2 is age, x3 is gender, and x4 is place of residence. The outcome y is
income. Exactly as in case of simple regression, we call y the outcome variable, xk
are explanatory variables and ϵ is the error term. The unknown parameters βk are
sometimes called slopes but more often just “betas”. And finally, index i stresses that
each observation i has a different value for y, x1, x2, …, xK and ϵ, but they all share
the same parameters β0 . . . βK .

(2.1.10):
ŷ(x1, x2, . . . ) = β0 + β1 · x.

In a similar fashion we also generalize the expression
for prediction (2.1.10) to multivariate case

ŷ(x) = β0 + β1 · x1 + β2 · x2 + . . . . (2.1.26)

While in case of the simple regression the predicted values form a line on x− y plane,
in multiple regression case it forms a K-dimensional hyperplane in K+1 dimensional
x and y-space.

Example 2.8: How is income related to education and literacy?

Let’s analyze the relationship between income, education and illiteracy by U.S.
states (R dataset state.x77, see also the example in Section 5.2.1). A sample of
the data looks like

Income HS Grad Illiteracy
5149.00 65.20 0.50
3983.00 51.60 1.10
3694.00 54.70 0.70
3821.00 41.80 1.70

where income is in 1977 dollars, HS Grad is high-school graduation rate (pct), and
Illiteracy is illiteracy rate (pct of population). We estimate multiple regression
model

Incomes = β0 + β1 · HSGrads + β2 · Illiteracys + ϵs
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where s are states. The estimates are β0 = 2131.33, β1 = 44.55 and β2 = −52.64.
Note that the estimates are not the same as when estimating two separate

simple regression models. For instance, a model

Incomes = β0 + β1 · HSGrads + ϵs

would lead to estimates β0 = 1931.1 and β1 = 47.16 instead. See the page 151
below for the explanations related to direct and indirect effects.

Example 2.8 can also be visualized as that only contains two explanatory variables
(K = 2) and hence the prediction hyperplane is a 2-D plane in 3-D space (Figure 2.10).
The image depicts two of the explanatory variables, HS Grad and Illiteracy on the
horizontal plane, and income on the vertical axis. The gray plane represents the
model-predicted values—the regression plane. In a similar fashion as the linear model
in two dimensions represents a line, in three dimensions it represents a plane ŷ =
β0 · HSGrad + β2 · Illiteracy . The figure indicates that the plane is sloping upward
toward higher HS graduation rate, the slope along the illiteracy axis is almost invisible.
The large blue and yellow dots represent the actual income values with those below
the regression plane barely visible, small dots are the corresponding model-predicted
values. The vertical lines that connect the small dots of predicted values with large
dots of actual values are the residual errors.
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Figure 2.10: Regression plane with two explanatory variables (HS Grad and Illiteracy). The
gray plane represents the 2-D regression plane, the large dots are the actual income values,
the small dots are the predicted values on the regression plane, and the vertical lines that
connect those values are the corresponding residual errors. Colors correspond to the actual
income values.
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We can see that the regression plane splits the data points in space through the
middle with roughly a half of the actual points above it and another half below it.
This is similar to the 2-D picture (see e.g. Figure 2.1) where the line splits the point
cloud on a plane in a similar fashion.

When incorporating three explanatory variables, the figure should contain a 3-D
hyperplane in a 4-D hyperspace, but unfortunately neither our tools nor our brains
can handle 4-D visualizations. In higher dimensions we can only visualize similar re-
gression planes that represent a higher-dimensional model where some of the variables
are held constant. However, such visualizations may be quite misleading.

Interpreting multiple regression effects

Interpretation of multiple regression coefficients is conceptually similar to that of
simple regression. However, multiple regression allows to eliminate indirect effects
and look at only direct effects. Imagine we are interested of the effect of education
on income.8 We estimate a model of form

Educationi = β0 + Incomei · β1 + ϵi (2.1.27)

But education and income may be related through different mechanisms. One, and
the most intuitive one is the “direct effect” where education directly influences the
income (e.g. if the employer pays higher salary for those with diploma). The direct
effect may also go the other way around, e.g. if income determines what level of
education one can afford. Both of these are direct effects (Figure 2.11, left panel).
But this is not the only way these two variables are related. For instance, education
also influences one’s choice of where to live, e.g. in urban or rural area, and income
differs by location. This is an indirect effect: education influences location, and
location in turn influences income. The opposite causality is plausible as well where
income determines where to live, and location determines the educational choice. It is
the same indirect effect. When working with simple regression, we allow the location
choice to change when education changes and hence what we measure is a sum of
direct and indirect effect. (Obviously, there are more factors than just location choice
that influence education and income, so it may be better to talk about indirect effects
in plural.) This is manifested by the fact that we do not include any information
about location in the model. The only explanatory variable is education.

But this is not the case of multiple regression where we estimate a model of a form

Educationi = β0 + Incomei · β1 + Locationi · β2 + ϵi. (2.1.28)

Here we include location as an additional explanatory variable and hence it cannot
just change as education changes—now it is determined by data. As a result, the first
indirect effect between Education and Urban/rural choice (Figure 2.11, right panel)
is broken. Education is not allowed to influence the location choice in an arbitrary
way inside the model—all influence is captured by data. What is left are two direct

8As “effect” we mean association, all sorts of relationships, including the causal effect. When not
doing causal inference we usually talk about just “effects”. When analyzing causal influence we talk
about “causal effects”.
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Simple Regression

IncomeEducation

Urban/rural

Direct

Indirect 1 Indirect 2

Multiple Regression

IncomeEducation

Urban/rural

Direct

No indirect 1 Direct 2

Figure 2.11: Analyzing the effect of education on income using simple regression (left) and
multiple regression (right). Simple regression includes indirect effect, the red line from
education over urbal/rural location to income. Multiple regression fixes the urban/rural
choice through data and in this way breaks the line between education and location. Only
direct effect (black line) is left. Two-way arrows stress that the causality may run in both
directions across the links.

effects–from education to income, and from location choice to income (or the other
way around as we cannot tell whether these factors cause income or income causes
these factors). More realistically, there are always more variables we cannot control,
so we just remove some of the indirect effects but still leave others in the model.
This process, including explanatory variables that remove the respective indirect ef-
fects from the model, is called controlling for these variables. So in the example
above we analyze the relationship between education and income, while controlling
for geographic location.

Now back to interpreting the numerical values of β-s. Multiple regression inter-
pretation is fairly similar to that of simple regression. First, we immediately see
from (2.1.25) that intercept corresponds to the expected outcome value given all ex-
planatory variables have value 0. It often refers to an unrealistic, or even impossible
case, e.g. income where age and education are 0. We rarely find the intercept to be
an interesting parameter.

However, the other coefficients are typically interesting. As visible from (2.1.25),
if x1 is larger by one unit, then predicted y is larger by β1 units, and if x2 is larger
by one unit then y is larger by β2 units, and so on. However, note that for this to be
true we have to keep all other x-s fixed while increasing x1, or while increasing any
particular x. So the interpretation is the following: βk shows how many units larger
y corresponds to one unit larger xk (in average) while other explanatory variables
remain at the same level.

Let’s return to the income-education-location example. In case of simple regres-
sion, the coefficient means “how much more will those workers earn who have one
more year of education. We compare more and less educated workers, and compute
the difference in their earnings. In case of multiple regression, the coefficient means
“how much more will those workers earn who have one more year of education, given
their place of residence is the same”. Hence we compare more and less educated
workers in the same place, and compute the difference in their earnings. These are
different questions and typically lead to different answers. In the simple regression
case we include location choice as one potential way how more educated workers can
increase their income. In multiple regression case we compare workers in the same
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location and hence exclude that mechanism.

Example 2.9: Income, education and literacy: interpretation

Example 2.8: regression model

Incomes = β0+β1 ·HSGrads+

+ β2 · Illiteracys + ϵs

using U.S. states’ data

Let’s now interpret the results of Example 2.8. The results were β0 = 2131.3,
β1 = 44.6 and β2 = −52.6. The interpretation of intercept β0—income in a hypo-
thetical state with no high-school graduates but also no illiterates is $2131.3—is
not particularly interesting. But β1 tells us that in case of two states that have
similar illiteracy levels, the one with 1 pct pt higher HS graduation rate has $44.6
larger income. This is an interesting outcome. In a similar fashion, β2 tells that
among two states with similar HS graduation rate, the state with 1 pct pt larger
illiteracy has $52.6 lower income. This is clearly relevant as well.

However, if we estimate a simple regression model that only contains HS
Grad but no Illiteracy, then the estimated value is a bit larger, β1 = 47.2 (see
Example 2.8). The difference is related to indirect effects: states with high HS
graduation rates tend to have low levels of illiteracy, and low illiteracy adds to
the income. This is an indirect effect of HS graduation rate. This path is blocked
when we control for illiteracy and hence we get a lower estimate for HS graduation
rate.

Note that we are not talking about causality here. Low HS graduation rates
tend to be associated with high illiteracy rates, but that does not mean that
more easily accessible high schools would are causing illiteracy to be low.

When is it advantageous to use multiple regression? Direct effects, identified in
multiple regression, are easier to interpret and it is easier to base policy implications
on these. For instance, imagine that we conduct two simple regression analyses and
find that better income is associated with better income, as does living in a certain
geographic area. What should we recommend to do? Improve education, or build
more homes in that region?9 In both cases the message is clear but different. In
multiple regression case we can actually disentangle these two effects and tell which
one is more important. This is not possible by using just simple regression. But
simple regression is more appropriate in other cases. For instance, if you want to
know whether better educated individuals earn more then location does not matter.
What you want is just the simple regression analysis.

Exercise 2.8: Multiple regression: income, age and experience

You estimate a regression model in the form

incomei = β0 + βage · agei + βexperience · experiencei + ϵi

where experience is work experience in years. You find β0 = −1000, βage =
−1000, βexperience = 10,000.

1. Interpret all three coefficients.
2. Explain why do we have βage < 0, i.e. why does income falls in age?

9Here we talk about causal effects. It is rare in practice that we can identify causal effects although
these are usually what policymakers need to make decisions.
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3. What is the predicted income for someone who is 25 years old and has 5
years of work experience?

Solution on page 485.

Formal Definition of Multiple Regression

x = (x1, x2, . . . , xK)
T is a

shorthand for x =


x1

x2

...
xK

 . See

Section 5.3.1, page 267.

From now on we follow vector-based formalism that makes notation, mathematics,
and numerical computations substantially simpler. We stack all explanatory variables
xi into a vector x, a shortcut for x = (x1, x2, . . . , xK)

T . Now the multiple regression
definition 2.1.25 can be written as

yi = β0 + β
T

· xi + ϵi. (2.1.29)

β
T
· xi =

β1xi1 + β2xi2 + · · ·+ βKxiK ,
see (5.3.31), page 274.

To simplify the notation further, the constant “1” is often included as the first (0-th)
component of x and hence x is defined as x = (1, x1, x2, . . . , xK)

T . Note that, strictly
speaking, it is not correct to refer x now as “data” or “variables”, unless you are
willing to refer to a constant as “data”. But this trick helps us to simplify notation
even further, and we still call it somewhat sloppily “data”. So the regression model
in it’s final vector form is written as

yi = β
T

· xi + ϵi. (2.1.30)

Note that whatever is the number of variables K, the vector form (2.1.30) remains the
same. Vectors allow us to abstract away from K, both in notation and in computer
code. Using vector notation we can write the predicted values analogously, as

ŷi = β̂
T

· xi (2.1.31)

where β̂ is the vector of estimated parameter values.
Now we can generalize the definition of simple regression (2.1.17) to multiple

regression. We just use the multiple regression predictions (2.1.31) to define the sum-
of-squared-errors (SSE):

SSE (β) =

N∑
i=1

e2i =

=

N∑
i=1

(yi − ŷi)2 =

=

n∑
i=1

(yi − x
T

i · β)2.

(2.1.32)

The notation we use stresses that SSE depends on the parameter vector β. The
solution β̂ is just the parameter vector that minimizes SSE (β):

β̂ = argmin
β

SSE (β). (2.1.33)

This minimization problem can be solved analytically, see Section 5.5, page 288.
TBD: multiple regression cheatsheet
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2.1.7 Categorical Variables
So far we have assumed that all our variables are numeric and hence the multiplication
β ·x is possible. But there are many types of data that are not numeric. For instance,
gender is often recorded as dichotomous label “male” or “female”. Home type may
be either “rental apartment”, “condo”, “single-family home” or “other”. And some
variables, although coded as numbers, are not really numbers. For instance, family
status may be coded as 1–single, 2–married, 3–divorced, etc. Such variables cannot
be directly included into regression models, and even if done so (we can include the
numerical categories for the marital status variable above), the results are probably
wrong and misleading.

Interval measure: difference is
defined; ratio measure: origin
(zero) defined; nominal measure:
only equality defined. See
Section 1.1.1 page 3.

The problem stems from the measure type–we can only do
multiplication and addition with interval or ratio measures. But house type and
family status are nominal measures, even if coded as numbers.

Consider the Males dataset (see page 466) that contains wages of 545 young men
in 1980s. We are going to describe the wage as a function of marital status, and
ethnicity. In the dataset we have marital status (variable married) coded as “yes”
and “no” for married and non-married men respectively. Ethnicity (variable ethn)
is coded as “black”, “hispanic”, and “other”. To give you better idea of the data,
Table 2.5 left part shows a small sample of it. wage refers to log hourly wage.

We would like to estimate a regression model along the lines:

logwagei = β0 + βm ·married i + βe · ethni + ϵi (2.1.34)

However, we cannot use the existing variables in a model like this as both marital
status and ethnicity are not numbers but categories. Hence we have to somehow
convert these variables into numeric ones. The most popular approach to transfor
categorical variables into numbers is by creating dummy variables (dummies). Dum-
mies are called so because they are “dummy”, simple variables that can only take two
values: 0 and 1.

Let’s start with married. This is a two-category variable with two possible values,
“yes” and “no”. An obvious choice is to convert it to binary 0/1 variable where “0”
refers to “no” and “1” refers to yes. Let’s call the variable m (Table 2.5 middle
column).

Table 2.5: Sample of Males data (left), binary (dummy) variable m denoting status “married”
(center). Dummies for three possible ethnic categories are in the rightmost three columns.

wage married ethn m eb eh eo

1.20 no other 0 0 0 1
1.52 yes other 1 0 0 1
1.46 no black 0 1 0 0
1.69 yes black 1 1 0 0
1.12 no hisp 0 0 1 0
2.22 yes hisp 1 0 1 0

As m is numeric, we can use it directly in the regression model like

logwagei = β0 + βm ·mi + ϵi. (2.1.35)
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This amounts to fitting just β0 for non-married men (as their m = 0) and β0 + β1 for
the married men. If we do this, we get the following results:

Estimate Std. Error t-value Pr(>|t|)
Intercept 1.5524 0.0105 147.28 0.0000
m 0.2203 0.0159 13.85 0.0000

The basic interpretation of the result is the same as in case of ordinary regression (see
Section 2.1.3):

• “Intercept” gives the average outcome value where all other explanatory vari-
ables are 0. In this case this means intercept corresponds to the average log-wage
where m = 0, i.e. average log-wage for those who are not married. Non-married
men earn 1.55 log units in average.

• “m” describes extra log wage of those who have one unit larger m. So men
who have m = 1 have average log-income larger by 0.22 units compared to men
with m = 0. Or in them plain language, married men earn more by 0.22 (in log
terms), in total 1.77.

Interpretation can also be understood from the fact that we are fitting β0 for the
unmarried and β0 + β1 for the married men, hence β0 must describe the unmarried
and β1 the difference between married and unmarried men.10

So we managed to include a categorical variable into our model. The interpretation
tells us how much do the corresponding categories’ outcome differ, in average. It was
rather easy in case of two categories.

Exercise 2.9: Do union members earn more?
The Males data also includes union membership (either “yes” or “no”). We can
create analogous dummy u = 1 for union members and 0 for non-members. When
running a simple regression

log(wagei) = β0 + β1 · ui + ϵi (2.1.36)

we get the following results:

Estimate Std. Error t-value Pr(> |t|)
Intercept 1.605 0.009 174.87 0.000
u 0.179 0.019 9.65 0.000

Use this table to answer the following questions:

1. What is the log-wage for non-union members? (in average)
2. What is the log-wage for union members? (in average)?

10While this is the most common way of introducing dummies, there are other options. For
instance, it is possible to specify the model in a way that β0 is the average wage for unmarried
and β1 is that for the married men. Different specifications are suited for different questions. For
instance, the original specification where β1 captures the difference between married and non-married
men is well suited to answer “Do married men earn more”?
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3. How big is the difference in favor of the union members?

Solution on page 486

The variable married has only two categories and hence we managed to transform
it into a single dummy m. But how to handle ethn that has three possible nominal
values? In this case we need to create two dummies. In order to understand the
process better, let’s start by creating three dummies, eb, eh and eo in a way that if
ethn = black then eb = 1, eh = 0 and eo = 0; if ethn = hisp then eb = 0, eh = 1 and
eo = 0; and if ethn = other then e0 = 1 and the other two e-dummies are both 0. So
we have converted one column with three different values into three columns with two
values each. (This is sometimes called one-hot encoding.) The resulting dummies are
given in Table 2.5 in the three rightmost columns. Intuitively, one might now want
to estimate a model as

log(wagei) = β0 + βb · ebi + βh · ehi + βo · eoi + ϵi (2.1.37)

but this will not work. To see why, let’s look what are the coefficients describing.
For blacks, the estimated log wage would be β0 + βb, for hispanics β0 + βh and for
others it will be β0 + βo. We have four β-s but only three groups, and hence we
cannot determine all four β-s at the same time. For instance, if we add 1 to β0 while
subtracting 1 from βb, βh and βo at the same time, the predictions will remain exactly
the same. We cannot identify all β-s.

As a solution, it is customary to measure the values with respect to a selected
category, called reference category. This means we set one of the β-s, for instance
βb, to 0.000 and now we can measure all other categories with respect to this one.
Statistical software typically picks the alphabetically first category as the reference
category, that’s why we pick βb. As its value is pre-determined, it is typically left out
of the regression output tables (hence also called left-out category). But sometimes
you may also see it listed with value 0.000.

So instead of (2.1.37) we estimate the model

log(wagei) = β0 + βh · ehi + βo · eoi + ϵi. (2.1.38)

The estimation results are below:

Estimate Std. Error t-value Pr(>|t|)
Intercept 1.5231 0.0236 64.46 0.0000
eh 0.0983 0.0312 3.15 0.0016
eo 0.1521 0.0254 5.98 0.0000

The multi-category dummies are slightly harder to interpret, although the basics are
the same:

• “Intercept” describes the log-wage in case where all explanatory variables are
zero. Here we have just two explanatory variables, eh and eo as we left eb out
as reference. Because of how the dummies are constructed, if both eh = 0 and
eo = 0, we must have eb = 1. This means when all explanatory variables are
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zero, we are looking at the reference category, blacks (as eb is not included in the
model, it does not count as an explanatory variable). Hence Intercept describes
the outcome for the reference category! In principle we could add an extra line
to the table:

Estimate Std. Error t-value Pr(>|t|)
eb 0.0000 0.0000 0.0000 0.0000

i.e. we can imagine the dummy for the reference category is included in the
table, just its value is exactly zero. This is sometimes done, in fact, to make
the reference category more explicit.

• The other dummies have the ordinary meaning. eh describes additional salary
for men who have eh = 1 instead of eh = 0 while keeping eo constant, i.e
it describes the extra salary for hispanics compared to blacks (remember: if
eh = 1 then eb must be 0). The interpretation for eo is similar.

In summary, in case of multi-category dummies, intercept describes the reference
category and estimates for the other dummies describe the difference between the
corresponding groups and the reference group. It is crucial to know what is the
reference category in order to understand the results. Note that we can describe two-
category dummies in exactly the same way: we create two categories (married and
non-married) and left the non-married out as the reference category.

Exercise 2.10: Diamonds’ price depending on cut

You are estimating the price of diamonds depending on their cut. There are three
different cuts: “fair”, “good”, and “perfect”. Your estimates are βgood = 1000,
βperfect = 2500.

1. Which one is reference category?
2. How much more expensive are good diamonds compared to fair diamonds,

if they are otherwise similar?
3. How much more expensive are perfect diamonds compared to good dia-

monds?

Solution on page 486

Exercise 2.11: Interpret multi-category dummies

The Males dataset also includes a variable residence that describes the geographic
location. These are rural area, north east, northern central and south. When
estimating the model where we explain the log wage with the geographic location,
we get the following results:
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Estimate Std. Error t-value Pr(>|t|)
Intercept 1.584 0.057 27.6 0.000
north east 0.164 0.061 2.7 0.007
nothern central 0.047 0.060 0.8 0.431
south 0.032 0.059 0.5 0.591

1. What is the reference group for variable residence?
2. What is the predicted log wage in Northern Central?
3. What is the predicted log wage in rural areas?
4. How much larger (or smaller) is log wage in South compared to rural areas?
5. How much larger (or smaller) is log wage in North East compared to South?

Answer on page 486

Exercise 2.12: Why a single race only?

Consider the example with income and ethnicity above. We repeatedly stressed
that the ethnicity dummies are mutually exclusive, e.g. if eh = 1 then eb must
be 0. Why this? Why cannot we allow multi-racial individuals?

Answer on page 486

Cheatsheet 2.5: Categorical variables in linear regression

Introducing and interpreting categorical variables in linear regression goes like
this:

1. Convert categorical variables to dummies. You need one dummy for each
category, e.g. in case of 10 cities you get 10 different dummies. The dum-
mies are coded are mutually exclusive, for each observation one and only
one dummy has value “1” while all others have value “0”.

2. Leave one dummy out as the reference category.

3. Interpretation:

• Intercept: predicted value for the reference category
• βc: predicted difference between the category c and the reference cat-

egory.

Always report what is your reference category!
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2.1.8 Interactions effects
Interaction effects (also cross-effects) is a way to build regression models that do not
just handle variables independently, but allow different outcomes for certain joint
combinations of variables. This is one of the most widely used methods to add
flexibility to regression models.

Artificial example

Let’s look at an artificial example.11 Consider an analysis where we are interested in
income as a function of cognitive skills and social skills.12 Assume we have collected
data on personal income, performed a test for cognitive skills (such as IQ test), and
assessed the social skills too. Let us measure both skills in a binary fashion: low (0)
and high (1). Take a look at the four individuals (a, b, c, and d) in Table 2.6.

Table 2.6: Example skill-income data.

1 2 3 4 5 6
Annual Skills Interaction

id income, $ Social Cognitive Social × Cognitive Captured by
a 40,000 0 0 0 β0
b 60,000 0 1 0 β0 + βc
c 50,000 1 0 0 β0 + βs
d 100,000 1 1 1 β0 + βs + βc + βsc

We focus on the first four columns for now. The baseline individual a, the one
with low social and low cognitive skills, earns $40,000 a year. The next one, individual
b, has low social skills but high cognitive skills and makes $60,000, i.e. $20,000 more
than individual a. This suggest that the effect of cognitive skills is $20,000. No
surprise, cognitive skills are valuable. However, when we compare individuals c and
d, we see that adding cognitive skills for someone who already has high level of social
skills improves her income by $50,000. Cognitive skills are even more valuable for
someone who has more social skills.

This effect cannot be captured by the baseline multiple regression model (2.1.25).
If we were to estimate the data using a model like

incomei = β0 + βs · social skillsi + βc · cognitive skillsi + ϵi, (2.1.39)

we will interpret βc as the effect of cognitive skills, no matter what is the level of
social skills. If we run such a linear regression on these data, we get βs = $25000 and

11See Deming (2017).
12Cognitive skills are skills that required for conscious mental work, such as reading, learning,

math. These can be measured with standard tests, such as IQ or AFQT. Social skills are skills we
use in human communication and persuasion, and include a plethora of small-scale behavioral habits
that are hard to assess and train consciously.

TBD: find a few good papers.
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βc = $35000. The latter figure corresponds to the average effect of cognitive skills for
low- and high social-skilled individuals (i.e. the average of 20 and 50). But what if
we want to capture the fact that higher social skills are related to a larger effect of
cognitive skills?

This can be done by amendending the model (2.1.39) with an interaction term,
βsc · social skills× cognitive skills. From practical perspective, the interaction term is
equivalent to creating a new variable, social skills × cognitive skills (see column 5 in
Table 2.6), and adding it into the regression model as just another feature. Modern
software typically has handy shortcuts for this operation, so usually you do not need
to create such additional variables explicitly. So the corresponding linear regression
model with an interaction effect will look like

incomei = β0 + βs · social skillsi + βc · cognitive skillsi+
+ βsc · social skillsi × cognitive skillsi + ϵi. (2.1.40)

When we estimate this regression model, we get β0 = $40000, βs = $10000, βc =
$20000 and βsc = $30000.

Unfortunately, interaction effects make regression models harder to interpret. The
basic interpretation remains the same: β tells how much larger is the expected out-
come for those who have the variable’s value larger by one unit. However, now
the variable values are not independent any more. We cannot have social skills ×
cognitive skills = 1 if the person has social skills = 0. So we cannot just conclude
that “those with high social skills earn 10000 more than those with low social skills”
as β1 suggests. Now the effect size depends on the level of cognitive skills.

Interpreting the Interaction Effects

In order to interpret the results, let us start by predicting the income for everyone
in data. As even experienced researchers get confused by the interaction effects, it
is helpful to write down the table of dummies for each four individuals (Table 2.6,
columns 3-5). Importantly, we have also marked the interaction effect here (col-
umn 5). Each of the dummy columns corresponds to one variable in the regression
model (2.1.40) and hence to the respective β.

Consider the first individual a who has both low social and low cognitive skills.
She has all the explanatory variables equal to 0, so her predicted income will just be
ya = β0 = $40000 (see the last column in the table). Next, for the individual b who
has low social skills but high cognitive skills, we have yb = β0 + βc = $60000 as b
has cognitive skills dummy equal to unity. Individual c has low cognitive skills but
high social skills and hence her income is yc = β0 + βs = $50000. Finally, d has both
high social and high cognitive skills, and hence her social × cognitive = 1 as well. Her
income is accordingly yc = β0 + βs + βc + βsc = $100000. The summary of modeled
effects are in the last column in Table 2.6.

In order to interpret the interaction effect βsc, we compute the income differences.
Individuals b and a have low social skills and their income difference is only due
to the effect of cognitive skills βc = $20000. Individuals c and d have high social
skills and their income difference is captured by sum of two coefficients, βc + βsc =
$50000 as individual d has both cognitive skills and the interaction effect non-zero.
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So in conclusion, we can interpret the interaction effect βsc as the additional effect of
cognitive skills for those individuals who have high social skills.

Sometimes it is worthwhile to present the effect in a graphical form (Figure 2.12).
The figure depicts two lines: the blue line describes the relationship between cognitive
skills and income for low–social skill individuals, and the red line depicts the relation-
ship for high–social skill individuals. Red line is steeper than the blue line, indicating
that high–social skill individuals gain more from cognitive skills. If there were no
interaction effects, the high–social skilled individuals would be represented just by an
upward shift of the blue line (marked by dots). However, because high skills in both
dimensions complement each other, the red line is steeper, and the “extra steepness”
is captured by βsc.

Cognitive

skills

Income ($1000)

Low social skills

High social skills

Low High

β0 = 40

β0 + βs = 50

β0 + βc = 60

β0 + βs + βc + βsc = 100

βs = 10

βs = 10

βc = 20

βsc = 30

Figure 2.12: Interpretation of interaction effects. The blue line depicts the relationship
between income and social skills for low-social-skill individuals, and red line that for the
high-social-skills individuals.

Interaction effects are a popular way to add flexibility to the linear regression
and other similar models. The result is not linear any more in the original features
(social×cognitive is not a linear term!) but it is still a linear function in the extended
feature set where social×cognitive forms a separate feature. But the added flexibility
comes with a cost—more complex interpretation. While the model (2.1.40) is not
hard to interpret, we have lost the beauty of the original model: β1 and β2 are not
the universal effects of social and cognitive skills any more. The effect of one factor
depends on the level of another factor.13

One can easily extend the interaction effects to multi-category variables, and to
continuous variables. It is also easy to introduce 3-way interactions but those are
substantially more demanding to interpret. However, if we are only interested in
prediction then interpretation is not a major concern.

13In certain literature, in particular in psychology, the sentence is often phrased as “the effect of
one variable is moderated by another one”.
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Example 2.10: Importance of social skills

Deming (2017) analyzes the effect of cognitive and social skills on wage. He uses
NLSY dataa to establish cognitive skills, and workplace occupational require-
ments to associate jobs with social skills. Both skills variables are standardized,
i.e. their average value is zero. He uses a linear regression model of the form

logwagei = β0 + β1 · cognitive skillsi + β2 · social skillsi+
+ β3 · cognitive skillsi × social skillsi + β4 ·Xi + ϵi (2.1.41)

where X are the other individual characteristics besides of the skills. His results
are

variable effect std.error
cognitive skills 0.206∗∗∗ 0.007
social skills 0.049∗∗∗ 0.006
cognitive×social 0.019∗∗∗ 0.006
R2 0.344

where ∗∗∗ means the estimate is significant at 1% confidence level. These out-
comes have the following interpretation (see Section 2.1.6 on page 151):

• One unit larger cognitive skillsb are related to 0.206 units larger log income
(i.e. e0.206 = 1.220 times larger wage, see log-transformation) for those
with social skills equal to zero (i.e. average social skills).

• One unit larger social skills are associated with 0.049 units larger log wage
(i.e. e0.049 = 1.05 times larger wage) for those with cognitive skills zero
(i.e. average cognitive skills).

• There is an additional log wage premium 0.019 (i.e. e0.019 = 1.019 times
larger wage) for workers with both social and cognitive skills one unit above
the mean. If both skills are two units above the mean, the log-premium is
four times as large and the wage is e4·0.019 = e0.076 = 1.079 times larger.

This is the central results of the study: cognitive skills are more valuable for
workers with high social skills. Equivalently, this can be put in the other way
around: social skills are more valuable for workers with high cognitive skills.

aNational Longitudinal Survey of Youth
b“Unit” in case of standardized features is their standard deviation.

When to use interactions?

When do we want to include interaction effects to the model? And what kind of
interaction effects? This is something we have to decide, as the number of possible
interaction effects will easily get out of hand. For instance, in case of three explanatory
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variables, x1, x2 and x3, the model with full interaction effects will be

yi = β0 + β1 x1 + β2 x2 + β3 x3+

+ β12 x1 x2 + β23 x2 x3 + β31 x3 x1+

+ β123 x1 x2 x3 + ϵi. (2.1.42)

Note that this also includes a 3-way interaction effect β123 x1 x2 x3. Interpreting
such a model is rather complicated, it also has more stringent data requirements
than a model without any interaction effects. So we cannot just include all kinds of
interaction effects in all models.

There are a few good reasons to include these effects.
First, it may help to in terms of allowing the effect of interest to be more flexible.

As the artificial example above shows, we may want to allow the effect of cognitive
skills to depend on the level of social skills. Interaction effects is one convenient way
of achieving this.

This usually only makes sense for the effect of interest, not for other variables.
For instance, we might also include age and education interaction in the same model,
but that would make the model more complicated, without necessarily given us any
more insight. After all, we are interested in cognitive and social skills, not age and
education. However, we might also include an interaction term between cognitive
skills and age–this will add even more flexibility, and allow the skills to have different
effect at different age. In contrary, interaction between skills and education may be
hard to interpret as education is very closely related to skills anyway.

see Section 4.1 Predictive
modeling, page 227

Another reason to include interaction effects is related to predictive modeling. In
predictive modeling, we are typically not interested in interpretation, and hence the
model complexity is not of major concern. However, when we introduce too much
flexibility to the model, then we may run into overfitting (see Section 4.3 Overfitting
and Validation, page 241). So even in that case it is better not to introduce too
many interaction effects. One can use standard model selection tools, such as forward
selection, to assess whether the particular terms are worth including into the model.

So in case of inferential modeling, one typically only includes interactions of the
effect of interest, and a few other variables where we either expect to see a strong
relationship, or which’ relationship we are particularly interested. Here are a few
potential examples:

• Effect of a vaccine: we may want to know how does effect of this drug depends
on other medications the patients are taking. Such side effects may be critical
in determining the cure. Hence we may include multiple interaction effect in
the form

· · ·+ βv × vaccine + βi × ibuprofen + βa × antidepressant+
+ βvi × vaccine× ibuprofen + βva × vaccine× antidepressant + . . .

We may include an interaction effect gender, but only if we have good reasons
to believe that male and female bodies may react differently to the particular
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vaccine (e.g. because it affects certain hormones). We probably do not want
to include interactions with time if there is little reason to think that the effect
will change from year-to-year.

• Effect of free-trade agreement on businesses. We may want to allow the effect
to depend on the business sector as, e.g. firms in easily tradable manufacturing
goods sector may face different opportunities than much less tradable service
sector. We may also want to include interaction with time, as the new de-
velopments, spurred by the agreement, may take several years to materialize.
However, gender of the CEO is probably irrelevant (unless this is our research
question), so we do not want to include the corresponding interaction effect.

TBD: Examples from the literature
Finally, interaction effects are not the only way to introduce more flexibility to

the model–instead of differences, captured by the interaction effect, one may estimate
the levels for all groups separately. We do not discuss this approach in this book.

Interaction Effects and Intersectionality

Interaction effects is the linear regression way to assess intersectionality. The concept
of intersectionality refers to the fact that many important experiences by individuals
who belong to multiple groups cannot be described as only a sum of experiences by
members of one and only one of those groups. The concept of intersectionality is
typically used in context of discrimination. For instance, it may not be correct to
describe the experience of a black women as a sum of experience of black (men) and
(white) women. A workplace that treats black men equally to white men, and white
woman equally to white men, may still treat black women in a unfair fashion: the
trait of being black and the trait of being woman “intersect”.

We can transform this example into a regression model. Assume “treatment”
here means wage the workers of the particular group receive (we can as well use use
other “treatments”, such as promotion, hiring, or harassment). We can write a linear
regression model for wage as

wi = β0 + βr · racei + βs · sex i + ϵi (2.1.43)

where wi is wage of individual i. If we model income in this way, the “treatment”
(i.e. wage) is just sum of the treatment of the corresponding race parameter βr and
sex parameter βs. There is no intersectionality. However, if we add the interaction
effect

wi = β0 + βr · racei + βs · sex i + βrs · racei × sex i + ϵi (2.1.44)

then the treatment is “made of” three components: treatment of the corresponding
race group, the corresponding gender, and the “intesectional effect” βrs. The members
of particular race and gender may receive wage that differs from the sum of just race
effect and just gender effect.

Note also that in linear regression we are always working with average values, e.g.
looking for average salaries of whites and non-whites, and of men and women. Such
aggregated approach has certain parallels with group prejudices. It is easy to look at,
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say, βs only, and claim that this number describes all women. This is not correct, the
number describes the difference between male average and female average for all man
and women in this sample. Also, it is important to understand that models (2.1.43)
and (2.1.44) only address the size of male-female difference, not its cause.
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2.1.9 Feature Transformation
Prerequisites: Log-normal distribution, page 77

Standardization TBD: standardized features

Log-transformation Many types of data, such as income or price, have a well-defined
lower bound but no obvious upper bound. The corresponding distributions tend not
to look normal but are more similar to log-normal (Figure 2.13) and hence violate the
assumptions we need to compute standard errors (see Section 2.1.10, page 172). An
obvious remedy is to analyze log-income instead of income and in empirical literature
income analysis is almost universally done in log form. In such case, transforming
your outcome variable into log outcome has two main advantages, one theoretical and
one data-driven.

1. If distribution of log-income is more similar to normal, the issue of violating the
normality assumption is likely small. This is the theoretical advantage.

2. Second advantage is data driven, and is typically correct in this type of data.
Namely, log transformation improves the predictive power of the model (in-
creases R2), often by a substantial amount. This, in turn, is related to the
fact that this type of data is often created not by additive processes but by
multiplicative processes (see below).

Let’s analyze the effect of log-transform in context of simple regression. When
transforming the outcome to log y, we can write the model as

log yi = β0 + β1 · xi + ϵi. (2.1.45)

Taking exponent of both sides we can transform it back to non-log form:

yi = eβ0 · eβ1·xi · eϵi . (2.1.46)

This is not a linear model but a multiplicative model: y is not a sum but a product
of three different terms:

1. eβ0 is the value of y in case both x = 0 and ϵ = 0. This is the analogue of
intercept.

2. eβ1 describes the relationship between y and one unit larger x: the cases that
have one unit larger x have outcome y larger by eβ1 times.

3. and finally, eϵi is the (multiplicative!) error term.

The second advantage, in other words, is an empirical regularity: it appears that
fat-tailed outcome can typically be better explained by multiplicative models instead
of additive models.

Finally, we also discuss the interpretation. The basic interpretation of the model
is always the same but as our outcome now is log y, we now have that one unit larger
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Figure 2.13: Distribution of UK household income in early 1980-s. Income distribution (left
panel) does not look normal, it has a long thin tail of high-income households reaching up
to weekly income 1000£. Log income (right panel) is fairly close to normal as logarithm
spreads low-income observations out and squeezes the high-income ones closer together.
Ecdat package data.

x corresponds to β1 units larger log y (not y!). When transforming the model back
into non-log form (outcome is y, not log y), we can restate the interpretation as one
unit larger x is associated with eβ1 times larger y. If β1 is small, then eβ1 ≈ 1 + β1
and we can say that it describes how many percent larger y we tend to observe when
x is larger by one unit.14 For instance, if β = 0.1, eβ = 1.105 ≈ 1.1. Remember, this
is a multiplicative effect and hence we can say that one unit larger x is associated
with 10 percent larger y.

Example 2.11: How does income depend on age?

Let us use the same UK budget dataset as in Figure 2.13 above. The data
include age of the household head (between 19 and 60). We convert this to four
age categories (-29, 30-39, 40-49, 50-) and estimate the regression model in the
form

log yi = β0 + β
T

ai + ϵi

where a is a vector of the corresponding age category dummies. The results are
14Note that this interpretation does not hold if one uses decimal logarithm instead of natural

logarithm because 10β ̸≈ 1 + β even if β is small.
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Estimate Std. Error t-value Pr(>|t|)
Intercept 4.669 0.018 258.26 0.000
30-39 0.213 0.022 9.49 0.000
40-49 0.297 0.028 10.69 0.000
50- 0.174 0.046 3.79 0.000

Interpretation of the results is as follows:

• The reference category is the “-29”, the one that is missing in the table.

• Intercept indicates that the expected log-income for households in the ref-
erence category is 4.669.

• 30-39 indicates that houselds where the head is 30-39 years old earn 0.213
more in log-units (in average). This means they earn e0.213 = 1.237 times
more, or 23.7 percent more than the reference category.

• Analogously, 40-49 year old households earn 0.297 more in log-units, i.e.
e0.297 = 1.345 times more, or 34.5 percent more than the reference category.

• Finally, the over-50 households earn more than the reference category but
less than the middle-aged households.

R2 of the model is 0.082. For comparison, R2 of linear model, without log-
transforming income, is 0.063, indicating that log-transform improves the model.
This is not an impressive number, but realistically, we should not expect to be
able to predict household income well based just age of its head.

Exercise 2.13: Wheat yield and CO2

You are an agricultural researcher analyzing the effect of CO2 concentration on
the wheat yields. You estimate a linear regression model in the form

log yi = β0 + β1 · ci + β2 · Ti + β3 · wi + ϵi

where yi is the yield, ci is the CO2 concentration, T is the temperature and w is
the amount of water in the experiment i. You find β1 = 0.007.

1. How do you interpret β1?
2. Based on your experiment, can you say that global warming will improve

wheat yields?

Solution at page 486

Log-log transformation In certain type of data, it may be advantageous to log-
transform not just y but also x and hence to look at the model

log yi = β0 + β1 log xi + ϵi. (2.1.47)
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The standard interpretation sounds like “log y is larger by β1 units in observations
that have log x larger by one unit”. In order to find the interpretation of β1, we can
again take exponent of both sides. We get

yi = eβ0 · xβ1

i · e
ϵi . (2.1.48)

This models suggests it is worthwhile to look at a case where x is larger by a certain
proportion, say by α percent. In that case y will be larger (1 + α)β1 times. If we
choose a small α (for example, 1 percent, i.e. α = 0.01), this is approximately equal
to (1 + α)β1 ≈ 1 + αβ. Hence we can interpret it as how many percent is y larger
when x is larger by one percent. This figure is often called elasticity. Compare the
interpretation of log-transformed and log-log transformed data. In the former case we
find percentage increase per unit increase in x, in the latter percentage increase per one
percent increase in x. Cheatseet 2.6 summarizes the interpretation of the regression
coefficients. As multiple regression model can include both log-transformed and not
log transformed predictors, different model estimates may have to be interpreted in
different ways.

Example 2.12: Linear, log-linear, and log-log transformations

We use linear regression to analyze the relationship between price and mass of
diamonds (data from R pacakge ggplot2). Figure 2.14 shows the relationship for
no transformation, log-transformation, and log-log transformation. Just a visual
impression suggests that the latter fits best to a line.
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Figure 2.14: Diamond mass (carat=0.2 gram) and price data, including the correspond-
ing regression lines. Left panel shows the linear model in price and carat. One can see
that the line does not capture the convex pattern in data. Middle panel shows a model
that is linear in log price and carat. Now the data pattern in concave and again the
line fails to capture it well. On the right panel we log-transform both variables, and
the result looks very good visually.
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Next we analyze how do the corresponding linear regression models look like:

Table 2.7: Results of three different regression models: linear-linear, log-linear, and
log-log.

. object. .. ..
Intercept -2257.750*** 6.000*** 8.468***

105.055 0.022 0.011
carat 7744.034*** 2.310***

122.557 0.026
log(carat) 1.700***

0.015
# obs 965 965 965
R2 0.8057 0.8902 0.9273

We can see that the log-log model has the best predictive power (highest R2)
while linear-linear has the worst R2. The corresponding regression coefficients
can be interpreted as follows: for linear-linear model, β1 means that one carat
heavier diamonds are 7744.034 dollars more expensive. In log-linear model, 1
carat heavier diamonds are e2.31 = 10.079 times more expensive. Finally, log-log
model suggests that 1 percent heavier diamonds are 1.7 percent more expensive.

TBD: other kind of feature engineering

Cheatsheet 2.6: Log transformations in linear regression

The table below summarizes interpretation of linear, log-linear and log-log mod-
els.

Type Interpretation of β1
linear-linear (y ∼ x) one unit larger x is associated with β1 unit larger

y
log-linear (log y ∼ x) one unit larger x is associated with β1 pct larger

y (only holds for small β1 values)
linear-log (y ∼ log x) one pct larger x is associated with β1/100 units

larger y (only holds for small β1 values)

log-log (log y ∼ log x) one pct larger x is associated with β1 pct larger
y
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Non-linear regression Linear regression assumes a linear relationship between y and
and extended features, not necessarily between y and x.

TBD: What it is and why OLS is called linear
TBD: Polynomial regression

2.1.10 Theoretical considerations
Assumptions in OLS Models

Linear regression is not universally correct. In order for the coefficients to be inter-
pretable, the standard errors and t-values to be correct, and predictions to be reliable
we need a number of assumptions. Fortunately, as we defined the model in a rather
rigorous way, we also have precise assumptions. This is fortunately, because we can
now analyze each particular model, dataset, and process we are modeling, and analyze
how likely it is that the assumptions are satisfied, and what happens if they are not.

Here we list just the most relevant assumptions we use in these notes:
1. The model is correctly specified. This means that the process we are analyzing

is actually well described by a linear relationship, and not with something else,
e.g. a curve. This is obviously important in order to talk about “correct” β-s,
if the model is wrong to begin with then there is not such thing as correct β-s.
This is typically not a problem for noisy data (human behavior–related data
tends to be noisy), and it is also good fit for many other type of relationships.
But not for every relationship. If the underlying process is not well approxi-
mated with a linear model, then the regression estimates describe some sort of
average relationship, which may or may not be good for our purpose.

2. Mean-zero error term E ϵ = 0. This is effectively normalization. It is almost
always a harmless assumption, unless we are interested in the exact value of the
intercept. But as we rarely are, so this assumption is rarely a problem.

3. Normal errors ϵ ∼ N(0, σ2). Normally distributed errors are needed for correct
t-values. However, if the normality is not violated too much then we can still rely
on the z-values in large samples through central limit theorem. But if deviations
from normality are large, then the errors can be misleading even in large samples.
Large deviations usually mean some sort of fat-tailed distributions, e.g. when
analyzing a sample with many large outliers. Often a remedy is to take a log of
the original variable.

4. Independent error terms. Error term of one observation must not influence
the error of another observation. If it does, our standard errors may be very
misleading. This is typically a problem in two types of data:

(a) temporally or spatially related data, e.g. time series or geographic data.
Stock price yesterday influences stock prices today, and house prices in a
neighboring town influence house prices in this town.

(b) clustered data, i.e. in stratified samples. For instance, drug use by high
school students is not independent but affected by their peers, many of
whom also attend the same schools.
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These problems can be corrected through fairly straightforward methods, but
you have to choose an correction method that is appropriate to the nature of
the data.

5. Explanatory variables and error term are independent: x ⊥⊥ ϵ. (note: the
previous assumption was about error terms of different observations, this is
about x and ϵ of the same observation.) This is needed to get correct estimates
of β. It is fairly harmless if we are only interested in association (i.e. non-causal
relationship)–we just report that those who have more education also earn more.
However, this is the crucial problem for causal inference, i.e. if we want to tell
how much will someone’s income improve if she were to take a college degree.

One should test the assumptions as needed when working with linear regression mod-
els. What and how do you test depends on the nature of the problem and data as
some of the violations may be harmless.
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2.2 Logistic Regression
The previous section introduced linear regression, one of the central workhorses for
inferential analysis. The main requirement for the linear regression is that the outcome
variable, y, is continuous, or at least close to continuous. This was the case with both
galaxies and income.

However, for a large class of problems, this is not the true. For instance, the
question whether someone survived the shipwreck, whether a tweet will be retweeted,
and whether an oil drill gets stuck in the drillhole cannot be described with continuous
outcome. The passenger either survived or not, and a tweet was retweeted or not.
Even if we describe these outcomes with numbers (e.g. survival as “1” and death as
“0”), the result is not a continuous problem. We need different tools for this type of
tasks.

2.2.1 What Is Logistic Regression And What Is It Good For?
Consider policymakers during economically challenging times. Unemployment is large
and work is nowhere to be found. Government is spending lot of money on benefits and
the voices that are concerned about the effect on workers’ motivation and governments
coffers are growing in strength. But actually–it is not just that work is nowhere to
be found. There are plenty of jobs available. But unfortunately those jobs require
different skills, skills that most unemployed do not possess. So government comes up
with idea to upskill the unemployed instead of just paying benefits. It announces a
subsidized training program where all unemployed are welcome to participate. But
who will actually end up joining this program?

Table 2.8: An example of “Treatment” data. treat is treatment, “T” mean the person
participated and “F” means they did not participate in a training program. re denotes real
income (in USD) and u unemployment in years 1974-1978.

treat age educ ethn married re74 re75 re78 u74 u75
F 19 8 other T 14694 12532 18540 F F
F 26 14 other F 29389 30436 29554 F F
F 29 12 other T 10776 12532 25860 F F
F 34 16 other T 35267 39387 41672 F F
F 42 9 other T 28018 23453 26377 F F

Let us analyze this question using “Treatment” dataset (R package Ecdat). The
dataset describes various labor market–relevant variables, such as education, income
and unemployment, but for now, let’s focus only on age (see Table 2.8 for an example).
Are the participants more likely young or old? Figure 2.15 displays the relationship
between participation and age. The graph looks a bit weird, this is because there
are only two possible values for participation–either 1 (participated) or 0 (did not
participate), and only integer values for age. In order to avoid too much overlap,
we have knocked the points a bit off from their true location so we get a small
point cloud for each age and participation combination. The figure reveals that most

https://bitbucket.org/otoomet/lecturenotes/raw/289c668c21d210df3825323a238ae26813511864/data/treatment.csv.bz2
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participants (Participation = 1) are young. It is hard to see the age distribution of
non-participants–the black dots overlap quite a bit, but it seems the most common
age range in this dataset is 20-30.
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Figure 2.15: Participation as a function of age. Treatment data. In order to avoid overlap
on the plot, the points are moved slightly off from their true location. The blue line is the
linear trend line.

The model also displays trend line (regression line, blue). But unlike in case of
Hubble diagram (Figure 2.9) where the dots were aligned with the regression line,
more-or-less, the line here seems to miss the dots almost completely. Why does linear
regression behave so miserably?

The main culprit is the fact that the outcome is a binary variable. Treatment
status can only be “0” or “1” and nothing in between. But a line cannot touch just
one or another of these values, a line also connects everything in between. So we
necessarily see values like “0.1” and “0.5”, numbers that do not make any sense in
terms of treatment. The way to overcome this problem is to interpret the outcome
not as the treatment value, but probability that the individual is treated. So a value
“0.5” would mean fifty-fifty probability that someone is treated while “0.99” would
mean that the person almost certainly participated. Taking this view, the trend line
suggests that the probability for a 20-year old to participate is approximately 15%,
but for a 40-year old the probability is more like 5%.

In fact, this approach is widely used and a linear regression model that describes
probability is called linear probability model (LPM, see Section 2.3). But LPM-s
also have another problem. You can see that the line falls below zero around age 46.
Should we interpret it as the 50-year olds have a negative probability to participate?
That is obviously nonsense. In a similar fashion, the line will exceed probability 1
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somewhere (the age where this happens will be negative in this case, so it is not a
problem here). We can obviously hack the model in a way that we set probability
to zero if the predicted probability is negative. But what should we do with the
48-year old participant then (the oldest participant in Figure 2.15 is 48 years old)? If
the participation probability at that age is zero then we should not see even a single
participant in that age category. But we see a few, so we need to set the probability
not to zero but to a small positive number... If you are still with me then you probably
agree that making linear regression to work with probabilities needs a lot of hacking,
and the model is not a nice and intuitive any more. So we need another model that
a) models probability Pr(outcome = 1), not the value of outcome; and b) ensures
that the probability is in [0,1] interval.

There is a wide range of applications with binary outcomes where can such a model
is handy. For instance, if someone attends college, gets a job, defaults a loan, that an
email is spam, or that an image depicts a cat are all binary-outcome questions. And
linear regression is not well suited to answer such questions.

Logistic regression (aka logit) is the most popular model designed for exactly
this type of tasks, the tasks with binary outcome. “Binary outcome” means these
questions can only have two answers–”0” or “1”, “true” or “false”, “cat” or “not a cat”.
This makes it distinct from linear regression that is designed to measure continuous
outcomes, i.e. outcomes that can take all sorts of numeric values. Whether the
outcome is numeric or something else plays almost no role for logistic regression, we
can always transform two possible outcomes into “0” and “1”. This is what we did
with with treated and non-treated above.

Exercise 2.14: Linear or logistic regression?

Would you use logistic or linear regression to analyze these questions:
1. How long will cancer patients survive after treatment?
2. How good is students’ GPA?
3. Who gets admitted to an elite school?
4. Will the tweet be retweeted?
5. How many people will read the tweet?
6. Who survived a shipwreck?

Solution on page 487

Mathematically, it is essentially a transformation of linear regression model that
is interpreted as probability. The transformation is done using logistic function (aka
sigmoid function)

Λ(η) =
eη

eη + 1
=

1

1 + e−η
. (2.2.1)

Logistic transformation and
log-transformation (see
Section 2.1.9 Feature
Transformation, page 167) are
different concepts!

Here one can understand η as the “output” of linear regression, and Λ(η) is logistic
transformation of η, (see Figure 2.16). It has two properties that make it a perfect
fit for probability modeling:

• It is monotonically increasing, i.e. a larger η always corresponds to a larger
Λ(η). This makes it a good choice to model the fact that we typically see
smooth transitions in data, such as older workers are less likely to participate
as in Figure 2.15.
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• Its values are strictly in the interval (0,1). So these are directly interpretable as
probabilities and we do not need any further hacks.
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Figure 2.16: Logistic function (logistic transformation). While the input variable η can have
any value in (−∞,∞), Λ(η) is limited to interval (0,1). This is what makes it suitable for
modeling probability.

β
T
·x = β0 + β1 · x1 + . . . βK · xK

See Section 5.3.2 Vector
multiplication as matrix product,
page 274 and Section 2.1.6
Formal Definition of Multiple
Regression, page 154.

More specifically, η in the logistic regression formula (2.2.1) is not called “linear
regression output” but link, linear predictor or linear index. But it is calculated in
exactly the same way as the predicted value for linear regression: ηi = β0 + β1 · xi in
case of a single explanatory variable, or in vectorized form as θi = β

T

· xi in case of
multiple explanatory variables. So we can write the logistic probability in a slightly
longer form as

Λ(x) =
1

1 + e−β
T
·xi

. (2.2.2)

This is the expression for the probability that the outcome is “1” for given values of
x. For completeness, we state it once again:

Logistic regression model

Pr(Y = 1|x) = 1

1 + e−β
T
·x
. (2.2.3)

This must be understood as the rule to compute the probability that the outcome
Y = 1 if the value of the explanatory variable is x. Exactly as in case of linear
regression, we have to find such parameter vector β that gives the “best” fit with
data.

(2.1.4): yi = β0 + xi · β1 + ϵi

Note another important difference between logistic and linear regression models.
Namely, the logistic regression (2.2.3) does not contain an error term while the linear
regression (2.1.4) does. This is because in case of linear regression we are modeling
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outcome value, and we need an error term to take into account the fact that the
modeled and actual values almost always differ. But in case of logistic regression, we
model probability, which means that the event may happen or not happen. Proba-
bility describes a process that is already stochastic, so we do not need an additional
error term.

Let us demonstrate these calculations using treatment data above (Figure 2.15).
But before we can even calculate anything, we have to specify which event are we
modeling—are we modeling probability of treatment or non-treatment? In this case
it seems more natural to model probability of treatment, Pr(T = 1) instead of Pr(T =
0). It is often useful to model probability of the “rare” events, or probability of
“interventions”. Treatment checks both boxes here as only ∼ 7% of cases in data
are treated, and treatment is more “active” process than non-treatment. But both
approaches are equally valid, one has to make a decision and stick with that.

As we look at how the treatment probability depends on age, we have a single
explanatory variable x, namely age, and we can write

ηi = β0 + β1 · agei

Pr(Ti = 1) =
1

1 + e−ηi
=

1

1 + e−β0−β1·agei
.

(2.2.4)

In order to actually calculate the probability of treatment, we have to pick β0 and β1
values.

For instance, let’s just guess that the values 0 and −0.1 for β0 and β1 respectively,
and compute the participation probability for a 30-year old person. We have

Pr(T = 1|age = 30) =
1

1 + e−β0−β1·age =
1

1 + e−0+0.1·30 =
1

1 + e3
≈ 0.047. (2.2.5)

So our model, given the choice of parameters, predicts that rougly 5% of 30-year
olds will participate. The actual number in data is 0.043. Figure 2.17 shows how
the modeled participation probability depends on age for three different sets of pa-
rameters. The figure suggests that out of the three combinations displayed there,
the one we calculated above (0,−0.1) (blue curve) is close to actual data. The red
curve (0, 0.05) gets age dependency completely wrong, and the green curve (0,−0.05)
suggests participation probabilities that are too high. But it is hard to select good
combination of parameters just by visual inspection even for this simple case with a
single explanatory variable only. The best set of parameters for logistic regression
is usually computed using Maximum Likelihood method (see Section 2.2.3 Solving
logistic regression model, page 186). The corresponding probability is shown by the
dashed black curve.

When we compute the best possible coefficients (the dashed black line in Fig-
ure 2.17), we get the following results:

The results table, as provided by common software packages, looks rather similar
to the linear regression table (see Table 2.2). We see similar columns for estimates,
standard error, z-value and p-value (obviously, different software packages provide
somewhat different output). The meaning of the parameters is rather similar to that
of linear regression with two main differences: first, the interpretation of logistic
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Figure 2.17: The same participation data as in Figure 2.15. The lines depic parameter
combinations (β0, β1) = (0, 0.05) (red), (0,−0.05) (green) and (0,−0.1) (blue), the black
dashed line is the Maximum Likelihood estimate (1.034,−0.123). The red line clearly misses
the data, green line captures the pattern of falling participation in age, while the blue line
seems to fit well and also capture the fact that partiticpation rate is very low for over 40
year olds.

Estimate Std. Error z value Pr(>|z|)
Intercept 1.0343 0.3300 3.13 0.0017

age -0.1229 0.0122 -10.05 0.0000

coefficients is quite different from that of the linear regression coefficients, so it is
explained in the next section (Section 2.2.2 Interpreting logistic regression results,
page 180).

See Section 2.1.3 Interpreting the
regression table, page 137 above
for how to interpret linear
regression table.

Second, instead of t-values, logistic regression estimates are typically reported with
z-values.

z values are t values where
df = ∞. See Section 1.6.2.

From practical standpoint, these are fairly similar. Just instead of critical
t value, we are concerned with critical z-values. In a similar fashion, z-value measures
distance between the estimated coefficient and H0 value, and in exactly the same way,
the software normally assumes H0 : β = 0. The difference between z and t values
is primarily in the assumptions. In case of linear regression, for the t values to be
correct, the error term ϵ must be normally distributed. In logistic regression, for z
values to be correct, the sample size must be large.
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Exercise 2.15: Which values are statistically significant?

Imagine you estimate a logistic regression model in the form

Pr(finds jobi) = Λ(β0 + β1 · educationi + β2 · big cityi + β3 · agei)

You’ll get the following results:

Coef Std.err z

Education 0.120 0.03 4.00
Big city 0.150 0.10 1.50
Age 0.002 0.10 0.02

Which coefficients are statistically significant (at 5% level)?
Hint: consider z-value table.
Solution at page 487

2.2.2 Interpreting logistic regression results
Prerequisites: Section 2.1.3 Interpretation, page 134, Section 2.1.6 Interpreting

multiple regression effects, page 151.

Logistic regression is in many ways similar to linear regression, including by being
an interpretable model. Unfortunately, interpretation of logistic regression results is
more complicated than in case of linear regression. There are two related reasons for
that. First, logistic regression is a non-linear model, and hence the slope depends on
the values of the explanatory variables (see Figure 2.18). And second, because the
slope depends on the explanatory variables, we cannot just interpret the parameters
β0 and β1 directly in terms of probability.

There are two popular ways to overcome these limitations: marginal effects and
odds ratios.

Marginal effects

Marginal effect (ME) is slope of the logistic function on the figure where we have
probability on the y-axis and the explanatory variable x (not the link function η) on
the x-axis. Marginal effect answers the same question as slope β1 in case of linear
regression: How much more likely is the outcome if x is larger by one unit. In the
example above, ME will answer the question How much more likely is that someone
will participate given she is one year older. In case of multiple logistic regression we
should also the add the phrase given all other explanatory variables are the same.
So, in this sense marginal effects are very similar to linear regression coefficients.
However, there are two major differences, both of these related to the fact that we
now have a non-linear model:

• Marginal effects must be calculated from β-s, and the calculation is not obvious.
Fortunately, modern software will do it with a simple function call.
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Figure 2.18: Interpretation of logistic regression results. How much larger is Pr(Y = 1) when
η is larger by one unit, depends on the η value. In this example figure, the probability grows
at rate 0.069 per unit of η at η1 = −2.5; it grows at rate 0.23 per unit of η at η2 = 0.5.

• Marginal effects depend on the values of x. So different observations with differ-
ent x values will have different marginal effects. Hence we must always decide
what kind of cases we are interested in. The effect differs case-by-case.

As marginal effect is just slope, we can compute it by taking the derivative of the
logistic probability. For instance, in order to compute the marginal effect of age in
the example above, we take derivative of the treatment probability (2.2.4):

∂

∂age

1

1 + e−η = − e−η

(1 + e−η)2
β1 (2.2.6)

where η = β0 + β1 · age. This is straightforward to compute, but normally we let
statistical software do the work.

Figure 2.18 demonstrates the meaning of marginal effects. The thick black curve
is the logistic curve as a function of the link η. Its slope differs at different points,
here we have marked η1 = −2.5 where the slope is 0.069, and η = 0.5 where the slope
is 0.23. These numbers—0.069 and 0.23—are the marginal effects of η. But we are
interested in marginal effect of age instead–how much more likely it is to participate
for those who are one year older. Now we have to take into account that η depends
on x as η = β0 + β1x. Hence one unit larger x means β1 units larger η and hence the
marginal effect of x is just the marginal effect of η, multiplied by β1.

As marginal effects depend on x, we cannot just provide marginal effects that apply
universally. Obviously, in case η is very small or very large, the effect will also be very
small, while the η values near 0 are associated with larger effects. Typically, one of
these three options is reported: a) marginal effect at the mean x value; b) compute
all individual marginal effects and takes the average; or c) marginal effect for certain
specific interesting cases. Example of marginal effect output is in the table below:
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factor AME SE z p lower upper
age -0.0075 0.0008 -9.1811 0.0000 -0.0090 -0.0059

The basics of this table are quite similar to that of the logistic coefficients table
above. AME is average marginal effect, software computes the marginal effects for
every individual in these data and takes the average. SE stands for the standard error
of AME, z and p are the corresponding z and p values, and the two last columns are
CI for AME.

AME is directly interpretable in a similar fashion like the β-s in linear regression.
The number −0.0075 means that:

One year older individuals are 0.0075 less likely to participate in average.

Percentage point: difference in
values that are given in
percentages (see Section 1.1.1
Ratio measures, page 4).

This can be phrased somewhat better using percentage points:

One year older individuals are 0.75 percentage points less likely to partic-
ipate in average.

And as explained above, if we are working with multiple logistic regression, we should
add “... if all other explanatory variables are the same” to the sentence above.

Exercise 2.16: Job training for the unemployed

You analyze effect of job training for the unemployed using logistic regression.
You estimate the model in a form

Pr(gets a jobi) = Λ(β0 + βedu · edui + βpart · participated i)

where gets a job is a dummy indicator if person i found a job, edu is education
in years, and participated is a dummy indicator telling if the person participated
in the training program.

1. You find the coefficients to be β0 = −3, βedu = 3.2 and βpart = 1. Interpret
the coefficients.

2. You compute marginal effects and find ME edu = 0.07, MEpart = 0.08.
Interpret the marginal effects.

3. Can you conclude that participating in the job training program improves
your chances to get a job?

4. Do your result mean that those who got a job tend to have better education?

Solution on page 487.

Odds ratios

Another popular way to interpret logistic regression results is through odds ratios.
Odds ratio is simply the ratio of size of the one group to the other. In the example
above, it will be the number of participants over the number of non-participants:
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r =
Ny=1

Ny=0
=

185

2490
= 0.074. (2.2.7)

So the odds of participation over non-participation is 0.074. Perhaps it is better to
say it the way around–odds of non-participation over participation are 13.5. Note
that odds ratio is not the percentage of participants among the whole sample, it is
the ratio of participants to non-participants!

Odds ratios are a popular way to describe the chances of certain kind of events,
such winning chances in horse races. But unfortunately, these ratios are not widely
used, so people often do not understand those well.

It turns out that logit coefficients are directly interpretable as effects on logarithms
of odds ratios, log-odds. When working with logistic regression, we are modeling
probability. Hence we define the odds not as the ratio of counts but as the ratio of
probabilities. In the participation example, it will be probability of participation over
the probability of non-participation,

r =
Pr(Y = 1|x)
Pr(Y = 0|x)

. (2.2.8)

Again, note that this is the probability of participation divided by probability of
non-participation, it is not just a probability.

Exercise 2.17: Odds and probabilities

1. Probability of winning (versus losing) is 50%. How big are odds of winning?
2. Probability of surviving is 5/6. What are odds of surviving?
3. Odds of seeing the solar eclipse are 1-to-2. What is the probability of seeing

it?
Solution on page 488

From (2.2.3) we can express eβ
T
·xi as

eβ
T
·xi =

Pr(Y = 1|x)
1− Pr(Y = 1|x)

=
Pr(Y = 1|x)
Pr(Y = 0|x)

. (2.2.9)

This is exactly the odds ratio.

Exercise 2.18: Prove (2.2.9)

Use the logistic regression definition (2.2.3) to derive (2.2.9).
Solution on page 488

We can use this approach to interpret the logit results in terms of odds ratios.
Consider two vectors of explanatory variables, x1 and x2. The latter is otherwise
equal to the former, except one of x2 components, x2i, is larger by one unit compared
to x1i. So while x1 = (1, x11, x12, . . . , x1i, . . . , x1K), the x2 = (1, x11, x12, . . . , (x1i +
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1), . . . , x1K). Hence the odds ratio for case x2 is

Pr(Y = 1|x2)

Pr(Y = 0|x2)
= eβ0+β1 x11+β2 x12+···+βi (x1i+1)+···+βK x1K =

= eβ0+β1 x11+β2 x12+···+βi x1i+···+βK x1K eβi =
Pr(Y = 1|x1)

Pr(Y = 0|x1)
eβi . (2.2.10)

So eβ describes the multiplicative effect on odds ratio: if x is larger by one unit, the
odds ratio is larger by eβ units.

For instance, the age effect in the model (2.2.4) above is -0.123. Hence the effect
on odds ratio is

e−0.123 = 0.884.

This means that participation odds for an one year older individual are 0.88 times
larger. Or alternatively, one year older individuals have 12% lower odds to partici-
pate. Note that unlike in case of marginal effects, this number– 12%–is measured in
percentages (of the baseline rate), not percentage points.

Odds ratios have two advantages over marginal effects: they are easier to compute
(you only need to take exponent) and they are stable–odds ratios are constant and
independent of personal characteristics. This contrasts to marginal effects that depend
on the other parameters. But as odds ratios are harder to understand, and because
nowadays the software to compute marginal effects is easily available, the odds ratios
are used less often.

TBD: Logit prediction

Cheatsheet 2.7: Linear regression vs logistic regression

Here I list the main differences between linear versus logistic regression:

Model Linear regression models the outcome value:

yi = β0 + β1 xi + ϵi

Logistic regression models the outcome probability:

Pr(yi = 1) = Λ(β0 + β1 xi)

Here xi is the predictor, yi is outcome, and β-s are unknown parameters to be
estimated; Λ(x) = 1/(1 + exp(−x)) is the logistic function (sigmoid function).

Usage Linear regression can be used where the outcome y is continuous variable
(e.g. height, income, duration).

Logistic regression can be used where outcome is binary variable (e.g. found
a job, survived shipwreck, earthquake occurs).

Interpretation Linear regression: β1 means one unit larger x is associated with
β1 unit larger y (if other predictors the same).

Logistic regression: cannot easily interpret β1 as this is a non-linear model.
Need to compute marginal effects (or odds ratios instead).
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Prediction Linear regression: predict outcome value

ŷi = β̂0 + β̂1 xi

Logistic regression: predict outcome probability

P̂r(yi = 1) = Λ(β̂0 + β̂1 xi)

Predict outcome category (classification/categorization):

ŷi =

{
1 if P̂r(yi = 1) > 0.5

0 if P̂r(yi = 1) < 0.5
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2.2.3 Solving logistic regression model
TBD: Talk about loglik function

2.3 Linear probability model



Chapter 3

Causality

Humans want to manipulate their environment. We want to avoid going hungry, we
want to cure illness and we want to achieve a successful career. And we know well
what to do in order to achieve these goals—just eat, take a drug, and maybe go and
study economics. But how did we learn that eating and studying help to achieve
these goals? The relationship between eating and hunger is probably implanted in
our brains—after all, only those animals that figured it out were able to survive and
breed. But knowledge about drugs and illnesses, or economics and career, is based on
data, experiments and theoretical considerations. This chapter discusses the ways one
can obtain such knowledge from data. As we will see, the knowledge about how two
variables (e.g. your college major and future success) are associated is not enough to
tell how manipulating one of these (e.g. choosing to major in economics) is associated
with changes in the other (e.g. making a more successful career). We need to know
more to answer this question.
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3.1 Introduction
Causal inference means using data to gather just this kind of knowledge, knowledge
that helps us to manipulate the world in our liking. We use such knowledge extensively
in our everyday lives, both instinctively (you pull your hand away from hot pan when
you get burned) and deliberately (you flip the switch to turn on lights). Such act can
only be successful if we know that touching hot surfaces causes burns, and flipping the
switch causes the lamp to turn on. In these two example we know and understand
the process very well, or at least well enough to successfully employ it. But there
are many important situations where we do not understanding the results of our acts
well, or where our understanding is just wrong.

It also turns out that causality is more complex than just flipping a switch. Some-
times the cause is just a binary on-off event, such as a switch, or dropping a glass so it
breaks. Other times there the cause can come in different quantity, dose, for example
when we are interested in the amount of training airline pilots receive. Sometimes
we want to measure the size of the outcome, for instance when we are interested in
the effect of college education on salary. In other cases the size of outcome carries
little meaning (in case of breaking a glass it matters little how many pieces it breaks
into) but we may be interested in the probability of the outcome–how likely it is that
the glass breaks in the first place, and how does it depend on the dose of the cause.
Sometimes the cause is not a single event but multiple events linked in chains. For
instance, in case of plane crash this may include weak training of pilots, combined
with management’s reluctance to address technical problems, and a bad weather on
landing.

In this section we are mainly concerned with dose of a single cause embedded in
such chains. For instance, how much less likely are airplane crashes if pilots have
x% more training? In this example, we are not just interested in “pilot training” but
in certain doses of pilot training. The question itself is often clear and well defined
and can in principle be answered from data. However, as it turns out, the data
with necessary structure is extremely rare. The best answers come from randomized
experiments, but these are often expensive, unethical, or just impossible. Airplane
accidents are a good example of important causal questions where we cannot conduct
experiments.

Because suitable experimental data is hard to find, we have to resort on other
sources of information. Unfortunately, this leads to both more complex econometric
methods, and less reliable answers.
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3.2 What is cause?
People normally have a pretty good intuitive understanding of what is cause. Two
events A and B are causally related if the latter at least partly depends on the
former. The dependency can be understood that if your remove the cause A, then B
will not occur, or even if it occurs, it will be somewhat different. The cause A also
has to precede the effect B in time, at least in the physical world. But the intuitive
understanding is in many ways limited and does not cover several different ways how
one event may influence another.

3.2.1 Sufficiency and Necessity
The intuitive concept of causality applies well if A is both necessary and sufficient for
B to occur.

But if this is not the case then the concept of cause get murkier. For instance, in
2000 the supersonic airliner Concorde crashed because another airplane (Continental
DC-10) dropped a large piece of metal on the runway. The accelerating Concorde run
over the debris a few minutes later. This caused it’s tire to rupture, a piece of rubber
hit the wing and broke the fuel tank there. What was the cause of the accident?
Improper maintenance of DC-10 or a dangerous design of Concorde? Planes should
not leave debris on runway, no doubt. But airliners should also be able survive tire
ruptures (this was not the first time Concorde’s tire broke at high speed). Both of
these factors were necessary but individually they were not sufficient for the crash.
Such factors are often referred to as contributing causes. In a similar fashion, when
counting the death from a certain disease, how should one count a case where someone
had more than one medical condition, including the disease of interest? For instance,
would someone who dies of lung malfunctioning while having both heart attack and
acute COVID-19, count as COVID-19 death? The person might have survived a
single condition, either just heart attack or just COVID-19.

Alternatively, an event may be sufficient but not necessary. If two kids are throw-
ing rocks to a window almost instantaneously, the first rock will break the glass and
the second one will just go through the already broken pane. Will the second rock
still be the cause? After all, when we say that only the first rock is the cause, then
when we remove the cause, the outcome will still be the same—a broken window. So
should we blame the second child as much as we blame the first one?

3.2.2 Measuring the Amount of Cause and Effect
In many cases the cause is just a binary “it is there/it is not there” quantity. Dropping
an unboiled egg on floor causes it to break. We can say that one unit of cause
(dropping the egg) causes one unit of outcome (smashed egg). Here the concept of
quantity and quantitative effect is rather useless. We can just say that “egg will break
if you drop it”, simple words that everyone will understand.

In other cases the quantity carries an important meaning. For instance, a vaccine
is made of a number of different ingredients, the most important of which is called the
“active ingredient”. This is the substance that actually helps to fight the infection. For
instance, the Pfizer coronavirus vaccine contains 30µg of viral RNA, the substance



190 CHAPTER 3. CAUSALITY

that actually makes body to build up resistance. As this amount would be a barely
visible grain, the vaccines normally contain a lot of “fillers”, such as salts, sugar, and
water. However, from the medical viewpoint the important question is how much
less likely it will be to contract the disease if one takes x µg of the active ingredient?
This question involves two quantitites: the quantity of the active ingredient, dose of
treatment, here measured in µg; and quantity of the effect, here measured in terms
of probability difference. In this case we expect to see a negative relationship: more
micrograms of the active ingredient will make it less likely to contract the disease.
Unfortunately, the language is now more complicated than before.

Sometimes we are only interested in quantity of the outcome but not in the dose
of the cause. E.g. we may ask how much more (or less) likely are hurricanes now
because of global warming? In this case we take the dose of global warming as given
and only ask how it affects the probability of hurricanes. For instance, a valid answer
might be “10 percent”, i.e. the hurricanes are 10% more likely now than in the past
due to global warming.

Such questions get harder to understand if we add the uncertainty measures be-
cause we rarely know the exact answers. Instead of a simple “10%”, one may now
give the confidence intervals: we are 95% certain that global warming has increased
the probability of hurricanes between 5 and 15%. Note that this claim contains two
unrelated probability measures: confidence of our results (95%), and the probability
of hurricanes (growth between 5 and 15%). Such double use of probability needs some
probability literacy, and even for the literate it needs a second or two to understand
the sentence. This is the language of science, this is very much the only type of
results science can produce, but complexity of claims like this has contributed to the
wide-spread skepticism of global warming and scientific results in general. (See more
in Section 1.7.1 Statistical language is heavy, page 113.)

3.3 Causality with data: three explanations

Let us now leave (fortunately) rare hurricanes and air disasters aside and return
to situations where we can collect “data”, i.e. we observe a multitude of similar
cases where we measure various factors. For example, assume we collect data about
patients’ vaccination status (whether they got flu shot) and health (whether they got
flu) in a large hospital. The data may look like in Table 3.1. We are interested in the
effect of treatment (here flu shot) on outcome (here getting sick with flu). This example
only contains four observations but we can imagine a similar dataset of thousands of
lines. Here we are interested in the flu shot as a binary on-off event, either someone
got it, or did not get it. We are not interested in the dose (the amount of the active
substance), timing or type of the flu shot. In a similar fashion, we record outcome as
a binary variable: flu or no flu. We do not measure severity of the illness, and we do
not distinguish between different strains of the virus. But in the population, we do
not just look at the binary flu or no-flu event, but compute the probability to get flu.

Whatever the size of the table, for our purpose it can be summarized in just two
numbers: average flu for those who got flu shot (0 according in Table 3.1) and for
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Id Flu shot S Flu F
1 0 1
2 0 0
3 1 0
4 1 0

Table 3.1: Example flu shot data. Id is the patient id, Flu shot is a dummy variable denoting
whether the person got (S = 1) or did not get (S = 0) a flu shot, and Flu denotes whether
they got flu (F = 1) or not (F = 0). The table shows four observations only, but there can
be many more.

those who did not got flu shot (0.5 in the table). Formally, we can write

E[F |S = 0] = 0.5 and E[F |S = 1] = 0.0. (3.3.1)

If we compute the difference between these two groups we get

E[F |S = 1]−E[F |S = 0] = −0.5 (3.3.2)

Those who got the flu shot are 50 percentage points less likely to contract flu, at least
in average based on these data.

Percentage point: difference in
values that are given in
percentages (see Section 1.1.1
Ratio measures, page 4).

As this problem is framed, the data tends to make
people to believe that flu shots are indeed effective. If we want to generalize from
these 4 observations alone, we measure the difference in the flu rate for the no-flu shot
group and the flu shot group. In this example it is 50 percentage points, so one may
want to conclude that flu shots make the flu risk 50 percentage points lower.

However, this conclusion is premature. This empirical regularity–flu shot is as-
sociated with 50 pct points lower probability to get flu–can be explained in three
fundamentally different ways, each involving very different reasoning and very differ-
ent implications.

Note the specific choice of words—associated with. This is a common way to say
what the data tells while avoiding any misleading causal claims. It literally means
that those with flu shot have lower probability to contract flu. That is all it means.
In particular, it does not mean that the lower probability is because of the flu shot. It
does not mean that expanding the flu shot program to more people would lower the
incidence rate. It does not mean that if you get flu shot then you will be less likely
to get flu. (See also Section 2.1.3 Correlation and causation, page 137.) Choosing
an appropriate vocabulary, and being able to understand and correct the common
misconceptions is extremely important when working with causal inference.

Next, we discuss the three possible ways to explain data in Table 3.1.

Model 1: Flu shot causes (no) flu To start with, it is possible that flu shot has a
direct impact on the flu, in particular on the probability to get flu. Schematically, we
can write it as a causal diagram

FluFlu shot
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Empirical observations may
show that those who got flu
shot are less likely to contract
flu. Such a regularity is easy
to measure in widely available
datasets. Unfortunately, it
does not mean that flu shot
is effective–it does not mean
that if more people will get
flu shot, then less people will
get sick. Neither does it mean
that if you get flu shot then
you are less likely to get flu. In
order to address these claims,
we need very specific data that,
unfortunately, is much harder
to collect.
Yuemin Cao, CC0 1.0

Figure 3.1: Does flu shot help to avoid flu?

The example data above suggests that if this causal interpretation is correct, flu
shot is highly effective by lowering the flu probability by 50pct points. Hence the
policymakers should encourage more people to get a flu shot.

This is the easy-to-understand explanation we discussed above, and it is something
people intuitively tend to assume if the problem is framed as above. While not
necessarily true, this is definitely a strong candidate explanation for the effect we see
in these data.

Model 2: Flu causes (no) flu shot Alternatively, the exact same data can be gener-
ated if it is flu instead that has an effect on flu shot. For instance, people who do not
feel well may avoid flu shot because they do not want to go out to get it. So these are
primarily the healthy ones who will get it. The causal diagram will run the opposite
way:

FluFlu shot

The result, in terms of data, will look exactly the same as in Table 3.1. The example
explanation above—only healthy people will go out to get the shot—is often referred as
self-selection, the case where people select into treatment depending on the outcome.
In our example, the flu shot may be completely worthless but now these are mostly
healthy people who get it (self-select into treatment). Accordingly, if you interpret the
results through the first causal model, the wrong model, you conclude that the flushot
is highly effective. Hence in the current example, self-selection biases the estimate
upward—makes flu shot to look more effective than it actually is. If the upward bias1

1The upward or downward are a little ambiguos and depend on how exactly do we measure the
effect. If we measure the effect on probability to contract the disease, then we’d like to see negative

https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1
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is large enough, then even a harmful treatment may appear effective. And this is not
just a question for academic research but of immediate policy relevance. If flu shot
is worthless, there is no reason to recommend it to more people. If it is harmful, we
should abolish the program completely!

What is the reason we may get a completely wrong result? The problem here
is neither data collection nor analysis but the causal model. If we use Model 1 to
analyze data that is generated by Model 2, we get wrong results.

Exercise 3.1: Self-selection and downward bias
The above example described a mechanism (sick people avoid going out) that
causes the flu shot to seem more effective that it actually is (upward bias). Give
an example of a mechanism that causes downward bias through self-selection–a
way for the flu shot to seem less effective than it actually is.

Solution on page 488.

Model 3: A third factor causes both flu and flu shot As a third possibility, there
may be other factors that explain why some people get flu shot and do not get flu.
For instance, those who are more concerned about their health may take flu shot, but
they also wash hands, wear clothing appropriate to weather, exercise, and have a more
healthy diet. As a result they do not get flu even if the flu shot itself is worthless.
The causal diagram will look like

Concern about health

FluFlu shot

This is another example of self-selection where people who are less likely to get flu
self-select into treatment, and those who are more likely to contract it will select into
no-treatment. As a result, the estimated effect will be upward biased.

What distinguishes model 3 from model 2 is the fact that here the self-selection is
not based on outcome but on confounding factors, other factors that explain whether
someone takes flu shot. If we can incorporate confounding factors into the model,
we can eliminate the problem. But when working with complex questions, such
as human behavior, we rarely have information about all the relevant factors. In
the example above, while data about flu and flu shots may be abundant in medical
records, information on general health behavior (such as how often someone washes
hands) is fragmentary at best, and usually completely missing.

If Model 3 turns out to be the correct causal model then there is again little
reason to suggest that more people should get a flu shot. The health authorities
should instead recommend washing hands and eating more vegetables.

values (more vaccine–less disease), and we may talk about downward bias instead. Here we use the
concept upward bias to denote an effect that seems stronger than it acutally is, whatever its sign.
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Exercise 3.2: Counfounding factors and downward bias

The example above, again, argued that confounding factors (concern about one’s
health) can cause an upward bias–flue shot seeming more effective than it actually
is. Can you come up with different confounding factors, ones that can make flu
shot seem less effective than it actually is? Can you tell which of these processes
are more likely?

Solution on page 488.

So the exact same dataset gives us different results, depending on which causal
model we use. Unfortunately, typical data, such as in Table 3.1, does not provide
any guidance on which causal model is correct. Even more, in complex cases (and
human behavior is complex) they can all be correct at the same time and influence
our results together in different ways. Data in the table is not enough to provide
causal explanation. There are a number of strategies one may follow to establish
causality. Randomized Controlled Trials are considered the best option, followed by
natural experiments, case-control studies, and other methods.

Exercise 3.3: Does smoking cause lung cancer?

Lung cancer was historically a very rare disease. However, by 1960-s, it had
become the most common cancer type in the West, and it was clearly correlated
with smoking. But does smoking cause cancer?

Explain the correlation between smoking and cancer using all three causal
models: smoking causes cancer, cancer causes smoking, and confounding factors
cause both smoking and cancer.

Solution: see Example 3.1 below.

Example 3.1: Smoking and lung cancer

By 1960s, cigarettes were the dominant way of consuming tobacco and one could
easily see that the rapid growth of tobacco smoking was accompanied with an
explosive growth of lung cancer with a roughly 20-year lag. But a lot else had
also changed by 1960, including urbanization, transportation and the chemical
environment in our homes. So the correlation was not a proof of smoking being
harmful.
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Figure 3.2: Time trends of smoking and lung cancer in Sweden (red) and the U.S. (blue),
1975=100. Solid lines depict the cigarette sales, and dashed lines are age-normalized
death rates in lung cancer. We can see cigarette sales in both countries peaking around
1980. This is followed by a fall in death rate somewhat later.

Source: International Smoking Statistics, WHO Cancer Mortality Database.

Already back then, there were many doctors who suggested that smoking causes
cancer. In particular, they argued that tars and nicotine in the tobacco smoke
disturbs the growth-control mechanism in lung cells. Thus they argued that the
first causal model is the correct one.

But doctors’ opinion is a weak argument. Doctors have got it wrong many
times, for instance, even in late 19th century many doctors insisted that scurvy
is caused by tainted food, “damp air”, salty meat and various other factors,
despite that already in 16th century it had become evident that fresh food and
citrus fruits will rapidly cure the disease. Not suprisingly, the tobacco industry
insisted that the explanation is “smoking gene”. They argued that smoking itself
is harmless, but people who smoke tend to have “smoking gene”, certain set of
genes that makes them likely to smoke, but also likely to get cancer. This is the
third model with smoking gene being the confounding factor.

Finally, it is also possible that cancer causes smoking: in particular, cancer in
very early stages, before it is diagnosed, or before it even can be diagnosed, makes
people to itch for a cigarette. This is model 2, the reverse causality explanation.

3.4 Strategies for Causal Inference
The previous section explained why do we need to know which causal model is the
correct one in order to establish the causal effect from data. We also explained that
data alone is not enough to decide which model is correct, we also need knowledge of
the possible selection mechanisms. This section discusses a few ways to acquire such
knowledge.

http://www.pnlee.co.uk/ISS.htm
https://www-dep.iarc.fr/WHOdb/WHOdb.htm
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3.4.1 We Know Which Model is Feasible
Sometimes it is possible to eliminate one or two explanations based on different type
of information. Often we know that the decision to take or not to take treatment
preceded the outcome in time, and hence Model 2 is infeasible. We may also know
plausible physical or physiological mechanisms that can carry influence from treatment
to outcome while there are no plausible confounding factors.

Unfortunately, in many important applications this is not true. In case of social
processes and human behavior, one can often provide multiple plausible explanations
supporting all three causal models.

Example 3.2: Do parachutes help to survive a “gravitational challenge”?

Smith and Pell (2003) take an absurd example and discuss the effect of parachutes
on survival for jumping from aircraft. As explained above, we have three possible
causal models:

1. Parachutes cause survival. This is the obvious explanation no-one (except
Smith and Pell, 2003) can argue with. There is also plenty of medical
evidence about how our bodies react to rapid acceleration.

2. Survival causes parachute use. Here we can eliminate this potential mecha-
nism because the decision to use or not to use parachute must have preceded
survival–parachutists were alive when leaving the airplane. Hence causality
cannot flow this way.

3. A third factor can cause both parachute use and survival. Although in
principle this is possible, it is hard to come up with any plausible mechanism
that might cause such and observed link (Smith and Pell (2003) suggest this
is mental health).

So in this case we are able to eliminate both model 2 and model 3, and hence
model 1 must be correct. Note that the elimination was not based on data (a table
of observations of parachute use and survival) but on more general knowledge
about parachutes, decisions, and how our bodies work.
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3.4.2 Randomized Controlled Trials
Randomized Controlled Trials (RCT)-s are considered the “gold standard” of causal
inference. The idea of RCT is to randomly assign individuals into treatment group and
control group. Taking the flu shot example from above, all members of the treatment
group receive the flu shot, while none of the control group members will get it. Most
importantly, RCT assigns treatment through a random mechanism. This means that
treatment status depends on a random event, such as a random number generated
by computer, and hence it cannot depend on the outcome (as stipulated by model
2) or by confounding factors (as suggested by model 3). Hence we can immediately
eliminate models 2 and 3. Only model 1 will remain as a feasible explanation.

For instance, we can imagine conducting a RCT regarding the flu shot efficiency.
We need a large number of participants who are willing to give their explicit consent
to join the experiment. Next, we randomize all participants into the treatment and
control group. If possible, the trials are double-blind, i.e. neither the volunteer who
receives a shot, nor the nurse who administers it knows whether the syringe contains
placebo or vaccine (syringes may be labeled, and the information about what each
label contains is not released before the experiment is over). Those who receive the
actual vaccine will form the treatment group and those who received placebo will form
the control group. Placebo may be a similar injection as the vaccine, just without the
active substance (the injection is mainly water, salt, and other unrelated substances).
Later one collects the participants’ health information through the flu season, and
when this is done, the treatment/control group information is released. Now we can
analyze whether the flu shot was effective.

So the idea of RCT-s is very simple and the results are convincing. Unfortunately,
RCT-s are not without their downsides.

• Most importantly, there are many questions where conducting RCT-s would be
unethical, illegal, too expensive, or completely infeasible. For instance, it may
be considered illegal to pay different workers different wage for similar work,
even if it allows us to get valuable information about how work motivation
depends on income. Alternatively, if we want to analyze how does tax rate
influence macroeconomic performance then we have to randomize the countries
into low-tax and high-tax regime, and to ensure the governments are conforming
with this protocol for over a decade or more. This is clearly impossible.

• Humans may react to the fact that they are in either treatment or control
group. In simple medical experiment this can be addressed by placebos, but
and in many cases we cannot design a convincing placebo. For instance, when
analyzing the effect of content of education, it is impossible to design a “placebo
education” program in a way that the participants do not understand if they
are taught “real knowledge” or “placebo knowledge”.

• RCT-s may also be infeasible if cases of interest are rare and the delay in creating
a suitable sample may be unacceptable. A similar situation may occur even
while the cases are fairly common but the set-up is considered too high-risk
(such as suicide attempts). In such cases we want to act immediately and not
follow the data collection protocol.

• Randomization attempts to ensure that the treatment and control groups are
similar in all respects, except that the former group receives treatment. How-
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ever, because of the random nature of randomization, this may not be true in
small samples.

• It is hard to experiment with humans who may drop out of study and otherwise
violate the assigned protocols.

• RCT analysis assumes the treatment is pre-determined and does not depend
on outcome. But it many applications, such as psychotherapy, the standard
practice is to adjust treatment depending on the outcome.

Example 3.3: RCT—how to determine the effect of pneumonia vaccine

Bonten et al. (2015) analyze the efficacy of polysaccharide conjugate vaccine
against pneumococcal pneumonia (effect of a specific vaccine on a particular type
of pneumonia). This is a good example how a relatively straightforward RCT
application—to determine the efficacy of a new drug—is quite hard to conduct
in practice.

The authors enrolled 84,496 elderly (65 year old or older) into the study.
The participants must have had no previous pneumococcal vaccinations and no
immuno-compromising conditions. The randomization was done by randomizing
syringes in the shipment box with either vaccine or placebo. No participant
(including medical workers) knew the randomization status. The final sample
included 42,240 vaccinated persons and 42,256 placebos. The pneumonia data
was collected 2008-2013 in different medical centers. Participants who received
other related vaccines, or developed other diseases, such as lung cancer, were
excluded from the analysis. The participants were followed by home visit for the
next two years to detect any side effects.

Pneumonia was suspected in 3232 cases, out of which the analysts detected
89 relevant pneumonia cases among the vaccinated and 178 among the placebo
group. There were too few pneumonia-related deaths to make any conclusions if
the vaccine helps to prevent deaths, the study did not find any evidence about
adverse effects like chronic medical conditions.

The main difficulty for the study was the small number of relevant pneumonia
cases that necessitated both the enormous sample and a long study period.
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3.4.3 Natural Experiments
(Sometimes called quasi-experiment). Sometimes either nature or human institutions
may provide a situation that is similar to a randomized experiment. From research
perspective it is particularly valuable if it happens in a context where RCT is not
possible.

Below we list a few examples:
• Resettlement of Karelians in Finland at the end of WW2. In WW2, Soviet Union

captured a large swath of Finnish territory. The Finnish inhabitants, mostly
farmers, were rapidly resettled in various places in Finland where land was
available. This created essentially a random experiment where the population
of various villages was increased in a rapid and random manner.

• WW2 German missiles destroying city blocks in London. The precision of Nazi
V2 missiles was good enough to hit London, but inside of the city, they exploded
essentially in random locations. This creates an experiment where certain city
blocks were randomly destroyed. How does such destruction affect urban devel-
opment?

• Collapse of bridge. This is an abrupt change in commuting options. Impor-
tantly, only causal model 1—bridge collapse leads to change in commuting—is
possible, model 2 (commuting change causes the bridge to collapse) and model
3 (confounding factors cause both commuting change and bridge collapse) are
not feasible.

• Opening a new college that attracts new type of students. This allows to analyze
the effect of college education on this group of students. Obviously, the new
college causes the new students to attend, not the other way around. We may
also be able to eliminate confounding factors if the opening did not coincide
with a sudden improvement of economic fortunes of the same group.

• Curriculum changes from one year to another. This is analogous to the previous
example. Curriculum change causes students to change the subjects they learn,
not the other way around; and we may also be able to eliminate confounding
factors.

• Correia et al. (2020) analyze the effect of 1918 influenza pandemic on regional
mortality and post-epidemic economic development. See Example 3.4. They use
the fact that cities and states in the US implemented the interventions–closing
businesses, banning gatherings and promoting hygiene–at different point of time.
The authors argue that timing of these measures is as good as random, i.e. not
related to the unobserved mortality and economic trends in any systematic way
so we can consider this as an experiment.

Example 3.4: Do more extensive public health measures during pandemic help
economy? Correia et al. (2020)

The 1918 flu epidemic was perhaps the largest pandemic in the 20th century,
killing approximately 50 million people in slightly over a year.a In the US, the
public health response was largely left to the individual cities to decide, and
typically included school closures, public gathering bans, and isolation and quar-
antine, and may also contained altered work schedules, business closures, face
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mask ordinances and other measures (Markel et al., 2007). What makes the re-
sponse to a natural experiment is the fact that cities implemented these responses
(non-pharmaceutical interventions, NPI-s) in different time.

Correia et al. (2020). analyze two relationships:
1. How does 1918 flu mortality influence the subsequent economic recovery

and development?
2. How do NPI-s, implemented during the pandemic, influence economy? Note

that NPI-s have potentially two effects: first through their effect on mor-
tality, and second through direct influence on economy of certain NPI-s,
such as bans on public gatherings or businesses closures.

As natural experiment is not a RCT, we do not have well-defined control and
treatment groups. Instead, we have a number of cities that implemented different
NPI-s at different point of time. As the study analyses economic recovery after
the pandemic, the causality cannot go from economy to pandemic. Model 2
is eliminated. Regarding model 3 the authors argue that mortality was not
related to economic shocks. Hence there were no hidden confounding factors that
determined both mortality and the economic development later. The only effect
from mortality to economy was the direct effect: mortality influenced behavior,
economic decisions, and hence economic growth. This leaves only model 1, the
direct causal effect, to explain the findings regarding the question 1.

For the second question, authors employ the variation of type and timing of
NPI-s. In a similar fashion, they argue that “variation across cities is unrelated to
economic fundamentals”, i.e. there were no hidden confounders that determined
both timing of NPI-s and economic recovery later. The only effect from NPI-s
was through their influence on mortality, morbidity, human behavior and hence
economy (model 1). These two arguments form the identifying assumptions for
the models.

Formally, they estimate models of the form (see more in Section Section 3.5
Causal inference in linear regression framework, page 202)

yst = αs + τt + βtMs,1918 +Xsγt + ϵMst t ̸= 1918

yst = αs + τt + βtNPI s,1918 +Xsγt + ϵNPI
st t ̸= 1918

(3.4.1)

where y is an economic development indicator for city s in year t, α and τ are
constants, M is mortality, and X are all other city-specific covariates. Formally,
the identifying assumptions are

M1918 ⊥⊥ ϵM and NPI 1918 ⊥⊥ ϵM , (3.4.2)

The former assumes there were no confounding factors between economic out-
comes and mortality, and the latter assumes no confounding factors between
economic outcomes and NPI.

The authors find substantial effects in both models. Increased mortality has
substantial negative economic effects, including fall in employment, manufactur-
ing output, bank assets and investments in durable goods. In contrary, earlier
and more forceful public health interventions do not lead to worse economic out-
comes but the way around, more employment, output and assets. (Some of the
results are not statistically significant though).
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aIn comparison, the First World War that ended in the same year killed approximately 10
million in over four years.

3.4.4 Case-Control Study
In many contexts where it is not possible to conduct a RCT, one may compare different
cases with different outcomes, and see if there are more “treated” cases in one group.
For instance, one can compare patients with diagnosed lung cancer and patients with
no cancer in a certain age group, and compare the percentage of smokers in these
groups.

Unlike RCT, case-control studies cannot unambiguously establish causality. They
are similar to other observational studies that establish correlation, but in order to
eliminate other causal models we still need additional information.

Example 3.5: Flu Vaccine Efficacy: a Case-Control Study

Ferdinands et al. (2014) conduct a case-control study to analyze influenza vaccine
efficacy for children. They enroll 216 children (6 month to 17 year olds) who
are admitted in intensive care units with acute respiratory problems in selected
hospitals. 44 of these children are diagnosed flu and 172 are not. Those with flu
are “cases” while those without flu are “controls”. As both groups are selected
from children who are in a similar situation, admitted into intensive care with
respiratory problems, they are broadly similar.

The authors analyze what proportion of cases and controls have been vac-
cinated against influenza, and find that complete flu vaccination is much less
prevalent among cases (odds ratio 0.26). They conclude that vaccination is “as-
sociated with a three-quarters reduction in the risk of life-threatening influenza
illness in children”.

The study shows convincingly that vaccination is associated with less flu
among seriously ill children. However, they cannot eliminate reverse causality
and confounding factors, such as healthy lifestyle. See Section 3.3 Causality with
data: three explanations, page 190.

3.4.5 Controlling for Confounding Factors
One of the most obvious solution is to explicitly control for all available confounding
factors. Unfortunately, all relevant information is rarely present.

But there are examples where researchers can access complete relevant informa-
tion. Consider college admission. The procedures differ, but in some colleges students
are admitted based on limited information only. This may include test score (e.g. SAT
test), high school GPA, and essay that is graded from 1 to 5. Importantly, we know
that these three variables is everything that decides college admission, and the re-
searchers may get access to these data. If the is the case then they will be able to
completely control for confounding factors.



202 CHAPTER 3. CAUSALITY

3.4.6 Explicit Modeling of Selection Process
Sometimes we can model the selection process based on theoretical considerations.

TBD: Heckman’s method.

3.5 Causal inference in linear regression framework
Prerequisites: Section 2.1.2 Simple Regression, page 125, Section 3.3 Causality

with data: three explanations, page 190, Section 3.4 Strategies for Causal Inference,
page 195

This section discusses some of the causality aspects more formally in a linear
regression framework. Linear regression is just a simple and popular framework but
the central ideas here carry over to all other statistical models. In particular, the
fundamental problem, “curse of counterfactual”, is always there, no matter which
model we are using. A formal statistical presentation is useful because this helps to
identify the exact technical requirements for the data. Thereafter we can analyze
how each particular dataset is collected and discuss whether these requirements are
satisfied.

Many important causal questions, for instance
• does the drug cure illness?
• how will college degree affect my income?
• does the advertisement work?

can be written as linear regression problems in the form

yi = β0 + β1Ti + ϵi (3.5.1)

where y is the outcome (illness, income, or whether someone buys the product), T
is treatment, the indicator whether the person attended a college, took the drug, or
was shown the advertisement. β0 and β1 are parameters we want to calculate. Here
we discuss the case where T can be measured as a binary 0/1 indicator variable (for
instance, whether the person took the drug or received placebo instead). The central
parameter of interest in (3.5.1) is β1. This tells us how much larger (or smaller) y
would be if T = 1 instead of T = 0. This is exactly the causal effect we are interested
in, the effect we can use for policy design. The disturbance term ϵ captures the
individual-specific effects, e.g. individual responsiveness to drugs and illnesses, or
learning ability. These individual specific effects do not depend on T .

3.5.1 Counterfactual and Identifying Assumption

(2.1.4): yi = β0 + xi · β1 + ϵi

Let us start with (3.5.1). Why does β1 answer the causal question here? What is the
difference between (2.1.4) and (3.5.1)? Why did we warn when introducing (2.1.4)
that the β1 cannot be interpreted causally and why don’t we do it here? After all,
both models are almost the same! In fact, the difference is not in the models as
written above. The models are the same. The difference is in what are we analyzing,
(3.5.1) analyzes data with a valid counterfactual, while (2.1.4) does not. Below we
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discuss it in more detail, taking the relationship between education and income as an
example.

Figure 3.3 shows both cases. It depicts education and pay for two persons: Xuande
and Zhang Fei.

Model 1: yx

The left panel shows the causal effect: it is the additional income for
the same person, here Xuande, given he has college degree, compared to the case where
he does not have the degree. So if we give Xuande more education, he will receive
more pay. These manipulations are depicted by arrows. We stress here that causality
is related to manipulations, causal effect is the answer to exactly such questions: what
happens if we manipulate education? This case corresponds to (3.5.1), it is also the
essence of of the causal Model 1.

The right panel shows the other case, the case that answers the question of cor-
relation or “association”, but not the causal effect. Instead of seeing Xuande in two
states, with and without college degree, we see two different persons. One of them
is Xuande without the degree and the other one is Zhang Fei with the degree. We
see that besides of having more education, Zhang Fei is also paid better, the differ-
ences are denoted by dotted lines, not arrows, as here we do not manipulate anything.
Based on this figure alone we do not know if Xuande will receive a similar pay if we
could manipulate his education to be similar to what Zhang Fei has. This corresponds
to the case of (2.1.4). Unless we know more, we cannot tell which causal model is
behind these data.2 So the difference is not in the linear regression models, but in
the types of data we are analyzing: does the data contain information about such
manipulations or not?
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More education
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Xuande without college degree

Zhang Fei with college degree

α1: correlational effect

Figure 3.3: Causal versus correlational data. The left panel answers the causal question:
what will happen to Xuande, if he gets more education? The corresponding shifts are denoted
by arrows. The right panel compares the education and pay of two different persons, Xuande
and Zhang Fei, their differences are denoted by dotted lines. The left figure is based on the
causal Model 1. The right image can be based on any causal model, and unless we know
more, we cannot tell what will be Xuande’s pay if he would obtain a similar education as
Zhang Fei. On these figures we have made the causal effect β1 and the correlational effect
α1 to be equal, but it does not to be so.

2Here we denote the causal effect by β1 and the correlation by α1, however, in the regression
models we usually do not make such distinction in notation.
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Next, let’s look at (3.5.1) more formally. In this case we know that data is gener-
ated by Model 1. We can just use T = 0 and T = 1 in order to compute the outcome
when not treated and when treated. So the outcome of individual i is

yi =

{
β0 + ϵi if not treated; denote this by yi(0)
β0 + β1 + ϵi if treated; denote this by yi(1).

(3.5.2)

Hence we have defined the outcome yi as a function of the treatment status T , denoted
by yi(T ). Importantly, the disturbance term ϵi is the same for both Ti = 0 and Ti = 1.
The disturbance term must not depend on treatment.3

How can we compute β1? From (3.5.2) we see immediately that β1 = yi(1)−yi(0),
i.e. the effect is just the difference between the outcome when treated, yi(1), and when
non-treated, yi(0), and this is true for every single individual i. This sounds almost
like a trivial thing to compute. And indeed, it were trivial if only we could measure
both yi(1) and yi(0). But unfortunately we can never, never ever, observe yi(1) and
yi(0) at the same time. Someone (or something) is either treated or not treated.
Nothing can be in two treatment states at the same time.4 In our observed world the
treatment status is either Ti = 0 and only Ti = 0, or Ti = 1 and only Ti = 1. The
corresponding outcome is called actual outcome, and the other, the one we cannot
observe, is counterfactual outcome (or just counterfactual). The actual outcome
is easy to handle: this is what you observe. Just measure it. All the trouble with
causal inference is to come up with a suitable proxy for the counterfactual. We stress
here that the only way to “measure” counterfactual is to find a good proxy. It is
fundamentally impossible to measure the counterfactual value. This is the “curse of
counterfactual”. Unfortunately, it is impossible to observe data that corresponds to
the left panel of Figure 3.3. We are stuck with the correlational right panel.

Example 3.6: Former outcome as counterfactual

It may be tempting to use pre-treatment observations as proxies for post-treatment
counterfactuals. This may or may not be correct but in any case, it requires ad-
ditional justification.

For instance, returning to the question of effect of college degree on income,
we might consider taking pre-college income as counterfactual for post-college
income. Obviously, this is absurd. At the time students start college they are
fresh high school graduates with little to no work experience and often with no
job. Had they not attended college, they would be working in most cases by
now, and have 4 years of work experience. A 18-year old person without work
experience will not form a valid proxy for a 23-year old with 4 years of experience.

See more in Section 3.6.2 Before-after estimator, page 213.

3Here it is actually a rather harmless assumption because we know the correct causal model. If, in
fact, ϵ does depend on T , then the change of the disturbance term will just be a part of the treatment
effect. But it is a major problem if we do not know the model.

4We stay in the macroscopic world and do not discuss quantum superposition, Schrödinger’s cat
and related topics here.
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As counterfactual is not observed, it is hard to say anything about it based on
data, or at least based on data alone. Coming up with a convincing counterfactual
always includes certain assumptions, usually referred to as identifying assumptions
or counterfactual assumptions. For instance, such an assumption may state that
in average, the treatment group outcome would be the same as the control group
outcome, if the members of the treatment group had not received treatment. In
practice, these assumptions must always be backed up with knowledge about the data–
not by data but about data, knowledge about how the data has been generated. The
assumption we just cited seems credible if we performed a randomized controlled trial
(RCT). After all, randomization is done for this exact purpose, to make the treatment
and control group look exactly the same in all known and unknown dimensions.
However, it will not be credible at all if we are comparing salaries of college graduates
and non–graduates. College graduates and non–graduates differ in many aspects, not
just by the fact that one group has spent several years of their life as students. Note
that the knowledge about selection process is not usually called data. Just obtaining
more “data”, i.e. observations about treated and non-treated outcomes, does not
allow us to make more credible conclusions about the causal effect. We need both
data and knowledge about the selection process. If we are lucky then the latter will
allow us to come up with convincing identifying assumptions.

3.5.2 More about identifying assumptions: mean independence
Prerequisites: Section 1.4.5 Expected Value, page 57

What happens if the identifying assumptions are wrong? It turns out that this is
similar to using a wrong causal model.

(3.5.1): yi = β0 + β1Ti + ϵi

Take the linear regression model (3.5.1) as the point of departure. For simplicity,
that model only contains a single explanatory variable, the treatment status T , but
one can easily add more. Data we collect consists of tuples in the form (T, y), i.e. every
case is a pair of two numbers, the treatment status and the corresponding outcome.
How can we estimate β1? Intuitively, in a large sample, the average outcome for
the treated, ȳ(1), and for the untreated, ȳ(0), should tell us something about the
effect. In particular, we are tempted to interpret their difference ȳ(1) − ȳ(0) as the
treatment effect. (We talk about large samples in order to avoid issues with sampling
noise, those issues are not related to causality.)

Mean of a large sample converges
to expected value, X̄N → EX as
N → ∞. See Theorem 1 Law of
large numbers, LLN, page 59

The intuitive concept of “average over a large sample” corresponds to the math-
ematical concept of expected value, so we can replace the large sample average with
the corresponding expected value. We denote the expected values by E[y|T = 1] (for
the treated) and E[y|T = 0] (for the non-treated). Next, we can use model (3.5.1) to
compute these values as

E[y|T = 1] = E[β0 + β1T + ϵ|T = 1] = β0 + β1 +E[ϵ|T = 1] (3.5.3)

and
E[y|T = 0] = E[β0 + β1T + ϵ|T = 0] = β0 +E[ϵ|T = 0]. (3.5.4)

We used the following facts when calculating the results above: expected value of
constants β0 and β0 are just these two constants, and β1 drops out from the second
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equation because in that case it is multiplied by T = 0. But the last terms, the
conditional expectations of ϵ, are critical. E[ϵ|T = 1] is the expected value of the
error term for the treated individuals, E[ϵ|T = 0] is the same for the non-treated
individuals. In general, these two differ, i.e. E[ϵ|T = 1] ̸= E[ϵ|T = 0].

When we now compute the difference between the two expected values (3.5.3)
and (3.5.4), we get

E[y|T = 1]−E[y|T = 0] = β1 +E[ϵ|T = 1]−E[ϵ|T = 0]. (3.5.5)

Obviously, this equals to the correct value β1 only if

E[ϵ|T = 1] = E[ϵ|T = 0].5 (3.5.6)

This condition is known as mean independence assumption, often denoted by E ϵ ⊥⊥
T . This is the technical way to state the identifying assumption for cross-sectional
estimator.

Figure 3.4 explains the role of mean independence and how it affects the effect
estimation. It displays the outcomes for four people, Xuande (blue), Guan Yu (black),
Zhang Fei (green) and Cao Cao (red). The top left panel displays the causal effect
we are interested in—what will be the outcome of Guan Yu and Xuande if they
were treated (T = 1) instead of non-treated (T = 0). We measure the effect as the
difference between the average of the counterfactual outcomes, E[y|T = 1] (dotted
circles) and the average actual outcome, E[y|T = 0] (solid circles). The observed
average E[y|T = 0] is marked with a solid gray circle and the counterfactual average
E[y|T = 1] is the dotted gray circle. The difference is the causal effect β1. Note that
both the actual and the counterfactual outcome of Guan Yu and Xuande differ, this
is because Xuande has positive ϵ and Guan Yu has negative ϵ. But importantly, their
respective ϵ is the same in both treated and non-treated state.

However, we cannot use the top-left panel to measure β1 because the counter-
factual outcome (dotted circles) cannot be observed. What we can do instead is
displayed on top-right panel. We compare two untreated persons (Xuande and Guan
Yu) with two treated persons (Zhang Fei and Cao Cao). As before, we compute the
effect as the difference between average outcome of the treated (E[y|T = 1]) and the
untreated (E[y|T = 0]). All four people in our sample have different ϵ, but what is
important–both the untreated and the treated have average E ϵ = 0. Hence the aver-
age of treated Zhang Fei and Cao Cao (gray circle at T = 1) is the same as the average
of counterfactuals for untreated Xuande and Guan Yu (light gray circles at T = 1).
Hence the difference between the average for the treated and for the untreated, α1, is
equal to the correct causal effect β1. The mean independence assumption is satisfied.

Finally, the bottom panel shows the case where the mean independence assumption
is violated. The average value of the error term for untreated Xuande and Guan Yu,
E[ϵ|T = 0] = 0, but for treated Zhang Fei and Cao Cao E[ϵ|T = 1] < 0 as both of
these ϵ-s are negative. Hence the average for the treated group (dark gray circle) is
below the average of the counterfactuals (middle light-gray circle), and the measured
difference α1 is less than the true causal effect β1.

5There is an important difference regarding ϵ here, and in (3.5.2). In the latter we assume that
we have access to both yi(1) and yi(0) for the same cases, i.e. we know the counterfactual value.
This is not the case here, and hence we need the assumption (3.5.6).
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Figure 3.4: The role of mean independence assumption. The top-left panel shows the true
causal effect β1 = E[y|T = 1] − E[y|T = 0] for two persons—Xuande and Guan Yu. On
the top-right panel, the mean independence assumption holds, and the treated group forms
a valid counterfactual for the non-treated group. The measured correlational relationship
α1 equals to the true causal effect β1. At the bottom panel, the assumption is violated,
E[ϵ|T = 0] = 0 while E[ϵ|T = 1] < 0, and the correlation effect α1 underestimates the causal
effect. Explanations in text.
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How is the mean independence assumption related to causal models? It turns out
that if mean independence assumption is equivalent to causal Model 1. Let us discuss
this from an intuitive viewpoint first, and show it formally thereafter. It is better to
visualize the model where treatment is continuous so assume we have a model

yi = β0 + β1 · Ti + ϵi (3.5.7)

where the treatment T is now a continuous measure, the dose of treatment.
Assumption 5: error term and
explanatory variabes are
independent: x ⊥⊥ ϵ.

For
instance, T may now be the years of education. Further, assume that all the stan-
dard linear regression assumptions (see Section 2.1.10 Assumptions in OLS Models,
page 172) are satisfied, in particular assumption 5. If this is the case, then data about
treatment T and outcome y will give us correct, unbiased, estimate of β1. This is a
direct consequence of the assumptions in Section 2.1.10. Intuitively, T ⊥⊥ ϵ means
that observations with all kind of T values may have both large and small ϵ values; it
is not that large T tends to have small ϵ values, or the way around. This is how we
get the correct result.

Model 1: T → y. See Section 3.3
Causality with data: three
explanations, page 190.

This setup corresponds to the causal model 1: what happens
to T will influence y, but it does not influence T . True, at any given T value y may
be larger or smaller, but that is “taken care of” by the disturbance term ϵ, not by T .

Model 2: y → T .

But now imagine the correct model is not the model 1 but model 2. Instead
of (3.5.7) we have now

Ti = α0 + α1 · yi + ηi, (3.5.8)
i.e. now it is y that determines the dosis of treatment T . Again, assume all the
standard assumptions are satisfied, but because now y is the explanatory variable,
the independence assumption means y ⊥⊥ η, not T ⊥⊥ η! Now it turns out that T and
η are not independent. This is intuitively obvious: cases with large η value also tend
to have a large T value and the way around–hence T and η are correlated. Hence we
will not recover the correct relationship when estimating the model (3.5.7).

TBD: Figure, show formally. Started asy figure in “causation-vs-correlation.asy”
called “causal-model-2”

Model 3: z → x, y.

Model 3 causes similar problems, the logic is broadly similar but more complex
and we do not discuss it here.

So the mean independence assumption is needed to recover the correct relationship.
Besides of the technical assumptions—which causal model is behind the data,

the identifying assumptions always have the intuitive side–what do these technical
requirements mean in terms of data, and what do they mean in terms of institutions.
For instance, imagine a randomized medical experiment to test a new drug, where
the participants are randomized into the treatment group (they receive the drug) and
control group (they receive placebo).

• In terms of data, we expect all control and treatment group individuals to
be similar to each other in terms of all characteristics, including age and pre-
existing conditions. This is because they were assigned to groups by random. If
we have additional information about the participants then we can test this–do
all the observable variables, e.g. age, gender, family status, education, and so
forth, look similar between the groups? If yes then this convinces us that the
characteristics we do not know (e.g. sleep behavior and type of diet) may also
be similar.
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• In terms of institutions we have to ask if researchers were able to correctly
follow the randomization. Maybe someone involved in the experiment told the
participants what they get and let them choose? Maybe the participants signed
up into multiple similar experiments in the hope that at least in one of those they
will get the “real thing”? Maybe they found each other through social media
and split and shared their pills so that everyone at least “got something”? For
the results to be convincing we need to know that nothing similar happened.
However, we cannot easily test this based on data.

So (3.5.6) states the technical side of the identifying assumption. If possible, then
one should always test the data side. The institutional side cannot typically be tested
on data, but on either our general knowledge, or knowledge about the specific situation
related to these data. It is the researchers’ responsibility to know and explain the
relevant institutions.

Example 3.7: Expected value of unobserved characteristics

Take again the example of college degree and income. The unobserved factors ϵ
that influence wage may include socio-economic background, cognitive and non-
cognitive skills, health, geographic location (such as country and rural/urban
location) and so on. So E[ϵ|T = 1] is the expected value of such factors for
college graduates and E[ϵ|T = 0] is the expected value of the same factors for
those who did not attend college.

We know that college graduates tend to have higher socio-economic status,
they are more likely urban and living in high-income regions, and they possess
more cognitive skills. Both higher-status background and innate skills help to
get well-paid jobs later in life too. So there are a lot of observable characteristics
that differ between these groups. So it is hard to argue that all other factors
are similar. Hence most likely E[ϵ|T = 1] ≠ E[ϵ|T = 0], the mean independence
assumption is violated. We can still compare the income of graduates and non-
graduates, but we cannot interpret the result as the causal effect of college degree.

3.6 A Few Popular Estimators
Prerequisites: Section 2.1.2 Simple Regression, page 125, Section 2.1.8 Interactions

effects, page 160

There are many ways to estimate causal effect β1. Here we introduce a few
simple and popular methods: cross-sectional estimator, before-after estimator, and
differences-in-differences estimator. While the two former methods are simple and
popular in media, the latter one is based on slightly more credible assumptions, and
is often used in research. These are all based on fixed effects approach and assume
that certain values or trends are invariant.
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3.6.1 Cross-Sectional Estimator
TBD: just difference in means versus OLS

The idea with cross-sectional estimator is very simple: we assume that the dif-
ference between treated and non-treated outcomes is due to the treatment, and only
due to the treatment, at least in average. If this is the case then untreated cases
(controls) form a valid counterfactual, and we get correct estimates by just comput-
ing the average difference between the treated and the controls. Formally, we assume
E[ϵ|T = 1] = E[ϵ|T = 0] and hence the effect of interest is

β1 = E[y|T = 1]−E[y|T = 0] (3.6.1)

(see (3.5.5)). As discussed above, this assumption seems a credible one in case of RCT-
s, and a lot less credible where different type of people can freely decide whether to
get treatment. For instance, it is extremely hard to justify that college graduates
and non–graduates are similar in every way except graduation. We have many good
reasons to think that ϵ and T are systematically related.

Example 3.8: Cross-sectional estimator of college effect is biased

Let us continue Exampe 3.7. The arguments there suggest that college grad-
uates are drawn from more favorable ends of distribution of ϵ and hence T is
positively correlated with ϵ. This means E[ϵ|T = 1] > E[ϵ|T = 0]. As a result
the estimator (3.5.5) is upward biased:

E[y|T = 1]−E[y|T = 0] = β1 +E[ϵ|T = 1]−E[ϵ|T = 0] > β1 (3.6.2)

The bad news is that we don’t know by how much is the estimate biased, and
based on data alone we cannot tell. Here “data” means a table of college grad-
uation status and income for a large number of individuals. Education is one of
the many unfortunate examples where it is hard to find plausible information to
break the curse of counterfactual and actually compute the effect.

The intuitive side of the assumption was already stated above but we repeat it here:
for the cross-sectional estimator to be valid, the average unobserved characteristics of
the treated and the controls must be similar. If this is the case, then controls make
valid counterfactuals for the treated as they are otherwise similar, except that they
received the treatment.

Example 3.9: COVID-19 stay-at-home orders in Nordic countries

Nordic countriesa are small but highly developed countries in Northern Europe.
They are rather similar in terms of their institutions, featuring extensive social
safety net, high taxes, effective governance and little corruption. The population
of Denmark, Finland and Norway is approximately 5 million, that of Sweden is
10 million. During the COVID-19 pandemic in 2020, most European countries
issued stay-at-home orders, banned public gatherings and closed non-essential
businesses. However, almost nothing was done in Sweden where only gatherings
of more than 500 were forbidden, and face masks remained rare.

This suggest that wecan estimate the effect of COVID-19 measures by using
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a cross-sectional estimator where we compare Sweden to other Nordic countries.
As Swedish policy was clearly exceptional, we can define it as treatment. So in
this case treatment means “not introducing stay-at-home orders”. Non-treatment
would then be what other countries did, namely to issue such orders.

We focus here on the first wave of COVID in April 2020.b The figure below
shows the daily number of new deaths in all these three countries.
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The figure clearly indicates that the death rate per million residents was much
higher in Sweden fluctuating between 6 and 9 over this period. In the comparison
countries, it stayed below 3 for most of the time, with the exception of a short
peak in Finland.

The CS estimate of the effect is just the difference between the correspond-
ing average values. The average death rate in Sweden is 8.25, in other Nordic
countries it is 1.43 and hence their difference, the effect, is 6.82 (deaths per day
per million residents).

aHere we consider Finland, Denmark, Norway and Sweden.
bThe data we use originates from https://raw.githubusercontent.com/datasets/

covid-19/master/data/time-series-19-covid-combined.csv, the prepared dataset is in
https://bitbucket.org/otoomet/lecturenotes/raw/master/data/covid-scandinavia.csv.
bz2.

In practice, it is often useful to use linear regression in the form of (3.5.1) instead
of (3.6.1). Linear regression approach has two advantages:

• We can easily include other covariates, e.g. demographic variables such as age
distribution in case of COVID death rate. This allows to take into account that
the treatment and control group may differ along certain ways we can observe
(e.g. patients may be of different age). Adding more covariates when just
comparing means can be done only in a very limited fashion. One has to split

https://raw.githubusercontent.com/datasets/covid-19/master/data/time-series-19-covid-combined.csv
https://raw.githubusercontent.com/datasets/covid-19/master/data/time-series-19-covid-combined.csv
https://bitbucket.org/otoomet/lecturenotes/raw/master/data/covid-scandinavia.csv.bz2
https://bitbucket.org/otoomet/lecturenotes/raw/master/data/covid-scandinavia.csv.bz2
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data not just along the treatment/control group but also along other covariates,
and we will rapidly run into curse of dimensionality.

• Linear regression software provides the confidence intervals and statistical sig-
nificance figures with no additional work. True, we can get the same result
when performing t-test on the treatment and control samples directly, so this
is just a minor convenience.

Example 3.10: COVID-19 stay-at-home orders in Nordic countries: regression
approach

Here we replicate the results of Example 3.9 with linear regression. As we define
the treatment to be “no lockdowns”, it is equivalent to being “Sweden”, so we
can write the model (based on (3.5.1)) as

deathsi = β0 + β1 Swedeni + ϵi. (3.6.3)

The dummy Swedeni must be understood as for every observation we use a 0/1
dummy that tells if this is an observation about Sweden. The results are in the
table below:

Estimate Std. Error t-value Pr(>|t|)
Intercept 1.432 0.121 11.845 0.000

Sweden 6.820 0.242 28.210 0.000

The results must be interpreted as follows: Intercept is the average daily death
rate in case Sweden = 0, i.e. the death rate outside Sweden (compare with the
results in Example 3.9). Sweden is the effect of treatment, i.e. not introducing
lockdowns. As the table indicates, the effect is very large compared to the inter-
cept (6.82 versus 1.432) and highly significant. So the model suggests that the
“no-lockdown” treatment resulted 5.8-fold increase in death rate. This seems like
a very large effect.

Can we conclude that lockdowns elsewhere were a very good idea? Not so fast.
First, is the identifying assumption credible? In this case it is E[ϵ|Sweden = 1] =
E[ϵ|Sweden = 0], i.e. the omitted variables for Sweden are similar to those in the
other Nordic countries (in average). While there are good reasons to believe that
Sweden is somewhat different from its Nordic neighbors, it is hard to believe the
difference in death rate should be that big. After all, the standard deviation of
the error term is just 1.14a. This is much smaller than the effect 6.82. So even if
the mean independence assumption may not be completly correct, it seems that
any bias here is dwarfed by the effect size.

But before we offer any policy conclusions, note two caveats. First, we are
talking about a large difference in a small rate (a few cases per million). Maybe
it does not matter that much. And second, we do not know what did Sweden
benefit from this policy. Did its economy perform better? Did the population
maintained better mental health? We cannot give solid policy advice before
answering those questions too.

aSoftware packages typically report the estimated standard error of the residuals.
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3.6.2 Before-after estimator
Before-after estimator (BA) is similar to cross-sectional estimator, but instead of
comparing two different groups at the same time (the treated and the non-treated), we
only look at the same group (treatment group) and compare their outcomes before and
after the treatment. If the disturbance term does not change over time (in average)
then the difference is the causal effect.

While the main approach remains very similar to CS estimator, it is useful to
introduce slightly different notation. Assume there are two time periods: t = 0 is time
before treatment, and t = 1 is time after treatment. The corresponding treatment
indicator for individual i is Tit with Ti0 = 0 before treatment, and Ti1 = 1 after
treatment. So we may write

yit = β0 + β1Tit + ϵit (3.6.4)

Here yit is the outcome of individual i at time t, and two indices for ϵit indicates that
the error term may be different for period 0 and period 1. Because treatment occurs
after period 0 and before period 1, we have Ti0 = 0 and Ti1 = 1 for all individuals i.
The expected outcome after the treatment, E[y|t = 1], is now

E[y|t = 1] = E[y|T = 1] = β0 + β1 +E[ϵ|t = 1] (3.6.5)

where we use the fact that “after”, at t = 1, everyone is treated, i.e. T = 1. In a
similar fashion, the expected outcome before the treatment is

E[y|t = 0] = E[y|T = 0] = β0 +E[ϵ|t = 0] (3.6.6)

and the estimated effect

E[y|T = 1]−E[y|T = 0] = β1 +E[ϵ|t = 1]−E[ϵ|t = 0]. (3.6.7)

This captures the correct value, the causal effect β1, only if E[ϵ|t = 1] − E[ϵ|t =
0] = 0. To put it in words, this means that the expected disturbance term before and
after treatment is similar. Or more plainly—there is no unobserved trend. This is
the identifying assumption for the before-after estimator. The requirement is pretty
obvious—the BA estimator is just the outcome difference over time, and this is the
causal effect only if there is no other time differences interfering with the effect. For
instance, if we are using before-after estimator to assess the effect of college degree, we
have to assume that if a person had not attended college, her income would have stayed
the same. (Note: we only look at those who attended college in this estimator.) This
is a completely unrealistic assumption, similar to the claim that high-school students
and young workers without college degree in their mid-20s would earn exactly the
same. Effect of college attendance is an unfortunate example where it is very hard
to find data and institutions that enable causal inference. But at the same time it is
also a number that both high-school graduates and policymakers would like to know.
However, in other cases before-after estimator may be justified.
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Example 3.11: President’s approval: before and after September 11th

September 11th terror attacks were a major shock for the U.S. society, and the
effect was immediately reflected in the president’s approval ratings. The fig-
ure below depicts the Presidents (G. W. Bush) approval rating from July till
November, 2001. The dashed vertical line is the September 11th terror attacks.
Tremendous support to president is immediately obvious from the huge increase
in the approval rate.

TBD: Explain data, data source, also in the repo

50

60

70

80

90

Aug Sep Oct
Date (2001)

A
pp

ro
va

l r
at

e 
(p

ct
)

Figure 3.5: U.S. President G. W. Bush approval rating through summer and fall 2001.
The dashed vertical line corresponds to September 11 terrorist attacs.

The president’s approval rate was hovering around 55% in August and early
September, and between 85 and 90% in late September and October. The Sept
7-10 polls indicated that 51% of the respondents approved his performance but
just a week later, September 14-15, it was at 86%. The sharp jump corresponds
exactly to the terror attacks, and is missing anywhere else in this data.

G. W. Bush’s average approval rate from early July till early September was
55.4% and from mid-September till end of October it was 88%. The difference,
32.6 pct points, is the BA estimate of the effect.

Instead of period means, we can also just look at the last pre-attack poll
(support 51%) and the first post-attack poll (support 86%). Using this approach
the effect is 35 pct points.

Note that the identifying assumption—no trends besides the effect of treatment—
seems to be violated here as the approval rate seems to be heading downhill
through the summer. But we consider this to be a minor issue as the 9/11 effect
clearly dwarfs the trend.
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But this analysis has another important problem. Namely applicability. The
analysis seems convincing and interesting, however, the result (35 pct points) can
hardly be used for any policy-relevant decisions. This is the opposite to the case
of college attendance: we can answer the question, but unfortunately it is not
particularly relevant question.

In a fashion, similar to what we did in case of cross-sectional estimator, we can also
use linear regression to compute the BA estimate. This can be done by using (3.6.4),
typically one also has to create the auxiliary treatment indicator T based on time of
the observations.

Example 3.12: Presidents approval: before and after September 11th, the
regression approach

Let us revisit the George W. Bush’s approval ratings in 2001. First we compute
the treatment indicator T . Here treatment is related to time, T = 1(date >
2001-09-11), i.e. it equals to one for all observations after September 11th, and
to zero for all observations before that date. However, in order to stress the
fact that the treatment is related to observation after the event (and in order to
distinguish between treatment group and post-even observations for differences-
in-differences estimator), we label it After instead. Thereafter we use (3.6.4) as
the regression model. The complete data including After, 12 observations, is in
the table below:

date Approval, pct After
2001-07-10 57 0
2001-07-21 56 0
2001-08-04 55 0
2001-08-11 57 0
2001-08-18 57 0
2001-08-25 55 0
2001-09-09 51 0
2001-09-14 86 1
2001-09-21 90 1
2001-10-05 87 1
2001-10-13 89 1
2001-10-20 88 1

Table 3.2: G.W.Bush approval ratings through the first fall of his presidency. The last
column, After, is the post September-11 indicator.

Now we adapt model (3.6.4). We use After in place of T and drop the index
i as the data is just about a single person, so we have

yt = β0 + β1 · Aftert + ϵt. (3.6.8)

When we estimate this model, we get the following results:
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. object ..
Intercept 55.429 0.734***
After 32.571 1.137***
# obs 12
R2 0.9880

Table 3.3: DiD regression estimate for the effect of 9/11 terror attacks on presidents
approval rating. Standard errors in italics.

The model shows that before the attacks, the approval rate was β0 = 55.429%,
and after the attacks it was larger by β1 = 32.571 pct points. This is the BA
estimate, it is easy to see that it has extremely large t value. The approval level
after the attacks is predicted to be β0 + β1 = 88%. These are exactly the same
numbers we have in Example 3.11.

Note that credibility of the estimator, the credibility of the identifying as-
sumption, relies on our knowledge of the events through the last decades of 20th
and the first decades of 21st century. We know that no other president has
seen such a boost in the approval rate, and there has been no unexpected events
comparable to September 11th attacks.

3.6.3 Differences-in-differences estimator
Differences-in-differences (also diff-in-diff or DiD) estimator combines the cross-sectional
and before-after estimators. The former is biased if the treatment and control groups
differ in a way we do not take into account (i.e. E[ϵ|T = 0] ̸= E[ϵ|T = 1]), and the lat-
ter if there is an uncontrolled trend in the treated group (i.e. E[ϵ|t = 0] ̸= E[ϵ|t = 1]).
DiD compares the time trend for the treated group and the non-treated group. Equiv-
alently, Did compares the differences before and after the treatment for the treated
and non-treated group. This relaxes the assumptions behind the cross-sectional and
before-after estimators and replaces these with a different identifying assumption:
time trends for the treated and non-treated groups are the same. However, we pay
for the more relaxed assumptions with more stringent data requirement: now we need
four data points, two for treated and for non-treated, one before and one after the
treatment for each.

Let us first take a hypothetical example. Imagine there is a federal country that
contains a number of provinces. In year 2015 certain provinces decided to substan-
tially boost the public education by investing in schools, teachers and outreach. We
consider these additional investments to be treatment T , so some provinces were in
the treatment group T = 1 while the others that did not invest are in the control
group T = 0. According to survey data from 2014, before the treatment began, the
average schooling level in the treatment provinces ȳ(T = 1, t = 2014) = 9 years and in
control provinces ȳ(T = 0, t = 2014) = 8 years. Another survey, from 2020, five years
into the treatment, found that ȳ(T = 1, t = 2020) = 11 and ȳ(T = 0, t = 2020) = 9.
(See Figure 3.6.)

We can immediately see that the data does not support the CS and BA identifying
assumptions. As the treatment and control groups differ already in 2014, before the
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Figure 3.6: Hypothetical education data. Both the levels and trends differ for the treatment
and control provinces. Dashed line denotes the counterfactual assumption, the difference
between the actual and counterfactual value is the DiD estimate, here 1 year of extra school-
ing.

treatment even begins, it is hard to argue that they would be the in 2020 if no-one
had introduced the extra investment. In a similar fashion, in case of BA estimator,
the assumption that without such an investment, the education level of 2020 would
be the same as in 2014 for the treatment provinces is not convincing. After all, in
control provinces the level is increasing with no treatment whatsoever! What DiD
method assumes is that the trend difference is due to treatment. So without the
treatment, the treatment provinces would have followed the dashed trajectory on the
figure, leading up to the counterfactual of 10 years by 2020. However, as the actual
outcome was 11 years, the difference, 1 year of extra schooling, is the DiD effect. On
the figure, this is the difference between the actual and counterfactual outcome.

Table 3.4: Four datapoints for DiD estimator

Control Treatment Difference
Time (T = 0) (T = 1)
Before (t = 0) a b b− a
After (t = 1) c d d− c
Trend c− a d− b

Difference in trend (d− b)− (c− a) (d− c)− (b− a)
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Let us now look at this idea more formally. We have two groups, control (T = 0)
and treatment (T = 1) and two time periods: before (t = 0) and after (t = 1). Denote
the outcome in these four data points as a (control before), b (treatment before), c
(control after) and d (treatment after) (See Table 3.4). So a and b are measured before
anyone was treated, and the b− a indicates the difference between the treatment and
control group before the treatment even begins.

The values c and d describe the control and treatment group outcomes after treat-
ment, at t = 1. Their difference, d− c, is caused both by the treatment, and by other,
unobserved, differences. In case of DiD estimator, we assume that the unobserved
difference after the treatment equals to that before treatment, b− a–this is the iden-
tifying assumption. Hence the difference between post-treatment difference d− c and
the pre-treatment difference b− a is the treatment effect:

β = pre-treatment difference− post-treatment difference = (d− c)− (b− a). (3.6.9)

Such “double difference” way of computing the effect is why the method is called
“differences-in-differences”, or “double-differences” estimator.

Alternatively, we can look at the difference over time. The values in the column
control, a and c, describe the control group outcomes before and after the treatment.
In case of before-after estimator they should be equal6 but now we allow a time trend
c − a. The next column, Treatment, shows the outcomes for the treatment group
where the time trend is d− b. This time trend is caused by both treatment and other,
unobserved factors. But we assume that the unobserved trends for the control and
treatment group are the same, c − a. Hence the difference what is left over when
we subtract the control group time trend from the treatment group time trend is the
treatment effect:

β = treatment group trend− control group trend =

= (d− b)− (c− a) = (d− c)− (b− a). (3.6.10)

As both of these approaches gave us the same estimate, we can conclude that both
assumptions are equivalent. So the identifying assumption for the DiD model can be
summarized as:

Unobserved differences between the treatment and control groups are sim-
ilar before and after treatment (in average)

or

Unobserved time trends for the treatment and control groups are the same.

Example 3.13: COVID-19 Epidemic and Presidents Approval

Elected leaders care about their
approval ratings. The numbers
are regularly provided by polls.
Chesie Yu, CC BY-NC-SA 4.0

Political leaders often enjoy a strong support during the time of crisis. Did
the same also apply to the US president Donald Trump in spring 2020, during
the COVID-19 epidemic? Let’s answer this question with polling data. But
6As above, as no-one in the control group is ever treated, both Y (0|T = 0, t = 0) and Y (0|T =

1,t = 1) are observable so no counterfactual assumption is needed here.

https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
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as presidents’ rating ebbs and flows over time, we compare Trump with Barack
Obama using differences-in-differences approach. As spring 2020 was Trump’s
fourth year in office, we compare his approval trend with that of Barack Obama
in 2016, fourth year of Obama’s second term in office. The identifying assumption
here is that the approval rate trends for Trump in 2020 were similar to those of
Obama in 2016, had the COVID epidemic not happened.

A sample of the data is in the table below:

Table 3.5: An excerpt of approval ratings data for presidents Obama and Trump during
their fourth year in office. Polling data from RealClearPolitics. The displayed period,
from mid-January to mid-April centers on mid-March, the weeks in 2020 where the
world, including the US, rapidly realized the magnitude of the unfolding health crisis.

poll date approve president
The Economist/YouGov 2016-01-17 43 Obama
Bloomberg 2016-03-21 50 Obama
NBC News/Wall St. Jrnl 2016-05-17 51 Obama
ABC News/Wash Post 2020-01-22 47 Trump
Economist/YouGov 2020-02-10 45 Trump
Reuters/Ipsos 2020-04-13 46 Trump

We choose a single day, March 15th as the day of “treatment”. By March 15th
2020 the coronavirus epidemic had become the leading issue in US media and
politics. The number of infected and dead was increasing rapidly and within
a week California ordered the first state-wide lockdown. Hence “before” are
polls conducted before March 15th, and “after” are later polls. The treatment
group is made of Trump, as the pandemic occured on his watch. Obama did not
experience anything similar in 2016 and hence he forms the control group. When
we compute the group/time period averages, we get an analogue to the Table 3.4:

Table 3.6: The effect of COVID-19 pandemic on president’s approval rate

Approval rate (pct)
Control Treatment Difference (pct pt)

Time (Obama) (Trump) (Trump - Obama)
Before (before March 15) 45.9 45.1 -0.86
After (after March 15) 48.1 46 -2.11
Trend (After−Before), pct pt 2.21 0.96 -1.25

We can see that the average approval rate for both presidents between mid-
January and mid-March was fairly similar around 45% while Obama was enjoy-
ing a small lead of 0.86 pct. However, by end of March–early April Obama’s lead
had increased to 2.11 pct points. The difference of these two figures is the effect
estimate, −2.15 pct points. Alternatively, we can look at the growth of the pop-
ularity of both presidents over the same time period. During this time, Obama
gained 2.21 pct points of approval while Trump 0.96 pct points. By construction,
the difference is exactly the same number, −1.25.

https://www.realclearpolitics.com/


220 CHAPTER 3. CAUSALITY

We may depict this estimator graphically by plotting two lines, one
for Obama and one for Trump, for two time points, “before” and “after”:

effect = −1.25effect = −1.25effect = −1.25effect = −1.25
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Figure 3.7: Presidents’ average approval rate before and after March 15th of their 4th
year in office. We can see that Obama’s approval increased by more than two percentage
points over this period while that of Trump grow by slightly less than one point. The
dashed blue line depicts the counterfactual–the path of Trump approval rate, if it had
been similar to that of the Obama’s. The difference between the counterfactual and the
actual approval (green dashed line), −1.25 points, is the effect.
This analysis suggests the epidemic was actually hurting the president’s stand-
ing. Do we believe the result is correct? It is certainly plausible–unlike Korean
president Jae In Moon for instance, Trump was not a leading figure in driving the
nation’s response to the virus. However, our belief should fundamentally depend
on whether we believe in the identifying assumption: without the virus, Trump’s
approval in 2020 had followed a similar trend as that of Obama in 2016.

Table 3.4 treats the data as if we have just a single observation in each 4 cells
of the table. But we may have more data, and we may have additional variables we
may want to control for, for instance political preferences, age, place of residence, and
other characteristics of the respondents. In this case we can use linear (or other type)
regression instead of the tabulation. As in the examples with presidents’ approval,
we may observe multiple polls for both before and after period. Linear regression can
easily capture the trend with a term β1 · after, and difference between the treatment
and control groups by β2 · treatment. However, if we use these two terms only, we
assume the trends are equal for both groups and hence by construction the effect
is zero. So we also need an interaction term of the form β3 · after × treatment (see
Section 2.1.8) to allow the trends between the groups. So the regression model will
look like

yit = β0 + β1 · afterit + β2 · treatmentit + β3 · afterit × treatmentit + ϵit. (3.6.11)
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Here β0 captures the baseline effect, the average outcome for the control group before
treatment; β1 captures the difference in the baseline trend, the outcome growth for the
control group from “before” to “after”; β2 captures the baseline difference between
treatment and control groups (before treatment); and finally, β3 is the estimated
difference in time trends for the treatment and control group. The last figure, β3, is
exactly the DiD estimate we are looking for. Hence, in order to estimate DiD using
linear regression, you have to include:

a) intercept β0,
b) a term for after-treatment time period: β1 · after,
c) a term for the treatment group: β2 · treatment,
d) an interaction effect for treatment group after the treatment: β3 · after ×

treatment.
The latter is the estimate of interest. We may add additional controls as needed.

Example 3.14: President’s approval rating: the regression approach

Let’s return to the example of Obama’s and Trump’s approval rating. We select
the time period from mid-January to mid-April of the fourth year of their presi-
dency, as in Example 3.13. If fact, our dataset contains 149 polls for this period
(See Table 3.5), so we have many observations for each table cell. We estimate
the following model:

yit = β0 + β1 · afterit + β2 · Trumpit + β3 · afterit × Trumpit + ϵit. (3.6.12)

We get the following results:

. object ..
Intercept 45.931 0.433***
after 2.208 0.582***
president Trump -0.856 0.539
after×president Trump -1.251 0.785
# obs 149
R2 0.2065

Table 3.7: DiD regression estimate for the effect of COVID-19 epidemic on the US
president’s approval rating. Standard errors in italics.

As expected, the regression approach gave us exactly the same numbers, includ-
ing the main effect, after×Trump= −1.25, as the table-based approach. Unless
we introduce additional controls, linear regression just compares the averages.
But unlike the table above, we now also have standard errors. These suggest
that after, the spring-2016 trend for Obama, is indeed statistically significant.
However, none of the Trump-related effects is statistically significant. The polling
average for Trump is a little bit less than that for Obama, and his polling num-
bers have been lagging even more over the spring, but both effects are small and
may well be a sampling noise. Hence, we can conclude that the epidemic did not
give Trump any noticeably boost, and may instead have hurt him slightly.

To recap, let’s list here all the predicted values:
• The baseline approval rate, for Obama, before mid-March, was β0 = 45.93%.
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• For Trump, the approval rate was slightly lower, β0 + β2 = 45.075%.
• After mid-March, Obama experienced a mild increase of β1 = 2.208 pct

points.
• After mid-March, Trump’s growth was somewhat smaller than Obama’s,
β1 + β3 = 0.957 pct points, leading the average approval rate to β0 + β1 +
β2 + β3 = 46.032%.

• The main effect of interest here, the difference in springtime growth, is
β3 = −1.251 pct points. However, it is not statistically significant.

DiD estimators are sometimes used in a less formal context. Figure 3.8, taken from
of England (2019, p 14), compares the 2009 recession and the following recovery with
“previous recessions”. One can see that while the previous recessions were followed by
a substantial investment growth, this has not been the case since the Great Recession.
After the Brexit referendum decision was made in 2015 (marked as the EU Referendum
Act on the figure), the investment level has remained essentially flat. The authors
conclude that “weak investment appears to primarily reflect Brexit and associated
uncertainty”, a conclusion that also receives support from investor surveys.

Cheatsheet 3.1: OLS Estimators for causal inference
• T : treatment
• t: time
• ȳ: average outcome

Cross-sectional (CS) estimator
• Control group: other subjects

• Identifying assumption: the treatment group, if untreated, is similar to the
control group (no unknown group differences)

• Group average estimator:

βT = ȳ(T = 1)− ȳ(T = 0)

• Regression model:
yi = β0 + βT · Ti + ϵi

Before-after (BA) estomator
• Control group: the same subjects before treatment

• Identifying assumption: the subjects, if left untreated, are similar to what
they were before treatment (no unknown time trend)

• Group average estimator:

βT = ȳ(t = 1)− ȳ(t = 0)

• Regression model:
yit = β0 + βT · After it + ϵit
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Figure 3.8: Effect on Brexit referendum on the business investments in UK: an example of
graphical DiD approach.

Differences-in-differences (DiD) estimator

• Control group: the same subjects, but applying the time trend of the con-
trol group.

• Identifying assumption: the subjects, if left untreated, show similar trend
as the control group subjects

• Group average estimator:

βT = ȳ(T = 1, t = 1)−

−
[
ȳ(T = 1, t = 0) +

(
ȳ(T = 0, t = 1)− ȳ(T = 0, t = 0)

)]
• Regression model:

yit = β0 + β1 · After it + β2 · Treatment it + βT · After it × Treatment it + ϵit
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3.7 Cognitive Illusions in Causal Inference

Humans brains are developed to serve us well in typical everyday situations we en-
countered through the past hundreds of thousands of years. However, accurately
establishing causality based on observational or experimental data has apparently
not been an important survival task for our ancestors. This manifests in cognitive
biases related to causal inference.

Consider a binary treatment-binary outcome data, such as the flu shot–flu example
in Section 3.3. This data can always be displayed as a four-cell contingency table
(Table 3.8). It depicts four potential outcomes, for instance a denotes the count of
cases where both the treatment and outcome are absent. This is typical data humans
observe, it is much more rare to be able to directly manipulate the treatment in
order to conduct something that resembles a RCT. Evolution has taught us to deduce
causality from such case counts.

Table 3.8: Four potential outcomes in binary treatment/binary outcome data. “0” and
“1” denote presence and absence of treatment and outcome, the letters in cells are the
corresponding case counts.

Outcome
Treatment 0 1

0 a b
1 c d

We are inclined to believe “treatment” causes “outcome” if we see many cases
in cells a and d while c and b remain relatively empty, and there are no obvious
confounding factors. It should be clear to the reader by now that such data alone
is not enough to establish causality. However, very often this is all we have, and
we have to use such information to successfully live in the environment we live in.
Remember–we are talking about a time frame of hundreds of thousands of years, most
of which our ancestors spent as hunter-gatherers in African savannas.

It turns out that humans are more likely to believe treatment causes outcome
(Matute et al., 2015) if

1. The outcome is very likely, say, 75% or more. This is called outcome-density
bias.

2. The treatment is very likely (cause-density bias).
Both biases are related to the cell d in the table being well populated compared to
the other cells, and hence reinforce each other. People are likely to believe in bogus
causal relationship if both treatment and outcome are very likely, for instance when
they take a homeopathic pill every few hours while the ailment goes away rapidly.
A simple remedy to counter this bias is to recommend people to lower the frequency
of treatment. It makes the d-cell case count smaller and hence the bias will be less
strong.
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3.8 Causality and complex social problems
Sometimes the causal chains are much more complex and harder to predict than is
apparent when someone first encounters the problem. This is often the case if the
question are related to humans and social problems. Below we walk through an
example, namely usage of mandatory bicycle helmet laws.

3.8.1 Effect of bike helmet laws
It is well established that bicycle helmets substantially reduce head injuries during
certain type of crashes. Is this evidence enough to justify mandatory helmet laws
(MHL-s)? It turns out we need much more evidence.

The fact that helmets help to prevent head injuries is best established through
mechanical experiments where model heads, with and without helmet, are dropped
to hard surface. One can find information for both about frontal impact (Cripton
et al., 2014) and for oblique impact (Mills and Gilchrist, 2008). In such experiments
the researchers have full control over the environment, such as impact speed, type of
helmet, hair and skin properties and so on, and in this sense they answer the exact
question they are designed for very well. The question in the above-cited papers is
about head injury when hitting hard surface at given speed.

Obviously, head injury is not a random process that only depends on the presence
of helmet—there are many more decisions involved. For a start, one has to decide
whether to cycle or not. Thereafter one chooses the route, speed, and makes other
decisions about biking like distance from curb, whether to pass someone, etc. Also
the other road users choose their behavior, such as motorists must decide speed and
distance when passing a cyclist. So there are many reasons to believe that such studies
do not give the complete picture.

1. Typical crashes occur at different angles and surfaces, and not necessarily in
conditions similar to that of the laboratory environment. But as the experiments
get better, we can assume the laboratory models get increasingly close to the
real cases.

2. in certain circumstances the helmet may get stuck and hurt the wearer more
than would be the case without helmet (rotational injuries). So far, the non-
experimental evidence from actual accidents tends to indicate that helmets help
to prevent head injuries by a substantial degree (Amoros et al., 2012), so the
cases where helmets hurt are probably rare in practice. However, we are outside
of controlled experiment realm now.

3. cyclists may act differently depending on whether they wear or do not wear
helmets. In particular, wearing helmet can lead to more risky behavior (risk
compensation). Fyhri et al. (2018) does not find any effect of wearing helmet on
cyclists’ speed in a field experiment. However, the study was limited in terms
of number of participants (31) and situations encountered on the road. More
research is needed here but it is much harder to simulate realistic situations
here.
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4. MHL-s may discourage cycling. As crashes are rare, the net health effect may
be negative if, in order to avoid rare crashes, people avoid the healthy exercise
in the first place. However, we may debate if authorities should strive toward
fewer crashes, or more healthy population.
The discouragement may occur through several mechanisms:

(a) helmets are considered inconvenient, either to wear, or to carry around
(b) the authorities are using scaring tactics to make the point for helmets.

This may make people afraid of biking in first place instead of choosing
helmets.

(c) helmet requirement makes bike shares less harder to implement.

These effects are very hard to pinpoint in experiments.

5. If MHL discourages cycling, it also makes cycling less safe through following
mechanisms:

(a) “safety in numbers”: the less bikes there are on street, the less the motorists
expect to encounter them, the less prepared they are to notice cyclists in
traffic and hence the more likely are the accidents.

(b) some people may choose driving over cycling increasing the amount of
motorized traffic.

(c) fewer cyclists also means less political will to invest in cycling infrastruc-
ture.

6. helmets may also cause drivers to behave differently and behave more (or less)
risky with respect to cyclists. For instance, Walker (2007) finds that cars passed
cyclists with helmets significantly closer in average.

Note that despite of the large number of potential mechanisms, the net effect may
be dominated by just one or two major ones while all the others are of very little
importance. The problem is that we don’t know how strong are each of these effects,
and hence the policy will remain largely uninformed.
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4.1 Predictive modeling
TBD:

4.2 Categorization
We discussed model evaluation in the context of linear regression above in Sec-
tion 2.1.5, including how figures like RMSE and R2 describe different sides of the
model performance. Here we focus on evaluating categorization.

It turns out that RMSE and R2 are not appropriate indicators for model goodness
in case of categorization. In case of continuous outcomes, such as income or intensity of
light, a good model will be the one that predicts values very close to the true observed
ones. Hence the measure should be based on the difference between the predicted and
actual value, ŷi − yi. But this approach does not really work for categorization for
several reasons:

227



228 CHAPTER 4. PREDICTIVE MODELING AND MODEL GOODNESS

1.
Nominal measures: can only be
compared as equal/not equal;
ordinal measures: can only be
compared as equal, larger,
smaller. See see Section 1.1.1.

First, categories are nominal or ordinal measures and hence the difference ŷi−yi
is typically not defined. For instance, when predicting treatment status then
the whole concept treated − nontreated does not make much sense.

2. Second, our predictions can be wrong in two ways: either we predict 1 instead
of 0 (type-1 errors or false positives) or 0 instead of 1 (type-2 errors or false
negatives). These errors can have different real-world consequences, but neither
RMSE nor R2 distinguishes between these types of errors. There are more
possible errors if we have more categories.

3. Finally, even if we define the difference ŷi − yi, e.g. as 0 if our prediction is
correct and 1 if it is not correct, we have lost all information about how “far”
off the prediction was from the correct one.

Solutions to the first two issues are based on confusion matrix. In order to address
the third issues, we have to look not just the predicted categories but the predicted
probabilities of the categories.

4.2.1 Confusion matrix and related concepts
Confusion matrix is a popular way to assess the performance of categorical models.
Instead of attempting to measure distance between the predicted and the true values,
we just tabulate and count all types classification errors. This simple approach allows
to avoid the first and second problem listed above.

Confusion matrix

Confusion matrix is in essence just a cross-tabulation of the actual and predicted
classes. It is a central tool that many categorization-related goodness measures are
based on. Here we discuss confusion matrix in case of two categories only but it easily
generalizes to a larger number of classes.

Let’s start with an example. Imagine we work in a hospital and have ten patients
who all do a medical test. This is a quick test that shows if the patient has a certain
condition, such as asthma. As is the tradition in medicine, we call the test “positive”
(+) if the patient has asthma, and “negative” (−), if they have not. But the test is
imprecise, and only over time we will learn the actual condition. The actual and test
values of all patients are in Table 4.1 (left panel). The last column in the table, Type,
shows the correctness of the test results: TP (true positives) are patients who had
asthma and were tested positive, TN are patients who do not have asthma and were
tested negative. These are the correct results. But in a number of cases, the test was
wrong: FN (false negatives) are asthma cases that were tested negative and FP are
the opposite, healthy patients who were tested positive. As the test can only have
two possible outcomes, positive and negative, these four types are the only possible
types.

The right panel shows a summary table of the table at left, just the counts of all
four possible types. In these data we have two true negatives, three false negatives,
one false positive and four true positives. This is the idea of a confusion matrix. Next,
let’s discuss it in a more formal fashion.
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Table 4.1: Example diagnosis data (left) and the corresponding confusion matrix (right).

Case# Actual Test Type
1 + + TP
2 − − TN
3 + − FN
4 − − TN
5 − + FP
6 + + TP
7 + − FN
8 + − FN
9 + + TP
10 + + TP

Actual
Test − + Total
− 2 3 5
+ 1 4 5

Total 3 7 10

Assume we have T cases in total that belong to two categories: P positives denoted
by “+”, and N negatives denoted by “−”. This can be a similar medical diagnosis
problem as in the example above, but may also be something completely different.
For instance, in case of weather forecast, we can label rain as positive and dry weather
as negative. These are the “actual categories”, determined either through expensive
testing or diagnosis, or maybe the correct results will be apparent over time (as in
case of weather forecast). In any case, we know that the actual categories are correct.
Now we use a medical test or a machine learning model to predict the category for
each case. We would like the model to be able to predict every single case correctly
as positive or negative but most models are not that good. Let’s say that in total,
the model predicts P̂ cases as positive and N̂ cases as negative. For an overview, we
create a similar 2 × 2 cross-table as above, where we present the counts for actual
and predicted classes (Table 4.2). The table indicates how many actual positive cases
were predicted as positive, how many as negative, and so on. This is the confusion
matrix.

Table 4.2: Confusion matrix for two categories, labeled here as “−” and “+”. The table
entries are counts: TP, true positives, refers to positive cases that were also predicted to be
positive, P is the number of actual positive cases. See explanations in the text.

Actual
Predicted − + Total

− TN FN N̂

+ FP TP P̂

Total N P T

In case of two categories, the core of confusion matrix contains four cells:

• True positives (TP) are cases that are actually positive, and are correctly pre-
dicted as positive. We like TP to be large.



230 CHAPTER 4. PREDICTIVE MODELING AND MODEL GOODNESS

• True negatives (TN) are actually negative and are predicted as negative. We
like TN to be large.

• False positives (FP), also type-I errors, are cases that are actually negative but
were incorrectly predicted as positive. We would like FP to be zero.

• False negatives (FN), also type-II errors, are cases that are actually positive but
were predicted as negative. We would like FN to be zero.

In case of confusion matrix, these concepts often refer to the corresponding counts,
e.g. FP is the number of cases we incorrectly predict as positive. However, these may
also refer to probabilities or percentages, e.g. FP may be a probability that we predict
a case incorrectly as positive, or percentage of such cases. Obviously, a good model
has high values of TP and TN while the counts of FP and FN are small. Table 4.2
also includes one-way counts: P is the number of actual positives, N is the number
of actual negatives, P̂ is the number of predicted positives and N̂ is that of predicted
negatives. Finally, T denotes the total number of cases.

Example 4.1: Confusion Matrix

Dataset Treatment contains information about individual participation in a labor
market training program, and background information, such as age, previous
unemployment, and income. Here we use that information to estimate a logistic
regression model to predict the participation status based on age, previous real
income and previous unemployment:

Pr(Participated i) = Λ(βa · agei + βr75 · 1(re75 i > 0) + βu75 · u75 i)

The original data has 185 participants out of 2675 individuals in total, while our
model predicts 134 as participants and 2541 as non-participants. When we create
confusion matrix, a cross-table of actual and predicted values, the results looks
like this:

Actual
Predicted Non-Participants Participants Total
Non-Participants 2452 89 2541
Participants 38 96 134
Total 2490 185 2675

Let’s consider participants as positives below. So for TN = 2452 individuals,
our model correctly predicts that they did not participate in the program. For
an additional TP = 96 cases it correctly predicted that they participated. TN
is rather large, these are good news for our model. But unfortunately TP is not
much larger than FN = 89, the number of individuals who participated but were
incorrectly predicted as non-participants. Finally, the count of type-1 errors, false
positives, is smaller, FP = 38, indicating that the model does not mis-categorize
non-participants as participants that often.

https://bitbucket.org/otoomet/lecturenotes/raw/master/data/treatment.csv.bz2
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Although a 2 × 2 table seems simple, confusion matrix is actually surprisingly
confusing. So no wonder it is called confusion matrix ,. It is partly related to the
notation and language. In particular, true positives refer to cases that are actually
positive, and are predicted as positive; not to the “ground truth”, the cases that are
actually positive as one may think. This is why we introduce the “actual” status here,
to distinguish between the actual positives P and “true” positives TP . In addition, N
typically denotes the total number of cases, not just the number of actual negatives.
Here we denote the total number of cases by T .

Moreover, you can see the confusion matrix defined in slightly different way in the
literature, e.g. putting actual values in rows and predictions in columns, and putting
positives first and negatives second. So each time you see a confusion matrix in the
literature, you need to understand how exactly it is defined. All these definitions are
correct, but mixing them up is wrong! Here we consistently use the definition above:
actual values in columns, predicted values in rows; negatives first and positives second.

Exercise 4.1: Compute the confusion matrix

Consider a variable that can be of two categories: “0” and “1”. First, you ask
an expert for her opinion, and later the actual values also become evident. The
values are as follows:

case: 1 2 3 4 5 6 7 8 9 10
Actual 1 0 0 1 1 0 0 0 1 0
Expert 0 0 0 1 0 0 1 0 1 1

Construct the confusion matrix.
Solution on page 492.

Exercise 4.2: Confusion matrix for the naive model
Consider the data in Example 4.1. Consider a naive model that predicts all
observations to the majority category–to the category that is more common (non-
participants in that case). How will the corresponding confusion matrix look like,
if you consider the participants as positives?

Solution on page 493.

Based on the confusion matrix entries, we define a number of model goodness
measures:

• Accuracy: percentage of correct answers

Accuracy =
TP + TN

T

Accuracy is an easy and intuitive summary measure: what percentage of our
predictions turn out to be correct. However, it is not very informative in case of
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very imbalanced categories as even a naive model that always predicts the most
common class can achieve high accuracy (see Exercise 4.2 and Example 4.2).
Another problem with accuracy is that it weighs both false negatives and false
positives equally. But sometimes these errors have quite different costs.

• Recall is the percentage of actual positives that are correctly identified as posi-
tives. You can try to remember it as how well does the model “recall” the actual
positives. It is defined as

Recall = TP

P
=

TP

TP + FN
.

If our main concern is to capture all positives, recall may be a good measure. It
is sensitive to false negatives, the incorrectly categorized positives, because the
denominator includes FN . However, it is easy to fool: if we predict every case
to be positive, then we get Recall = 1 but the model is hardly of any use.

• Precision is a sort of mirror image of recall: percentage of predicted positives
that turn out to be correct.

Precision =
TP

P̂
=

TP

TP + FP
.

Try to remember it as “how precise” are the predicted positives. Precision is
sensitive to false positives, so it may be a good measure if avoiding false positives
is an important concern. As the other measures, this can also be fooled easily: if
we ensure that only the most likely cases are labelled as positive, we can ensure
that precision is high.

• F score is an attempt to find a balance between recall and precision. It is just
the harmonic mean of these two measures

F =
2

1

Precision +
1

Recall

.

F -score cannot be easily fooled–if you predict everything positive to get a high
recall, then the precision is low and hence F -score is low too. And the other
way around–high precision and low recall will still result in a low F -score.

Exercise 4.3: Compute F -score

Harmonic mean may be somewhat un-intuitive. Consider models where i) preci-
sion = 0.5 and recall = 0.5; ii) P = 0.3 and R = 0.7; iii) P = 0.2 and R = 0.8;
iv) P = 0.1 and R = 0.9; v) P = 0 and R = 0 In each case compute F -score.

Solution on page 493.
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Example 4.2: Accuracy, Precision, Recall, F -score

Consider the confusion matrix in 4.1. From the matrix we can compute all four
model performance measures:

Accuracy A =
TP + TN

T
=

96 + 2452

2675
= 0.953 (4.2.1)

Recall R =
TP

P
=

96

185
= 0.519 (4.2.2)

Precision P =
TP

P̂
=

96

134
= 0.716 (4.2.3)

F -score F =
2

1

Precision +
1

Recall

=
2

1

0.716
+

1

0.519

= 0.602 (4.2.4)

So our model is highly accurate but not impressive in terms of recall and precision.
This is because the groups are of very different size: only 185 (6.9 percent) of
individuals participated in the program, and hence if we would predict “non-
participant” for everyone, we would still get accuracy 93.1 percent. So despite of
the impressive accuracy, the model does not do actually much better than a naive
guess. R = 0.519 tells that we only catch slightly over 50% of the participants
correctly, and P = 0.716 shows that only around 70% of predicted participants
are correct. Finally, F -score is predictably between R and P .

Exercise 4.4: Accuracy, Precision, Recall

Look at categorizing cases into two color categories: Red and Yellow. Consider
the confusion matrix:

Actual
Predicted Red Yellow
Red 10 10
Yellow 20 60

Assuming Yellow is the positive, compute A, P , R and F -score.
Solution on page 493.

These model goodness measures have multiple names, and they are closely related
to other similar measures. A number of examples are listed here:

• Accuracy–based measures

Misclassification rate is just the opposite of accuracy:

Misclassification rate = 1−A (4.2.5)

• Recall–based measures that focus on the actual categories:
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True positive rate and sensitivity are just another names for recall.

specificity is recall for negative outcomes:

Specificity =
TN

N
=

TN

TN + FP
(4.2.6)

False positive rate measures the percentage of negatives that is falsely catego-
rized as positives. It is also 1 minus specificity:

FPR = 1− specificity =
FP

N
=

FP

TN + FP
(4.2.7)

False negative rate is the opposite of FPR, it measures the percentage of posi-
tives that are falsely categorized as negatives:

FNR =
FN

P
=

FN

TP + FN
= 1− Recall (4.2.8)

• Precision-based measures focus on the predicted categories:

Positive Predictive Value (PPV) is the same as precision.

Negative Predictive Value (NPV) is the same as precision for negative out-
comes:

NPV =
TN

TN + FN
=

TN

N̂
. (4.2.9)

Note that for each model we can only compute a single accuracy measure but two
P and R measures: one for positive and one for negative cases (and even more if we
have more than two categories). It is often clear from the problem which cases we
should analyze and which measures we should focus. For instance, in case of medical
diagnosis, the “positive” typically means the illness, and we may be concerned about
catching as many cases as possible (we need a high recall). Alternatively, if the
treatment is expensive and potentially harmful, we may be interested to ensure all
cases we identify are actually correct (we look for high precision).

Exercise 4.5: Flipping positives and negatives

Consider the treatment data in Example 4.1 (the same as in Exercise 4.2).
a) Assume participants are positives. Construct the confusion matrix and

compute accuracy, precision and recall.
b) Assume non-participants are positives. Construct the confusion matrix and

compute accuracy, precision and recall.
c) What do you think, which of these options is better?

Solution on page 493.
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Exercise 4.6: COVID test sensitivity

Ferté et al. (2021) analyze specificity and sensitivity of rapid covid tests (Abbott
Panbio SARS-CoV-2 Ag rapid test) on students at Bordeaux University. They
find specificity to be 100% and sensitivity 63.5% in the overall population, in the
asymptomatic group the numbers are 100% and 35%.

Construct example confusion matrices that have corresponding sensitivity and
specificity. What do you think about the quality of the test?

Solution on page 494.

ROC curve

Categorization models normally do not just predict the class, but the probability that
the observation belongs to each class. It is customary to take probability 0.5 as
the threshold between the categories. If the predicted probability is less than the
threshold, it belongs to one, if it is above the threshold, it belongs to the other
category. Say, probability 0.25 corresponds to “spam” and 0.6 to “no-spam” category.

While value 0.5 is intuitive and exactly in the middle of the range, we do not
have to pick this value. If different type errors are associated with different costs,
we may be much more willing to err in one side than another and pick a threshold
noticeably different from 0.5. For instance, a judge may consider 0.9 as a too low
confidence to sentence someone for a felony, because such decision, if wrong, will have
serious consequences for the defendant. Obviously, our predictions change if we pick a
different threshold, and different models may show different behavior here. ROC curve
(receiver operating characteristics) is a way to make the type-I/type-II error trade-off
explicit, and help the user to choose between different models and thresholds.

ROC curve is also based on confusion matrix related concepts, true positive rate,
TPR, (i.e. recall) and false positive rate, FPR, defined as

False positive rate =
FP

N
.

While TPR measures the percentage actual positives that are identified correctly,
FPR measures the percentage of actual negatives, incorrectly identified as positives.
Obviously, we want out model to show high TPR (ideally 1) and low FPR (ideally 0).

ROC curve makes these tradeoffs explicit. It plots TPR against FPR for different
thresholds. A typical ROC curve is shown in Figure 4.1. The figure shows to mod-
els, linear probability model and logistic regression, addressing labor market training
participation as a function of age, experience unemployment, and other individual
characteristics. Typically all models offer two extreme choices: FPR = TPR = 0
and FPR = TPR = 1. The first corresponds to the case where all observations are
predicted to be negative, the other to the cases where these are predicted to be posi-
tive. (Here it is not the case for LPM as the predicted probabilities may be outside
[0,1] interval.) Obviously, we are interested in the cases in the middle where FPR is
low but TPR approaches to one. The figure suggests that logistic regression clearly
outperforms LPM at low FPR values. For instance, if FPR = 0.1, TPR for LPM is
approximately 0.9, but for logit 0.95.
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Figure 4.1: Example ROC curve for linear probability model (black) and logistic regression
(pink). The figure suggest that in most cases logit outperforms LPM as it is able to achieve
higher TPR over TPR range 0 to 0.3.

Example 4.3: Computing ROC curve

Let’s look at a case where we have two classes: “0” (negative) and “1” (positive).
We are working with four cases only. We run our model and the algorithm
predicts the following probabilities:

case Pr(positive) true value
1 0.3 0
2 0.4 1
3 0.6 0
4 0.7 1

Denote the probability threshold value by θ, i.e. if Pr(positive) > θ, we predict
the case to be positive, otherwise it is assigned to the negative category. If we pick
θ = 0.5, our algorithm predicts the cases 3,4 to be positive and 1,2 to be negative.
This is the most intuitive approach, but may not be the best if type-I/type-II
errors have very different price.
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ROC curve is what makes these tradeoffs explicit. Let’s start with an extreme
threshold, θ = 0. Now the algorithm predicts everything to be positivea and the
confusion matrix will look like

Predicted
1 0

Actual 1 2 0
0 2 0

Note that here P = 2 and N = 2. Obviously, we get all the actual positives, but
we get all actual negatives wrong. This corresponds to the true positive and false
positive rates

TPR =
TP

P
=

2

2
= 1 FPR =

FP

N
=

2

2
= 1 (4.2.10)

and will give us a data point on the ROC curve:
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On the other extreme, we can take threshold θ = 1. Now none of the cases is
predicted positive and the confusion matrix will be

Predicted
1 0

Actual 1 0 2
0 0 2
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All the negatives are correct but all positives are wrong, and the true positive
and false positive rates are accordingly

TPR =
2

2
= 0 FPR =

2

2
= 0. (4.2.11)

This will correspond to the lower-left corner of the ROC curve:
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Note that now the ROC curve is already a curve, not just a single point. Such
two extreme cases are always possible with a naive model that predicts either all
cases positive or negative, and hence do not tell us much about the underlying
model.

As a third example, take the threshold θ = 0.5 and hence cases 1 and 2 will
be predicted negative and cases 3, 4 positive. The confusion matrix is

Predicted
1 0

Actual 1 1 1
0 1 1

Now half of the predictions are correct and a half are wrong:

TPR =
1

2
= 0.5 FPR =

1

2
= 0.5. (4.2.12)

We get a another point in the middle of the same ROC curve:
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As above, we got a point on the same line that denotes random outcomes. This
indicates that our model performs exactly as good as a naive model that randomly
predicts half of the cases negative and the other half positive.

aIt predicts literally everything to be positive only for such models, like logistic regression,
where predicted probabilities are in the interval (0,1). This may not be the case for e.g. k-NN
(predicted probability may be 0) or for LPM (predicted probability may be negative).

Limitations of the confusion matrix approach

While confusion matrix offers us a large number of intuitive indicators for the model
performance, it is oblivious about the confidence of our estimators. As long as the
predictions do not change, the increased confidence in the predictions is not reflected
in the results. This makes it hard to compare models on small datasets as small
changes in categorization results may obscure more imporant underlying confidence
effects.

Cheatsheet 4.1: Confusion matrix and related measures
Confusion matrix:
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Predicted
Actual − + Total
− TN FP N
+ FN TP P

Total N̂ P̂ T

where

TP true positives
TN true negatives
FP false positives
FN false negatives

P actual positives
N actual negatives
P̂ predicted negatives
N̂ predicted negatives
T total cases

Model goodness measures:

Accuracy percentage of correct predictions A = TN+TP
T

Precision percentage of predicted positives that are correct Pr = TP+FP
P̂

Recall percentage of actual positives detected R = TP+FN
P

F -score balanced mean of Pr and R: F = 2
1

Pr+
1
R

True positive rate same as recall
False positive rate percentage of negatives that are predicted incorrectly as pos-

itives FPR = FP
N
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4.3 Overfitting and Validation
Prerequisites: Section 2.1 Linear Regression, page 123

4.3.1 What is overfitting
When working with machine learning models, we typically start with the “learning”
part, i.e. model training. Training makes the model to “learn” patterns in data
(typically by computing certain parameters) and later we can use the same patterns
for predictions. But model can only learn about patterns it actually sees, i.e. patterns
that are there in data we are using for training (called training data). Later, when we
use the model for making predictions, we typically want to make predictions for values
that are not in training data. This is the typical workflow for supervised learning.
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Figure 4.2: Two possible patterns to explain the same data

However, it turns out that powerful and flexible models may learn patterns that
are not useful. Consider Figure 4.2. It depicts a fictional income-age relationship
of N = 10 individuals, depicted as golden dots. The left and the right hand panels
show two possible patterns–a simple linear trend (linear regression) at left, and a more
complex wavy pattern at right. Which of these patterns is the “correct” representation
of data? Just visual inspection suggests that a line may be good enough, but the
complex curve at right is definitely getting closer to the dots. But be careful here.
We do not want to capture data (patterns in this particular sample). What we want
to do is to use data to learn the patterns in the underlying RV where the data is
sampled from. In this case, we are not very much interested in the relationship in



242 CHAPTER 4. PREDICTIVE MODELING AND MODEL GOODNESS

this sample (you can see it on the figure anyway) but in this society where the data
is coming from.

The problem is that the flexible curve may be too much taylor-made for this
particular sample. It captures not so much the trends in the underlying RV but those
in this particular sample. When we get another sample then a too closely targeted
pattern may not hold any more. This typically leads to plummeting performance
when predicting new data points. The model performs unrealistically well on training
data, but on everything else it is mediocre at best.

This is often not a major concern as many simple models, such as linear and
logistic regression. After all, it is hard to argue that the line at left on Figure 4.2 is
capturing data too well. But if some regions of data space are not well represented
in training data, then more flexible models may produce estimations that are wildly
off. A less flexible model may, in contrast, still provide meaningful predictions. This
phenomenon is referred as overfitting.1

Overfitting is a pervasive problem in most ML models, and more so in more
flexible model. As linear regression is rather rigid (we describe the relationship as a
hyperplane), it is less of a problem here, but that does not mean regression models
are immune to overfitting. Below we provide two artificial examples of overfitting in
linear regression context.

Consider the example in Figure 4.3. The left panel shows a fictitious dataset that
represents how income depends on age. We can see an upward trending relationship.
The right panel shows a number of different polynomial regression models, and their
corresponding predictions using the same data. All models contain polynomials of
age in the form2

yi = β0 + β1 · agei + β2 · age2i + β3 · age3i + · · ·+ ϵi. (4.3.1)

The first model, of degree 0, contains just the constant term β0, essentially assuming
that income is independent of age. Degree 1 is the linear model yi = β0+β1 ·agei+ϵi,
degree 2 is a quadratic relationship yi = β0 + β1 · agei + β2 · age2i + ϵi, and so on. The
higher the polynomial degree, the more flexible the model—the more complex curves
it can represent. This is because higher degree models contain more base functions,
and by combining more functions we are able to approximate data better.

Which model is the best one? Just by looking at the image, one may suggest that
degree 0 (horizontal red line) is too inflexible, data seem to follow an increasing trend
and a constant does not capture it. Both linear and quadratic model (degree 1 and 2)
both capture the trend well. The linear (degree 1) model obviously shows a constant
trend while the quadratic model also captures the steady increase of trend after age
35. The 4th-degree polynomial seems somewhat too wobbly, and the 7th-degree
model fluctuates even more. The most flexible model displayed here, the 9th-degree
polynomial, has gone completely wild and jumps up and down way outside of what
fits to the image the image. But despite of its wild behavior, it manages to capture all

1In a high-dimensional feature space the datapoints are always sparse, and there are always large
uncovered regions.

2These example models are created using orthogonal polynomials, not just powers of age. In
case of ordinary polynomials, high-order age terms will introduce a lot of multicollinearity and the
numeric precision of calculations will be insufficient. These issues are not related to overfitting.
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Figure 4.3: Artificial age-income data. Left panel shows just the data points, the right
panel displays the same data and a number of polynomial regression models with various
polynomial degrees.

data points exactly! This is a general pattern—the higher degree, the closer the model
to the actual data points. This can be confirmed by computing the corresponding
RMSE-s or R2-s:

degree 0 1 2 4 7 9
RMSE 10.50 8.43 8.31 7.87 4.50 0.00
R2 0.10 0.42 0.44 0.49 0.83 1.00

This is easy to understand intuitively: a more flexible model is more able to fit the
actual data points. You can imagine the polynomial degree as some sort of inverse
“rigidity”, where higher degree means more flexible line. 9th-degree polynomial can fit
10 data points perfectly. But the price is paid in the gaps between data points. There
is nothing that limits the model’s wobbles in those gaps, and hence flexible models can
jump wildly. (In case of less flexible models, it is the “rigidity” of the curve that does
not let it to jump too much.) But what matters more—the better precision at the
data points where we know the answer, or unrealistic behaviour between those data
points? And why do we claim that the behaviour inbetween the known data points
is unrealistic if we, per definition, do not know what is going on in those regions?
Note that often we are interested in model performance exactly in the gaps—after all,
there is little need to make predictions where we already know the answer.

But in order to formally evaluate the effect of the apparent misbehavior between
data points, we have to know more. In case of this example, the 9th-degree model
predictions for a 57-year old seem completely out of touch with the reality, suggesting
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the income at that age is deep in negative territory. Nothing we know about human
lifecycle suggests this is the case. A simple linear (degree-1) model feels much more
appropriate here, suggesting income around $75,000. But in other applications we
may want to trust the more flexible model instead. And often we just have no idea
what to expect. How can we still get a good idea of which models is the best?

Example 4.4: Overfitting and decision boundary

Consider a two-dimensional example in Figure 4.4. The figure depicts a catego-
rization problem where the coordinate pairs (x1, x2) are classified as red or blue.
The dots are the observations we know, they seem to indicate that the lower
left of the figure is red-dominated, and the upper right part is blue-dominated.
The decision boundary between these two areas follows a wavy pattern. It is
constructed as a sine wave (marked by black line) with added noise.

The pale red and blue background are our predictions–the model predicts that
all dots in the red region are red and blue region are blue. The left panel does
the prediction using a logistic regression. This results in a simple linear decision
boundary. This seems to be a too rigid approach, it does not capture the blue
and red waves that is clearly systematic and not just random noise, and that
trespasses over the decision boundary line.

Nearest neighbors: each dot is
predicted to be of the color as
the nearest known colored dot.
See more in Section 6.3 k-Nearest
Neighbors, page 321.

The right panel uses single nearest
neighbor to predict the colors. It results in a complex boundary that carves out
every single red and blue dot. This seems to be a too complex boundary and
suggests we are overfitting.
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Figure 4.4: Categorization task with blue and red dots. Logistic regression (left panel)
does not capture the red and blue waves extending into the other color area. This is
underfitting. Nearest neigbhbors (with k = 1) carves out a separate space for every
single dot. This is overfitting.
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Example 4.5: Complex decision boundary

Complex decision boundary is not the same as overfitting. Here is an example of
sea versus land categorization. The blue and red dots appear in a fairly random
fashion on the top left image. The top right picture displays the underlying
geography of the Phillipine islands. The single nearest neighbor (bottom left)
captures the actual shape of islands much better than 13-NN (bottom right).
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Figure 4.5: A complex decision boundary (1-NN) captures the actual shoreline better
than a simple one (13-NN). The respective validation accuracies are 0.93 and 0.89.
Philippine archipelago.

The more complex decision boundary is better here because the dot color is not
random. What makes the blue and red dots to look random is not a noise or
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measurement errors, but the fact that the coastline–the decision boundary–is, in
fact, very complicated.

4.3.2 Validation: which model is the best
A look at the Figure 4.3 gives a hint about how to assess the model goodnes—if we
just had an additional data point that is in the middle of the observed values, say at
age 45, then we could compute all models’ predictions at that age, and compare that
with the actual value. But we do not have any more data. What should we do?

Fortunately, there is a very easy solution to this problem. We just split the data
into two parts—training data, the one we will actually use for fitting the model, and
validation data, the part of the data we use later to compute the predictions in the
gaps.3 From the model’s persepective, validation data is exactly the additional data
point—this is a data point the model hasn’t seen, and hence the model has not had
a chance to squeeze a wobbly line through those datapoints. The split of data into
training and validation sets is typically done randomly, and validation data is often
chosen to be 20% of the original size. This leaves most of the data, 80%, for training.

For instance, we can keep ages 26.7 and 57.2 as validation data and use everything
else for training (Figure 4.6). The figure shows the same data as Figure 4.3, but
now indicating training observations as green dots and validation observatiosn as red
dots. Because we now only have 8 training data points instead of 10, we can only
fit polynomial regressions up to degree 7, and now 7th-degree curve perfectly fits all
green training data points. However, a simple visual inspection suggests that the
7th-degree curve at red validation points is much farther off compared to the other,
lower-order polynomials.

The prediction errors for both validation age, and RMSE are shown in Table 4.3.
We can see that the linear model (1st-degree polynomial) achieves the best results—
the lowest RMSE—here. The 7th-degree model that is able to fit all training data
perfectly, produces enormous error at age 60. The constant, 0-degree model appears
to be to rigid and worse in terms of RMSE. This is called underfitting, a situation
where the model is too rigid and would gain from more flexibility. Models of degree 2
and more are overfitting–they follow the training data too well, while the performance
on validation data suffers. This is overfitting, a situtation where less flexibility would
be better. Such a patter–the performance initially improves with added flexibility, and
thereafter deteriorates, is very common in practice. On one side, we are underfitting,
on the other side overfitting. The best place is in the middle where the validation
performance achieves its maximum.

Figure 4.7 offers another look at the same results. The left panel displays two
RMSE-s, one for 8 training data points (red) and another for two validation data
points (blue). Here we have selected a different pair of observations for validation
than in Table 4.3, and the results are somewhat different. But in a similar fashion as
in the table, the 0-th degree polynomial is worse than the 1st degree polynomial for

3Here we refer to the part that is used for model tuning as validation data. It is very common
to call it testing data instead. However, because of conceptual similarity with cross-validation (see
Section 4.3.3 Cross-validation, page 247), we call it validation data here. We reserve testing data to
denote a different concept (see Section 4.3.4 Training-validation-testing approach, page 247).
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Figure 4.6: The same artificial age-income data as on Figure 4.3. The training data points
are denoted with green, validation points with red. The polynominal regression curves up to
degree 7 are fitted through the data training data. One can see the 7-th degree polynomial
that fits all training data perfectly, predicts values that are far off from the actual validation
values.

validation data, while all higher degrees are worse. On training data, however, larger
degree always gives better prediction, as manifested by the steadily falling training
RMSE curve.

Obviously, the results differ if we choose different two observations for validation.
The right panel of Figure 4.7 shows a set of such curves with five different choices of
validation observations. The overall picture is broadly similar–at small degree, the
validation RMSE tends to be small, and it rapidly grows at a larger degree. But
details differ–sometimes it is degree 0, sometimes 1, and twice degree 4 that gives the
best validation RMSE. This is one of the problem with trainin/validation approach,
and one of the reasons why cross-validation (see below) is preferred.

4.3.3 Cross-validation
TBD: figure

4.3.4 Training-validation-testing approach
The idea with training-validation split is to separate model fitting from model val-
idation, and to use the latter step to improve the model. However, this essentially
amounts to fitting in two steps on the complete dataset, and we are still prone to
overfitting.
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Table 4.3: Prediction errors from polynomial regression on validation data as shown in Fig-
ure 4.6. The linear model (1st-degree polynomial) achieves the smallest RMSE on validation
data.

Error at age
degree 26.7 57.2 RMSE

0 16.58 0.49 11.73
1 9.44 5.71 7.80
2 10.67 5.77 8.58
4 13.43 18.99 16.45
7 -54.23 491.95 349.97

A possible solution is to do a three-fold split: to split data into training, validation,
and testing chunks.

The training chunk is used for training individual models. This is what is normally
called “training”, and typically involves computing a number of model parameters.

Validation chunk is used to select between different trained models. This is es-
sentially training as well, but now we are not training model parameters, but in-
stead hyperparameters by checking which models performs best. Hyperparameters
are conceptually similar to the parameters, just traditionally not called like that. For
instance, in case of linear regression, the parameter vector β is called “parameters”.
But which features to include in the model is not called a parameter. We can call
this a hyperparameter instead.

Finally, there is also a dedicated testing (hold-out) chunk. This is only used when
all the model fitting and testing is done. It will indicate what is the final model
performance on unseen dataset. After this figure has been revealed, one should not
go back to model tuning. In actual applications, testing data is sometimes separated
physically and organizationally from the main work. It may set up in a way that the
research group does not even have access to that data. Instead, they submit their final
model to a separate organizational entity who then computes the final performance
on the testing data.
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Figure 4.7: Training and Validation RMSE. Left panel displays a single training-validation
split, right panel displays five different splits. Higher polynomial degree will always result
in a lower RMSE when computed on training data (red), but on validation data it first falls
a little bit and thereafter rapidly increases when the model gets too “wobbly” at higher
degrees.
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Chapter 5

Linear Algebra

In these notes we use vectors and matrices for two main purposes: to hold data, and
to simplify algebra—linear algebra (LA) formalism tremendously simplifies algebra
and computations for certain types of tasks.

This section covers the basic LA concepts we need. As our usage of LA is heavily
matrix-oriented, we cover vectors only superficially. Later we typically assume that
vectors are just special matrices with only a single column (or a single row). In a
similar fashion we do not use inner and outer product concepts, we treat both these
products as just matrix products between row- or column matrices.
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5.1 Why Linear Algebra in Machine Learning
The concepts “vector” and “matrix” have (at least) two related meanings. One is a
type of data storage, for data that is arranged in one dimension (vector) or in two
dimensions (matrix or data frame). The other meaning is vectors and matrices in
mathematical, in linear algebra sense. These are numbers, stored in an 1-D or 2-D
structure, exactly like the storage structures. However, linear algebra defines a large

251
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number of certain mathematical operations on these structures. Here we are interested
in the mathematical properties of these objects, but both types are closely related,
for instance, many popular computer libraries that support vectors and matrices also
implement the corresponding mathematical operations.

As it turns out, a large number of operations we do with ordinary numbers, such
as addition, multiplication and inverse generalize easily to matrices as matrix addi-
tion, matrix multiplication, and inverse matrix. More importantly, many statistical1
problems generalize from univariate to multivariate versions using exactly these op-
erations (and we stress that machine learning is in many ways a branch of statistics).
For instance, instead of univariate normal distribution, we can use multivariate nor-
mal to describe distribution of correlated values. This allows us to handle multivariate
problems in a dimension-agnostic way, just deriving, writing, and coding formulas for
general N-dimensional case.

For instance, the way to solve linear regression models in any dimensions can be
written as

β̂ =
(
X

T

· X
)−1 · X

T

· y. (5.1.1)

Even if one does not know what do these symbols and operations mean, one can
see that the formula is rather simple. As efficient software implementations of ma-
trix operations are widely available, this formula can almost literally converted into
computer code.

As linear algebra is ubiquitous in science and engineering, there exist dedicated
well-optimized libraries, and even dedicated hardware to speed up certain linear al-
gebra processes. For instance, ordinary graphics cards with thousand of simple com-
puting cores, originally designed for computer games, are optimized for matrix mul-
tiplication because this is how one rotates 3-D scenery. This makes linear algebra a
method of choice when implementing and using related methods.

Linear algebra is also the method of choice when presenting statistical methods.
Every source, besides the very beginner-oriented texts uses linear algebra, and assumes
the reader is familiar enough with the basic concepts. In this sense it is a central
component of machine learning language.

Below we walk through the basics of vectors and matrices with the focus on matrix
multiplication, inverse matrix, and metric distance.

5.2 Vectors and Vector Spaces

This section briefly introduces vectors, vector spaces, and a few related concepts (in
particular norm and distance) in a non-matrix way. Although later we rely heavily
on matrix notations, the concepts in this section do not require matrix formalism.

1Here we are mainly concerned with statistics, but the same is also true for many physics and
engineering problems.
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5.2.1 Vectors
What Are Vectors

Vectors are ordered collections of elements, for our purpose they are just sequences of
numbers. Normally we denote vectors by bold lower case letters, so an example vector
is x = (1, 2, 3). Here the vector x contains three elements (also called components),
1, 2, and 3, in this order. Order matters, (1, 2, 3) ̸= (2, 1, 3). We denote vector

components with the same letter as the vector itself, just not in bold, and supplied
with the element index. For instance, given the vector x above, we have x1 = 1 and
x3 = 3. We can also use symbols to denote vector elements so another vector example
is β = (β1, β2, β3). Here we only work with numeric vectors, i.e. with vectors where
all elements are numbers. But the components do not have to be numeric, they may
be all kind of objects, including letters, texts, images, functions and other vectors.

An important property of vector is its number of elements, called dimension.2 Our
example vectors x and β are 3-dimensional. 3-D vectors are widely used to describe
coordinates in our 3-space, e.g. in 3-D computer games. But our vectors can be of
any (positive) dimension, including 1-dimensional (just single objects like individual
numbers). They may also have very high dimensionality, for instance color images
can be stored as vectors of millions of elements. In theoretical applications we can
also work with infinite-dimensional vectors.

From our perspective, one of the most important roles of vectors is to hold data.
For instance, consider the dataset about 50 U.S. States (R dataset state.x77). A few
first observations of it look like:

Population Income Illiteracy Life Exp Murder HS Grad Frost Area
3615 3624 2.1 69.05 15.1 41.3 20 50708
365 6315 1.5 69.31 11.3 66.7 152 566432

2212 4530 1.8 70.55 7.8 58.1 15 113417
2110 3378 1.9 70.66 10.1 39.9 65 51945

We can describe the data points (observations) of this dataset as

x1 = (3615, 3624, 2.1, 69.05, 15.1, 41.3, 20, 5.0708× 104)

x2 = (365, 6315, 1.5, 69.31, 11.3, 66.7, 152, 5.66432× 105)

x3 = (2212, 4530, 1.8, 70.55, 7.8, 58.1, 15, 1.13417× 105).

(5.2.1)

When stacking these data vectors horizontally on top of each other, we get a data
matrix (design matrix). Alternatively, we can look at individual variables as vectors,

2We encounter the concept dimension in two different meanings. Here it is the dimension of the
underlying vector space, or the number of elements in the vector. But often one refers to all vectors
as 1-D objects, contrary to matrices that are 2-D objects. This is because vectors are like a 1-D
string of numbers and have only a single length, while matrices resemble 2-D rectangle of numbers
and have both length and width. One has to understand which is meant by dimension a particular
case.
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in that case we have
v1 = (3615, 365, 2212, 2110, 21198, ...)

v2 = (3624, 6315, 4530, 3378, 5114, ...)

v3 = (2.1, 1.5, 1.8, 1.9, 1.1, ...)

. . .

(5.2.2)

Another comment about the notation: here we are using subscript index not to refer
to individual components, but to refer to different vectors. If we refer to an individual
component, we can add another index, e.g. v11 = 3615 and x23 = 1.5 in the example
above. So the first component refers to the vector, and the last one to the component.
Note that we denote components (just numbers) with ordinary font while vectors with
index are in bold! However, there is a variety of notation used in the literature.

Exercise 5.1: Vector dimension
What is dimension of vectors xi in (5.2.1) and vi in (5.2.2)?

Vector Addition and Scalar Multiplication

If we use vectors just to store data, we may not really need to do any computations
with these. Most of the linear algebra is based on two simple operations: addition
and multiplication by scalar. With scalar we mean here a single number that is not
a vector. We denote sum of two vectors by x + y, and multiplication by scalar α as
αx.

When talking about addition and scalar multiplication, we normally mean just the
ordinary mathematical operations. But these do not have to be the common addition
and multiplication, these can be all kind of operations as long as they satisfy a few
axioms, including

1. there is a special element, null vector 0, so that x+ 0 = x for all x.

2. multiplying any vector with scalar 0 will result in null vector: 0x = 0 for all x.

3. multiplying any vector with scalar 1 will retain the original vector: 1x = x for
all x.

4. the operations follow certain distributive laws: α(x+ y) = αx+ αy.
For the vector operations we look here, scalar multiplication is performed by mul-

tiplying all vector components by the scalar:
αx = α(x1, x2, . . . , xK) = (αx1, αx2, . . . , αxK). (5.2.3)

In a similar fashion, vector addition is performed by adding the corresponding com-
ponents of the vectors:

x+ y = (x1, x2, . . . , xK) + (y1, y2, . . . , yK) =

= (x1 + y1, x2 + y2, . . . , xK + yK). (5.2.4)
As is obvious from this definition, the vectors must have same dimension (here K) to
be possible to add those.
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Example 5.1: Graphical way to add vectors

Consider two vectors, x = (−1, 3) and y = (5,−2). Let’s compute z = 2x+ 3y.
When we just multiply and sum the components we get

c = 2 · (−1, 3) + 3 · (5,−2) = (13, 0).

This operation can be represented graphically as

x

y

2x

3y

z = 2x+ 3y

The solid red and blue arrows depict the original vectors x and y, the corre-
sponding dotted arrows are 2x and 3y, and long green solid arrow is their sum
z = 2x+ 3y.

Exercise 5.2: What is the capital of France?

Word embeddings (see Section 8.6 Word embeddings, page 361) is a way to describe
words as numeric low-dimensional vectors (typically 100-300 dimensions).a So
in 100-component example the embedding for word Berlin (see below in the ta-
ble) looks like e(Berlin) = (−0.562, 0.630,−0.453,−0.299,−0.006, . . . ). All these
numbers correspond to different components, but unfortunately the components
are not interpetable in general. Embeddings are computed based on words’ co-
occurrence in texts. As similar words tend to occur in similar contexts, they tend
to have similar embedding vectors. More interestingly, one can also do certain
mathematical operations with embedding vectors. For instance, it is well known
that e(king)− e(man) + e(woman) ≈ e(queen) where e(word) is the embedding
vector of word.

Below is the first five components (out of 100) for Berlin, Germany, France,
and Parisb (the rest of 95 components are not shown).
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word 1 2 3 4 5
Berlin -0.562 0.630 -0.453 -0.299 -0.006
Germany 0.194 0.507 0.287 0.132 -0.281
France 0.605 -0.678 -0.436 -0.019 -0.291

Paris -0.074 -0.855 -0.689 -0.057 -0.139

Compute e(Berlin)−e(Germany)+e(France) and check how close do you get to
e(Paris).

aWhile a 100-D vector may not sound like low-dimensional, typical vocabularies contain
between 10,000 and one million different words. Using one-hot encoding would result in the
corresponding number of dimensions, so a few hundred components is much less than that.

bThe data, glove.twitter.27B.100d.txt, based on 2 billion tweets, can be downloaded from
Stanford NLP project website.

All vectors that can be formed from certain elementary vectors using these two
operations form a vector space. X. For our purpose it is simply a set of all relevant
vectors. For a set to be valid vector space, it must be closed with respect to these
operations. This means that whatever elements of X and real numbers we take, all
their sums and products must also be in X. Formally,

• if x ∈ X, y ∈ X and z = x+ y, then z ∈ X.

• if x ∈ X and z = αx, then z ∈ X for each α ∈ R.
An intuitive and easy-to-understand example of vector space is R2. In R2 vec-

tors are just pairs of real numbers, addition is defined as adding the corresponding
components of vectors, and scalar multiplication is defined as multiplying all vector
components with the scalar. In this case the scalar multiplication is equivalent to
stretching (or squeezing) the vectors while retaining their direction, and vector addi-
tion is equivalent to parallel shift of one vector to the “end” of the other one. As a
special case, negative of the vector x, −x, is just the original vector pointing in the
opposite way.

Example 5.2: Application of 2-D vector space Z2

Imagine you are designing a 2-D computer game. We can choose the coordinates
in different way, a natural choice is to take the origin (0, 0) to be the bottom-
left corner of the screen, and count the horizontal coordinates right, and vertical
coordinates up. We also specify the vectors as (horizontal, vertical),a or (x, y).
As the objects on our screen can only be at certain pixels, we are only interested
in integer coordinates, so x, y ∈ Z where Z is the set of all integers, or (x, y) ∈ Z2

where Z2 is the set of all pairs of integers.
Your player is located at coordinates p = (194, 33). She shoots an arrow

upward that moves 10 vertical pixels per frame. Where is the arrow after 10
frames?

We can write the arrow’s 2-D speed vector as v = (0, 10). v1 = 0 as the arrow
does not move horizontally at all, and v2 = 10 means that it moves up by 10
pixels in one time unit (here the rendering frame). In 10 frames the arrow moves

https://nlp.stanford.edu/projects/glove/
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10v = (0, 100) and hence is located at p + 10v = (194, 133). The location at
arbitrary frame t > 0 can be written as a(t) = p + t · v. Here a, p, and v are
vectors, locations on screen, and speed on screen respectively; and t is scalar, the
frame count from the moment arrow was released.

aAlghouth horizontal, vertical may sound an obvious and trivial choice, it conflicts with the
traditional way of displaying matrix indices, namely vertical, horizontal. Even more, vertical
elements are traditionally counted from top-left corner down.

One can also easily visualyze and understand the 3-D vector space R3. Higher-
dimensional spaces RK are still straightforward, but cannot be visualized.

Vector Space: Base and Linear Independence

The definition of vector space above–closedness with respect to scalar multiplication
and vector addition–suggests that all vectors we can form from certain base vectors
using only vector addition and scalar multiplication form a vector space. So if the
base vectors are a and b, the vector space is a set of all possible vectors

c = α · a+ β · b α, β ∈ R (5.2.5)

Figure 5.1 depicts on such example. Two base vectors a (red) and b (blue) can be used
to compose c and d. See also Exercise 5.14 about how to compute the corresponding
α and β. Such constructs, sums of vectors, multiplied by scalars, are called linear
combinations. So vector space is made of all possible linear combinations of the base
vectors.

a

b

1.94a

0.44b

c = 1.94a+ 0.44b

-0.31a

-0.41b

d = −0.31a+ (−0.41b)

Figure 5.1: Vector space: all vectors on a plane can be computed as a linear combination
of two base vectors, here a (red) and b (blue). The dotted red and blue arrows show which
linear combinations are needed to create vectors c and d (black).

The figure shows only two base vectors. We can easily add another one but it
turns out to be unnecessary–on the plane depicted on Figure 5.1, two base vectors
are sufficient. However, removing either a or b will collapse the plane: there is no
way to cover a plane using a single vector only. This property of a vector space–how
many base vectors are needed to cover the space–is called dimension of vector space.



258 CHAPTER 5. LINEAR ALGEBRA

Obviously, a single base vector can only cover a line. We can multiply b with any
number but the result will always stay in the line defined by b. So vector space made
of a single base vector, 1-dimensional space, is a line. In an analogous fashion, every
linear combination of vector a and b will stay on their plane, there is no way to
describe a point outside of the plane using only these two vectors. We need a third
one that points out of the plane. That would result in a 3-D vector space. These
examples are easy to visualize and understand as our space is 3-D. Mathematically
we can easily describe higher dimensional spaces but our imagination fails as soon
as we move from three to four dimensions. But even when we cannot imagine high-
dimensional space, it serves as an useful tool when working with high-dimensional
vectors.

Base vectors and the dimension of vector space are closely related to linear inde-
pendence. A set of vectors is linearly independent if one cannot compute one of these
vectors from the others (by using only scalar multiplication and vector addition).
Formally, we say that vectors a1, a2, …, an are linearly independent if and only if

α1a1 + α2a1 + · · ·+ αKaK = 0 (5.2.6)
⇕

α1 = α2 = · · · = αK = 0

It is easy to see that this formal definition is equivalent to the informal claim above.
We can easily express one vector in (5.2.6), for instance a1, using other vectors as

a1 =
α2

α1
a2 +

α3

α1
a3 + · · ·+

αK

α1
aK . (5.2.7)

But this is only possible if α1 ̸= 0. Hence for us to be able to express at least a single
vector in this way, we need at least one α to be non-zero. And by definition, this
means our vectors are not linearly independent. In that case it is often said they are
linearly dependent.

Example 5.3: Are these vectors linearly independent?

Let us test if vectors
(
1
2

)
,
(
3
4

)
,
(
5
6

)
are linearly independent.

We can express one vector as a linear combination of others(
1
2

)
= 2 ·

(
3
4

)
−
(
5
6

)
,

or alternatively write (
1
2

)
− 2 ·

(
3
4

)
+

(
5
6

)
=

(
0
0

)
. (5.2.8)

Hence these vectors are not linearly independent.
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Exercise 5.3: Are these vectors linearly independent?

Are vectors

1
2
3

,

4
5
6

,

7
8
9

 linearly independent?

5.2.2 Norm and Distance
Many machine learning methods need to compute distance between data points. For
instance, nearest-neighbors method (see Section 6.3 k-Nearest Neighbors, page 321)
is concerned with the “closest” data points to the one we want to analyze, while
clustering methods (see Section 11.2 Cluster Analysis, page 410) make clusters out
of observations that are “close”. As we data points are described as vectors, all such
methods need to compute distance between vectors. We first discuss a generalization
of vector length,3 called norm. Thereafter we define distance between two vectors by
just computing the norm of their difference.

Norm

x

y

0

v = (1, 1)

1

1

Length =
√

2

Figure 5.2: Vector v has both components, vx
and vy equal to one. From Pythagorean theo-
rem, its length is

√
2. Generalized “length” of

a vector is called norm and denoted by ||v||,
in this case ||v|| =

√
2.

Let us start with the ordinary geome-
try. Take the example of a 2-dimensional
vector on plane. If the vector is given
as (1, 1), what is its length? The an-
swer is

√
2 ≈ 1.414 (see Figure 5.2).

The length of the diagonal of a square
with unit length sides is 1.414. More
generally, we can use the Pythagorean
theorem and write the length of vector
(x1, x2) as

√
x21 + x22. This formula can

be generalized to a 3-D space R3, the
length of 3-vector x = (x1, x2, x3) is√

x21 + x22 + x23. (5.2.9)

This is our most obvious understanding
of length in 3-space. For instance, the
box with side lengths of 1, 2 and 2 has
diagonal of length

√
12 + 22 + 22 = 3.

We can generalize the same concept of
length further into K-dimensional space
RK as √√√√ K∑

i=1

x2i (5.2.10)

3As length, here we mean length as length in space, not the number of components (we call the
latter the vector’s dimension).
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but unfortunately our imagination does not keep up when we move beyond three
dimensions.

This “obvious” concept of length is called Euclidean length or Euclidean norm.
We intuitively think in Euclidean terms as this is how the 3-D space we live in is
“made”. However, there are many other ways to define length, and sometimes the
conventional approach is not the best one. Those more general concepts of length are
called “norm”, this is why we call the Euclidean length Euclidean norm.

Norm of vector x is typically denoted by || · ||. It is a generalization of the concept
of length: it is a function that assigns a non-negative real number to every vector. So
we can sloppily say that norm is a function, that makes a number out of a vector. But
one cannot just assign an arbitrary number to each vector. Valid norm must satisfy
three conditions:

Definition 5.1: Vector norm
Vector norm is a function || · || that assigns a real number to each vector such
that:

1. ||x|| ≥ 0; ||x|| = 0 if and only if x = 0: norm must be positive, only
null-vector has zero norm.

2. ||x+ y|| ≤ ||x|| + ||y|| (triangle inequality): the direct way is the shortest
way.

3. ||αx|| = |α| · ||x|| (multiplication be scalar).

In machine learning applications we are often much sloppier, and use measures of
“length” that are not valid metric norms. For instance, if our task is to rank texts
based on the similarity of the words they use, then we can easily violate the assump-
tion 1 (see more in Section 6.2.2 Cosine similarity and angular distance, page 318).

Lp norm

A rather straightforward generalization of Euclidean norm is Lp norm, also called
Minkowski norm. It is defined by replacing “2” in the formula for Euclidean norm by
a positive parameter p, and the norm is often denoted by adding a small p-subscript
to the norm symbol:

||x||p =

[
K∑
i=1

|xi|p
]1/p

, p > 0. (5.2.11)
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Example 5.4: L3 norm of vector (1,1)

Let us compute L3 norm of v = (1,1), depicted in Figure 5.2. Remember, its
Euclidean, L2, norm is

√
2 ≈ 1.414. Its L3 norm is

||v||3 =

[
K∑
i=1

|xi|3
]1/3

= (|1|3 + |1|3)1/3 =
3
√
2 ≈ 1.26.

Obviously, in terms of Lp norms, Euclidean norm is just L2 norm. There are two
other interesting and popular special cases: Manhattan norm and Chessboard norm.

Manhattan norm (also taxicab norm) is L1 norm, defined as

||x||1 =

K∑
i=1

|xi|. (5.2.12)

So Manhattan norm is the sum of absolute values of the vector components, or from
the geometric viewpoint it is just the sum of the vector’s “sides”.

Example 5.5: Manhattan norm of vector (1,1)

The Manhattan norm on the same (1,1) vector that we analyzed above is

||v||1 =

[
K∑
i=1

|xi|1
]1/1

= (|1|1 + |1|1)1/1 = 1 + 1 = 2

It is easy to see why Manhattan norm is useful, and why is it called taxicab norm.
Imagine you are taking cab in a city where streets are laid out in a rectangular grid,
for instance in Manhattan. If your destination is 10 blocks east and 10 blocks north,
then the cab driver has to drive at least 20 blocks, not matter which route she chooses.
The “Manhattan-length” of your 10-block-by-10-block ride is 20 blocks. You can also
imagine that the driver will not be impressed if you tell her that you are only willing
to pay for a 14 blocks trip because that is the “correct” Euclidean distance.

Chessboard norm also Chebyshev norm is L∞ norm. It can be computed as

||x||∞ = lim
p→∞

[
K∑
i=1

|xi|p
]1/p

= max
i
|xi|. (5.2.13)

Although we cannot directly compute L∞ distance by substituting infinity in the
Lp formula (5.2.11), the fact that it amounts to maximum individual component is
intuitively fairly obvious to understand. Namely, when we take numbers to p-th power
as in |xi|p, the larger numbers “gain” more from this operation if p is large. At the
limit where p→∞, all other components are negligible next to the largest one.
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8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0J0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

1 1 1
1 1
1 1 1

2 2 2 2 2
2
2
2

2
2
2

2 2 2 2 2

3 3 3 3 3 3 3
3
3
3
3
3

3
3
3
3
3

3 3 3 3 3 3 3

4 4 4 4 4 4 4 4
4
4
4
4
4
4
4

Figure 5.3: In chess, king can move one field
in every direction. The numbers on the chess-
board denote the number of moves king at d4
needs to reach that position. For instance, it
needs three moves to get to to f7, and hence
the vector from d4 to f7 has chessboard norm
3.

The name chessboard norm refers to
the fact that in chess, it measures the
number of moves king needs in order to
move to the given number of squares in
each direction (Figure 5.3).

Normalized vectors Sometimes we want
to transform vectors into “length-one”
vectors (unit vectors) while preserving
their “direction”. For instance, it make
computing cosine similarity much eas-
ier (see Section 6.2.2 Cosine similarity
and angular distance, page 318). Such
vectors are called normalized vectors.4
Normalization is technically very easy,
you just need to divide the vector by its
norm:

u =
v

||v||
. (5.2.14)

Definition 5.1, point 3:
||αx|| = |α| · ||x||

The resulting vector u has norm 1 be-
cause of the scalar multiplication prop-
erty of the norm (see Definition 5.1,
point 3).

Exercise 5.4: Normalize vectors
Normalize the following vectors:

1. vector (1,1) using Euclidean norm
2. (1,1) using Manhattan norm
3. (1,1) using Chessboard norm
4. (1, 2, 2) using Euclidean norm
5. (3, 2, 0, 2, 0, 2, 0, 2) using Euclidean norm

Solution on page 489

Metric distance

Closely related to norm is metric distance. We can always define distance between
vectors x and y as

d(x,y) = ||x− y||. (5.2.15)

So a “distance” between two vectors is the “length” of their difference. For suitable
“nice” metrics we can also define the opposite

||x|| = d(x,0). (5.2.16)
4This is fairly similar to feature normalization, see Section 6.2.1 Feature normalization, page 313.

However, they are not exactly the same.
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Figure 5.4: Unit circles – points sets of distance 1 from the origin (0,0) (the central dot)
in different 2-D Lp spaces. If p < 2, the circle looks more like a star, with the Manhattan
distance, p = 1, being diamond-shaped. If p > 2, the circles are more and more box-shaped.

This is possible with Lp norm but not with certain other similarity measures, such
as cosine similarity where one cannot define distance from null-vector, d(x,0), in a
consistent manner.

In order for a distance measure d(·,·) to be a proper metric distance, it has to have
these three properties:

1. d(x,y) = 0 if and only if x = y (identity of indiscernibles). Zero distance means
the vectors are equal.

2. d(x,y) = d(y,x) (symmetry). Distance is the same, whichever way you measure
it.

3. d(x, z) ≤ d(x,y) + d(y, z) (triangle inequality). There is no shorter way than
the direct route.

Among the distance measure we encounter in these notes, Lp is a proper metric
distance but cosine similarity is not.

We illustrate Lp distances by the corresponding unit circles (Figure 5.4). Unit
circle is a set of points that are at distance 1 from the origin. In case of Euclidean
metric, the unit circle is the familiar circle with radius 1, centered at the origin. In
case of the other metrics, the unit circles look different. Some of these have practical
applications, for instance walksheds in neighborhoods with grid-like street layout are
L1 circles.
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5.3 Matrices
5.3.1 What are matrices
Matrices are some of the central objects in linear algebra. You may imagine matrices
as rectangles of numbers, in many ways similar to data frames, that can be indexed
based on their rows and columns. As is the case with vectors, the concept “matrix”
means two different things, one is data storage on computer, and the other is a
mathematical object that has certain mathematical properties.

Here are two examples of matrices:

A =

1 2 3
4 5 6
0 0 1

 B =

1
1
1

 . (5.3.1)

There is no universal way to denote matrices, here we follow one common tradition
and use upper case letters in upright sans-serif font like X or Σ. Unlike vectors, we
do not use bold symbols for matrices. Stacking numbers into rectangles is not of
much interest by itself, but it turns out that these rectangles—matrices—make it
possible to represent various kinds of data and related operations in a much simpler
and more efficient manner.5 This is the main reason why linear algebra is ubiquitous
in statistics and sciences.

The first matrix A has 3 rows and 3 columns, the second matrix B has 3 rows but
only a single column. This is matrix dimension. Matrix dimension is normally de-
noted by rows×columns and hence matrix A is of dimension 3×3 and B is of 3×1. But
confusingly, dimension also means another closely related concept. Namely, some-
times we say that matrices are 2-dimensional while vectors are 1-dimensional objects.
This “object dimension” is not to be confused with matrix dimension. Dimension of
A is 3 × 3 while at the same time A is a 2-D object... Normally it is clear from the
context what kind of dimension we are talking about.

The individual numbers6 the matrices are made of are called matrix elements or
matrix components. These are often denoted by the corresponding lower case letter,
supplemented with two indices, one for row and the other for column—by convention,
matrix elements are indexed first by row and thereafter by column.7 For instance,
the matrix A above can be written in more abstract form as

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (5.3.2)

5Matrices can be generalized into objects that have 3 or more dimensions, called tensors. These
are widely used in physics, but also in advanced ML methods, such as neural networks. Modern
software, such as tensorflow library relies heavily on tensor operations and can employ dedicated
hardware, such as GPU or tensor processing unit (TPU) for speeding up tensor operations. We do
not cover tensors in these notes.

6In these notes we only consider numeric matrices. But matrix elements do not have to be just
numbers.

7Note that this tradition–rows first and columns second–contradicts with the most common 2-D
image data representation: horizontal first and vertical second. This is a frequent source of confusing
errors when describing graphical data in matrix form.
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where the a11, the element in the first row and the first column is 1, a12, the element
in the first row and the second column is 2, and so on. Sometimes matrix is written
by the corresponding elements as A = {aij} where i = 1 . . . N and j = 1 . . .M . This
must be understood as we take all the individual elements (numbers) aij and arrange
those into the matrix.

A central role of matrices in machine learning contexts is to hold and manipulate
data. For instance, the US States data on page 253 is technically a data frame, but
could as well be a matrix. Holding data in matrix form makes it possible to use linear
algebra methods, and as we discussed above, this is an excellent option when we are
doing multivariate statistics.

A note about matrices and data frames. Both structures look similar, they are
both rectangles of data. But while matrices are linear algebra objects, data frames
are not. Data frames are a convenient way to store and display heterogeneous data,
data where columns can be of different type, not necessarily numbers. Matrices are
rectangles of only numbers (as far as these notes are concerned). While matrices in the
abstract sense are not related to storage concerns, the computer implementations are.
They are normally stored in a different way than data frames to facilitate operations
as blocks, while data frames are often designed for easy acces by columns in mind.

Matrix Components

Certain combinations of matrix elements have their own names. As these are widely
used when discussing matrices, we introduce the most important ones here.

Matrix diagonal (also main diagonal) are the elements in the form aii. Consider
matrix A in (5.3.3). Its main diagonal, (a11, a22, a33), is left white. We usually talk
about diagonal in case of square matrices only, but note that it is also defined for
non-square matrices. All elements above the main diagonal, i.e. elements aij where
i < j, are called upper triangle (red in (5.3.3)) and below the diagonal, i.e. elements
aij where i > j, are lower triangle (blue in (5.3.3)).

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 B =

 b11
b21
b31

 C =

(
c11 c12 c13
c21 c22 c23

)
. (5.3.3)

Special matrices

There are a number of matrices of special form that are important enough to have a
special name. It is important to know a few of those that are used most frequently
in the literature.

Square matrix is a matrix with equal number of rows and columns. The matrix A
in 5.3.3 is a square matrix while B and C are not.
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Symmetric matrix is a matrix where the upper and lower triangle are identical (but
mirrored). For instance 1 2 3

2 4 9
3 9 16

 (5.3.4)

is a symmetric matrix but 1 2 3
2 4 9
9 3 16

 (5.3.5)

is not.
Formally, A is a symmetric matrix if aij = aji for all i, j. Obviously, only square

matrices can be symmetric.

Diagonal matrix is a matrix where all elements outside of the main diagonal are
zeros. Here is an example of two diagonal matrices:

A =

1 0 0
0 2 0
0 0 3

 B =

(
b11 0 0
0 b22 0

)
. (5.3.6)

Diagonal matrix does not have to be square matrix, as B in the example above shows.
But in practice, “diagonal” or “non-diagona” matrix almost always refers to a square
matrix (as matrix A above).

All square diagonal matrices are symmetric.

Unit matrix (aka identity matrix). This is a diagonal square matrix where there
are ones on the main diagonal and zeros elsewhere. It is conventionally denoted by I,
or In for n× n identity matrix in cases where the dimension is not obvious from the
context. Here are two examples:

I2 =

(
1 0
0 1

)
I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The importance of unit matrix is related to it’s properties in matrix multiplication

where it is the neutral element, exactly like number one is the neutral element when
multiplying numbers. Matrix-multiplying every compatible matrix A with the unit
matrix I results

I · A = A · I = A (5.3.7)

(see more in Section 5.3.2 below). In particular, this means I · I = I.
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Vectors as matrices

When working with matrices it is common to treat vectors just as a special kind of
matrices, 2-dimensional objects where one dimension is equal to 1. So unlike “true”
vectors, vectors-as-matrices have additional properties, namely number of rows and
number of columns. Despite treating vectors as matrices, they are still typically
denoted by lower case letters in slanted bold font. We follow this habit here.

Vector-as-matrix approach gives us two types of vectors: column vectors are of

shape N × 1 and row vectors are of 1×N . For instance, a =

(
1
2

)
and b =

3
4
5

 are

column vectors while c =
(
−1 −2

)
and d =

(
−1 0 1

)
are row vectors. Normally,

if no extra explanation is given, the vectors are assumed to be column vectors. So if
we talk about vector x, we mean a column vector, unless we explicitly state that it is
a row vector. Its transpose (see below) however, xT , is a row vector. In order to save
space, it is also customary to use row vectors and transposition operator to denote

column vector. For instance, to denote a column vector z =


1
2
3
4

 we often write

z =
(
1 2 3 4

)T
, or alternatively, we can write that z

T

=
(
1 2 3 4

)
. Both of

these ways of writing mean that z is a column vector of these four numbers.

5.3.2 Matrix operations
Matrix Transposition

A widely used operation, matrix transposition is “mirroring” matrix on its main diag-
onal. We denote transposed matrix by superscript T in these notes.8 The transposes
of the matrices above in (5.3.3) are

A
T

=

a11 a21 a31
a12 a22 a32
a13 a23 a33

 B
T

=
(
b11 b21 b31

)
C

T

=

c11 c21
c12 c22
c13 c23

 . (5.3.8)

Note that transposition swaps the number of rows and columns.
Formally, if A = {aij} where i = 1 . . . N and j = 1 . . .M , then A

T

= {aji}.
It is easy to see that the transpose of a symmetric matrix is identical to the matrix

itself.

Scalar Multiplication

Matrix multiplication by a scalar (a number) is defined exactly as in case of vectors,
by multiplying every matrix element with that scalar. If A = {aij}, then λA = {λaij}.

8The other widely used notation for matrix transposition is apostrophe like A′.
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For instance,

3

(
1 2 3
3 2 1

)
=

(
3 6 9
9 6 3

)
− 1

 0
10
20

 =

 0
−10
−20

 . (5.3.9)

It is common to denote scalar multiplication either by dot like λ · A, or by just λA.
We’ll use both notations in these notes.

Matrix Addition (and Subtraction)

Matrix addition is defined as elementwise operations: if A = {aij} and B = {bij},
then A+ B = {aij + bij}. For instance,1 2 3

4 5 6
7 8 9

+

3 2 1
4 3 2
5 4 3

 =

 4 4 4
8 8 8
12 12 12

 (5.3.10)

and (
1 0 −1

)
−
(
2 1 0

)
=
(
−1 −1 −1

)
. (5.3.11)

Obviously, only matrices with similar dimensions can be added and subtracted.

Matrix Multiplication

Matrix multiplication is among the most important matrix operations, and one of
the prime tools for data manipulation. Matrix product can be done manually, and
although we almost always use computers in practice, it is important to have the
basic understanding of it. In particular, understanding how matrix dimensions play
in multiplications, and being able to compute simple products manually are invaluable
skills for both coding, debugging, and devising easier and faster ways to solve data
problems.

Matrix product is defined in a way that we take a row from the first matrix,
column from the second matrix, multiply the corresponding elements, and sum these
products. This will be the element of the product matrix at the row (the row number)
that was taken from the first matrix, and column (the column number) that was taken
from the second matrix. This process must be repeated for every row in the first and
for every column in the second matrix. Note that for this to be possible, the number
of columns in the first matrix must equal to the number of rows in the second matrix.
If this is not the case, the matrices cannot be multiplied.

This definition can be understood as a visual rule: all rows of the first matrix
must be multiplied by all columns of the second matrix. Lets multiply C = A · B =(
1 2
3 4

)
·
(
4 3
2 1

)
. You can imagine a process like this, where rows of A are denoted
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with blue and columns of B with pink:(
c11 ·
· ·

)
=

(
1 2
· ·

)
·
(

4 ·
2 ·

)
= 1 · 4 + 2 · 2 = 8 (5.3.12)(

· c12
· ·

)
=

(
1 2
· ·

)
·
(
· 3
· 1

)
= 1 · 3 + 2 · 1 = 5 (5.3.13)(

· ·
c21 ·

)
=

(
· ·
3 4

)
·
(

4 ·
2 ·

)
= 3 · 4 + 4 · 2 = 20 (5.3.14)(

· ·
· c22

)
=

(
· ·
3 4

)
·
(
· 3
· 1

)
= 3 · 3 + 4 · 1 = 13. (5.3.15)

and hence C =

(
8 5
20 13

)
. Note how c11 is calculated from the first row of A and the

first column of B, c12 from the first row of A and the second column of B, and so on.
In general, cij is “made” of i-th row of A and j-th column of B.

More formally, let A be N ×K matrix and B be K ×M matrix. We define the
product as

C = A · B (5.3.16)

where cij , the element of C at the row i and column j, is defined as

cij =

K∑
k=1

aikbkj . (5.3.17)

C dimensions are determined by the number of rows in A and number of columns in
B, hence C is N ×M .

Let’s repeat the example from above using the formal rule. We have C = A · B =(
1 2
3 4

)
·
(
4 3
2 1

)
. Here N = K =M = 2, hence the product will be a 2× 2 matrix.

We can take the definition directly and compute c11:

c11 =

2∑
k=1

a1kbk1 = 1 · 4 + 2 · 2 = 8. (5.3.18)

Analogously we can do all the other elements:

c12 =

2∑
k=1

a1kbk2 = 1 · 3 + 2 · 1 = 5 (5.3.19)

c21 =

2∑
k=1

a2kbk1 = 3 · 4 + 4 · 2 = 20 (5.3.20)

c22 =

2∑
k=1

a2kbk2 = 3 · 3 + 4 · 1 = 13 (5.3.21)

(5.3.22)
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and hence, as above, C =

(
8 5
20 13

)
. In practice, when multiplying matrices manu-

ally, it is easier to follow the visual rule we described above.

Exercise 5.5: Multiply square matrices

Multiply the following matrices:

a)

(
1 2
2 1

)
·
(
6 3
3 6

)
b)

(
14 −2
38 0.5

)
·
(
1 0
0 1

)

c)

(
1 1
1 1

)
·
(

1 −1
−1 1

)
d)

(
1 1
1 1

)
·
(
1 0
1 1

)
Solution on page 489

Example 5.6: Product of non-square matrices

Multiply the following non-quadratic matrices: C =

−1 1
1 −1
−1 1

 · (1
2

)
. First,

note the first matrix has 3 rows and the second has 1 column, hence the result
will be a 3× 1 matrix. Use the visual rule:c11·

·

 =

−1 1
· ·
· ·

 · ( 1
2

)
= −1 · 1 + 1 · 2 = 1

 ·c21
·

 =

 · ·
1 −1
· ·

 · ( 1
2

)
= 1 · 1− 1 · 2 = −1

 ··
c31

 =

 · ·
· ·
−1 1

 · ( 1
2

)
= −1 · 1 + 1 · 2 = 1

(5.3.23)

and hence the answer is

 1
−1
1

.

Exercise 5.6: Multiply non-square matrices

Multiply the following matrices:

a)

(
1 2
−1 2

)(
0 1 0
1 0 1

)
b)

(
0 0 1 1
1 1 0 0

)(
1 −2 3 −4

)T
c)
(
1 −2 3 −4

)(0 0 1 1
1 1 0 0

)
d)

(
2 0 1
0 4 1

)(
−1 0 1

)T
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Solution on page 490

Exercise 5.7: Dimension of matrix product

Consider two matrices, A with dimension 227×796 and B with dimension 796×7.
Can we compute the product A · B? What is the dimension of it?

Solution on page 271.

Exercise 5.8: Which matrix products are possible?

Consider two matrices, A with dimension 227×796 and B with dimension 7×796.
Which of the following products is possible?

A · B B · A

A
T

· B B
T

· A

A · B
T

B · A
T

A
T

· B
T

B
T

· A
T

What is their dimension?
Solution on page 490.

Properties of Matrix Product

Matrix product has a number of useful properties, several of which it shares with
product of real numbers. Most of these can be proven by following the definition of
the corresponding operations.

Multiplication by scalar

(λA) · B = A · (λB) = λ(A · B). (5.3.24)

In case of numbers, this is analogous to the fact that the product does not depend on
the order of factors.

Associative property
A · (B · C) = (A · B) · C (5.3.25)

given the corresponding products exist. This property is shared with ordinary num-
bers.

Exercise 5.9: Test the associative property

Compute the products(1 2 3
1 2 3

)
·

−1 1
1 −1
−1 1

 · (0 1 0
1 0 1

)
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and (
1 2 3
1 2 3

)
·

−1 1
1 −1
−1 1

 · (0 1 0
1 0 1

)
Are they equal?

Solution on page 490

Exercise 5.10: Quadratic forms

Compute the following products (quadratic forms):

a)
(
1 −1

)
·
(
1 0
0 1

)
·
(

1
−1

)
b)

(
1 −1

)
·
(

1 −2
−2 4

)
·
(

1
−1

)
c)

(
x1 x2

)
·
(

1 −2
−2 4

)
·
(
x1
x2

)
d)

(
x1 x2

)
·
(
a11 a12
a21 a22

)
·
(
x1
x2

)
Solution on page 491

Distributive property For matrices A, B, C we have

A · (B+ C) = A · B+ A · C. (5.3.26)

This is also the behavior of ordinary numbers.

Non-commutative Unlike numbers, matrix product is not commutative:

A · B ̸= B · A. (5.3.27)

There are many special cases though where the matrix product is commutative. For
instance, multiplication by null matrix, and by unit matrix are commutative. Also
multiplication by 1× 1 matrix, essentially just a number, is commutative.

As matrix product is non-commutative, we have to distinguish left-multiplication
(pre-multiplication) and right-multiplication (post-multiplication). For instance, in
the expression A · B, B is pre-multiplied by A and A is post-multiplied by B. As the
product is not commutative, we have to preserve the multiplication type when doing
algebra.

Example 5.7: Matrix product is not commutative

Consider matrices

A =

(
0 1
1 0

)
and B =

(
2 0
0 −1

)
.

The products are

A · B =

(
0 −1
2 0

)
and B · A =

(
0 2
−1 0

)
.
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These are, obviously, not equal, here we have A · B = (B · A)T . This is, however,
not always the case.

Transpose of product Transpose of matrix product

(A · B)
T

= B
T

· A
T

. (5.3.28)

So a product can be transposed by a) transposing the factors; and b) switching their
order.

This property has no real analogue with numbers as transposition of numbers
carries little meaning.

Example 5.8: Transpose of matrix product

Lets take A =
(
3 2 1

)
and B =

1
2
3

. Compute (A · B)T . First, lets compute

the product and transpose it:

A · B =
(
3 2 1

)
·

1
2
3

 = 3 · 1 + 2 · 2 + 1 · 3 = 10. (5.3.29)

As this is just a number, it’s transpose is 10 as well. By using the transposition
formula, we have

B
T

· A
T

=
(
1 2 3

)
·

3
2
1

 = 1 · 3 + 2 · 2 + 3 · 1 = 10. (5.3.30)

Note that the products B · A and A
T · BT would result in a 3× 3 matrix instead.

Exercise 5.11: Explain why Example 5.7 works

(5.3.28) shows that when we swap the order of factors in the matrix product, we
have to first transpose both factors, and then transpose the result:

A · B =
(
B

T

· A
T
)T

.

Explain why in Example 5.7 we do not have to transpose the factors, i.e. why

A · B = (B · A)
T

.
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Vector multiplication as matrix product

There are two ways to multiply vectors: inner (dot) product and outer product.9
When treating vectors as matrices, we have two types of vectors instead — column
vectors and row vectors — and we can treat both types of multiplication as just the
matrix product of different types of vectors. Namely, product of a row vector and
column vector is equivalent to inner product, while column vector multiplied by row
vector is will give the outer product.

Let a = (a1 a2 . . . aN )
T and b = (b1 b2 . . . aN )

T . Now

a
T

· b = b
T

· a = a1b1 + a2b2 + · · ·+ aNbN (5.3.31)

is the inner product of a and b while

a · b
T

=
(
b · a

T
)T

=


a1b1 a1b2 · · · a1bN
a2b1 a2b2 · · · a2bN

...
... . . . ...

aNb1 aNb2 · · · aNbN

 . (5.3.32)

is their outer product. It is useful to keep in mind that a
T · b (row times column) is

just a single number but a · b
T

(column times row) is a N ×N matrix.

Example 5.9: Inner and outer product

Let’s multiply length-3 vectors of ones: a = b = 13. Their inner product is

a
T

· b =
(
1 1 1

)
·

1
1
1

 = 1 · 1 + 1 · 1 + 1 · 1 = 3, (5.3.33)

just a number. The outer product is

a · b
T

=

1
1
1

 · (1 1 1
)
=

1 1 1
1 1 1
1 1 1

 , (5.3.34)

a 3× 3 matrix.

Euclidean norm of a vector is√
v21 + v22 + v23 + . . ., see

Section 5.2.2 Norm, page 259.

Exercise 5.12: Norm using inner product

Use inner product to compute Euclidean norm of vectors (3, 4) and (1, 1, 1, 3, 2)
Solution on page 491.

9In 3-D space, there is also directional vector product. We do not discuss it in this book.
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Other Matrix Operations

Trace of Matrix For a square matrix, its trace is the sum of its diagonal elements:

TrA =

N∑
i=1

aii. (5.3.35)

Example 5.10: Matrix trace

Tr

1 2 3
4 5 6
7 8 9

 = 1 + 5 + 9 = 15. (5.3.36)

Determinant TBD
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5.3.3 Inverse Matrix and Related Concepts
Matrix Rank

Column space vector space, generated by the column vectors of the matrix

Column rank dimension of the column space

Row space vector space, generated by the column vectors of the matrix

Row rank dimension of the row space

Full column rank column rank equals to the number of columns

Full rank rank equals to the smallest of either number of rows or number of columns

Theorem 5 (Matrix rank). Row and column rank are equal (and are called matrix
rank)

Determinant is a scalar function of matrix elements

• Useful descriptor of matrix properties in many contexts

• For 2× 2 matrix A =

[
a11 a12
a21 a22

]
detA ≡ |A| = a11a22 − a12a21

• for 3× 3 matrix B =

b11 b12 b13
b21 b22 b23
b31 b32 b33


detB ≡ |B| = b11b22b33 + b12b23b31 + b21b32b13−

− b31b22b13 − b21b12b33 − b11b23b32

One of the most widely used property of determinant is that is is an easy way to
compute if the matrix is full rank or not.

Theorem 6. determinant is non-zero ⇔ matrix is full rank

Easy to see for a diagonal matrix

• A: square matrix

Inverse Matrix

Inverse matrix is a matrix analogue to inverse of a number. We define that scalar b
is the inverse of a if a · b = 1, or equivalently b = 1/a.

Unit matrix has ones on the main
diagonal and zeros elsewhere, e.g.

I2 =

(
1 0
0 1

)
. See Section 5.3.1

Unit matrix, page 266.

We follow exactly the same
approach with matrices and define B is inverse A if and only if

B · A = I (5.3.37)

where I is the unit matrix. Inverse matrix is normally denoted by A−1, not 1/A.
Here are a few simple but important properties of inverse matrix:
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• Inverse matrix only exists for square matrices.

• Not every square matrix has an inverse.

• A−1 · A = A · A−1 = I: multiplying matrix by its inverse is commutative.

• If A is of dimension n× n then A−1 is also of dimension n× n.

• A−1 is unique: if A has an inverse then it has only a single inverse.

While we are quite good to spot and evaluate inverses of numbers, the inverse
matrices are typically non-intuitive–you cannot tell if it is inverse of a given matrix
(except in a very few special cases). The formula to compute inverse of 2× 2 matrix
is rather straightforward and is sometimes useful:

Inverse of A =

[
a11 a12
a21 a22

]
is A−1 =

1

|A|

[
a22 −a12
−a21 a11

]
, (5.3.38)

where |A| = a11a22 − a12a21 is determinant of A. One can also provide a similar
formula for general 3×3 matrices, but that is probably too complex to be ever useful.
We invert matrices almost exclusively on computer using numerical calculations.

To give you a taste, here are a few example inverse matrices:[
1 2
3 4

]−1

=

[
−2 1
1.5 −0.5

]
[
0 1
1 0

]−1

=

[
0 1
1 0

]
(idempotent matrix)[

1 1000
100 10

]−1

=

[
−0.00010001 0.010001
0.0010001 −0.000010001

]
[
1 2
2 4

]−1

does not exist (singular matrix)

(5.3.39)

Exercise 5.13: Matrix inverse
Show that [

1 2
3 4

]−1

=

[
−2 1
1.5 −0.5

]
Hint: follow the definition of matrix inverse, and matrix product.

Solution on page 491.

Matrix inverse has many very important applications, and hence there is a dedi-
cated word for matrices that have inverse:
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Definition 5.2: Singular matrix

Matrix which inverse exists is is called non-singular. If the inverse does not exist,
matrix is singular.

Matrix inversion is a computationally demanding and imprecise operation. It is
slow, inverting matrices with thousand of rows and columns can easily take a second.
Second, it is imprecise. From (5.3.38) one can see that the result is a somewhat reshuf-
fled matrix, divided by the determinant. However, the determinant is computed by
subtracting products of elements from each other. This operation–subtracting large
numbers where their difference is small–is causing loss of precision in matrix inver-
sion. Large near-singular matrices are particularly error prone. This has important
implication for machine learning applications. Namely, if the model contains a large
number of parameters and some of those are not well determined then the optimizer
may start to misbehave because of loss of numeric precision. It results in slow training
and mediocre performance of the trained models.

Theorem 7. Matrix is non-singular ⇔ it is full rank

Hence non-singular matrix
• has non-zero determinant
• is full-rank
• does not contain linearly dependent columns or rows (whichever is smaller)

• How does the size of ϵ affect the precision?

Exercise 5.14: Find base vector multiplier for a given vector

Equation (5.2.5) shows how all vectors in the vector space can be made of base
vectors:

c = α · a+ β · b α, β ∈ R.

Given vector c and the base vectors a and b and, compute the multipliers α and
β.

Hint: attempt to transform (5.2.5) in such a way that vectors a and b are
combined in a matrix and α and β in a vector, and use matrix multiplication
instead of addition. Note also that we are in a 2-D space and hence all vectors
only have two components.

5.3.4 Eigenvalues
TBD: eigenvalue decomposition

Characteristic roots (eigenvalues) are solutions (λ) of the equation

Ac = λc

Characteristic vectors (eigenvectors) are corresponding c-s.
Intuition:
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• Multiplication by A does not change c

• Only scales by λ.

Rewrite:
(A− λI)c = 0

⇒ A− λI must be singular ⇒ |A− λI| = 0.

Matrix:
A =

(
30 28
28 30

)
Solve for eigenvalues (using the detA = 0 condition |A− λI| = 0):

|A| = (30− λ)(30− λ)− 282 = 0

The solution:
λ1 = 58 λ2 = 2

The corresponding eigenvectors:(
30 28
28 30

)(
x
y

)
= λ

(
x
y

)
and we have

c1 =

(
1/
√
2

1/
√
2

)
c2 =

(
−1/
√
2

1/
√
2

)
Find eigenvalues, eigenvectors of the unit matrix

I =

(
1 0
0 1

)
Condition number

While matrix rank is a very convenient mathematical concept—matrix either is full
rank or it is not—this is not as clear cut in practice. The problem arises from imprecise
data and numerical errors, and all matrix manipulation methods give numerical errors,
the larger the matrix, the larger the errors. This means, in practice, that we cannot
rely on simple yes/no answer to the full rank question. We need another measure, a
continuous measure that tells us how close we are to singularity. Condition number
offers such a measure.

Condition number is defined as ratio of the largest and smallest eigenvalues (in
absolute value):

κ ≡ |λ|max

|λ|min
(5.3.40)

where λ-s are the eigenvalues, |λ|-s are the absolute values of eigenvalues (moduli in
case of complex eigenvalues), and |λ|max and |λ|min are the largest and the smallest
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eigenvalue in terms of the absolute value.10 We know that singular matrices have (at
least) one eigenvalue equal to zero, and hence the condition number is infinite (unless
it is a zero matrix). On the other hand, if all the eigenvalues are equal, κ = 1. So κ
constitutes a continuous measure of “how close to singularity” a matrix is.

Example 5.11: Condition numbers

As all eigenvalues of the unit matrix

I =


1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1


are equal to 1, its condition number is 1 as well.

The singular matrix 1 2 3
4 5 6
7 8 9


has eigenvalues 16.12, −1.117 and 0. As 0 is the smallest of those (in absolute
value), the condition number κ = 16.12/0 is infinite.

10Greene (2003) defines condition number as square root of this expression. This is more convenient
in practice as one has to work with smaller values.
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5.4 Application: wireframe images
Matrices are complex structures that are often hard to understand intuitively. But
there are exceptions. One of these is matrix representation of images. Here we only
discuss line art images (wireframe images), photos (bitmap images) are discussed
below in Section 7.2 Images, page 329.

Let’s make an image of b, the runic letter for “b”. The line art images can be
represented in vertices, the “corners” of images, that are connected to other vertices.
Let’s put the bottom of b in the origin, and call it A. Let us also make the letter’s
height equal to two. The vertex coordinates may be

name x y explanation
A 0 0 bottom
B 0 2 top
C 0.6 1.5 upper triangle
D 0 1 middle
E 0.6 0.5 lower triangle
A 0 0 back to bottom

The actual data is the columns x and y. We can put these in matrix B:

B =


0 0
0 2
0.6 1.5
0 1
0.6 0.5
0 0

 . (5.4.1)

We can plot these vertices, and connect them by lines (Figure 5.5). This is a con-
venient way to represent wireframe images. For more complex images we may add
additional data, e.g. color of the vertices, and a list of vertice pairs that are connected
(this is called edgelist). This image representation format can be easily generalized
to higher dimensions, e.g. for 3-D objects.

Image Rotation Prerequisites: Matrix multiplication, Basic trigonometrics

Matrix form is a convenient data representation for various image transformations
that can be expressed through linear operators. These include image rotation, scaling
and projection on lower-dimensional hyperplanes.

Image rotation can be done by multiplying the object vertex data by rotation
matrix. We define 2-D rotation matrix as

R(α) =

(
cosα − sinα
sinα cosα

)
. (5.4.2)
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Figure 5.5: Wireframe image of the b-rune defined by matrix B in (5.4.1). All vertices are
plotted and thereafter sequentially connected.

This matrix will rotate the image (as defined above) clockwise by angle α if post-
multiplied by R(α):11

Bα = B · R(α). (5.4.3)

Note that the 2-D rotation matrix must 2 × 2 square matrix: two rows are needed
to be compatible with 2-column data matrices, and two columns ensure that rotated
data still has two columns, one for (rotated) x and one for y.

Let’s rotate the vertices of b-rune, defined above, by 30◦. The corresponding
rotation matrix will look like

R(30°) =
(
cos 30° − sin 30°
sin 30° cos 30°

)
=

(
0.866 −0.5
0.5 0.866

)
(5.4.4)

and the rotated vertices are

B30 = B · R(30°) =


0 0
0 2
0.6 1.5
0 1
0.6 0.5
0 0

 ·
(
0.866 −0.5
0.5 0.866

)
=


0.00 0.00
1.00 1.73
1.27 1.00
0.50 0.87
0.77 0.13
0.00 0.00

 . (5.4.5)

The rotated matrix is given in Figure 5.6. Note that the vertex metadata is not
affected by rotation. Here these are just vertex labels and the connection rule (we
just connect all vertices to the next vertex), but these may also include vertex colors
and more complex edgelists.

11We defined the image by stacking the x and y coordinates of vertices in columns. Alternatively,
x and y can be stacked in rows. This is equivalent to transposing the image data matrix (B in
(5.4.1)) as defined here. Accordingly, the corresponding formula will look like transpose of (5.4.3):
B

Tα = R(α)
T · BT .
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Figure 5.6: The same object as in Figure 5.5 but rotated 30 degrees by multiplication with
the corresponding rotation matrix. The rotated vertices are given as B30 in (5.4.5).

Exercise 5.15: Inverse of rotation matrix

Intuitively, the inverse of a rotation matrix R(α), R(α)−1, must be rotation in the
opposite direction by a similar amount, i.e. R(−α). Show that for 2-D rotation
matrices this is indeed the case, i.e. R(α) · R(−α) = I.

It is easy to generalize the rotation matrix into higher dimensions. In the 3-D
space, we can rotate the object around each of the three axes, x, y, and z, and hence
we have three rotation matrices. For right-handed coordinate system these are

Rxy(α) =

cosα − sinα 0
sinα cosα 0
0 0 1

 Rzx(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα


and Ryz(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 . (5.4.6)

Arbitrary rotations in space can be achieved by sequential application of these ma-
trices. Althoug our imagination stops here, it is easy to continue into even higher
dimensions. However, to display three or higher dimensional objects, we have to
project these on the 2-D plane.

Projection Projection (more specifically parallel projection) can be defined as re-
moving some of the coordinates, e.g. dropping z and keeping only x and y to make a
2-D projection of a 3-D object. If we want to project the object onto another plane
besides the x− y plane, we may start by rotating it first. As dropping a coordinate is
equivalent of deleting the corresponding column, the projection matrix is similar to
rotation matrix with the dropped column removed.

Example: cube, rotated and projected on 2-D:
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This is easy to understand. But we can make two-dimensional projections not

just 3-D spatial objects—we can go into higher dimensions. Here is a similar image
of 4-D cube, tesseract. This is impossible to understand as out brain has virtually no
experience with 4-D world.
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5.5 Application: Linear Regression
In both theoretical and practical applications the regression models are often pre-
sented in matrix form. It may make the presentation more clear, but more impor-
tantly, storing and handling data in a matrix form tremendously simplifies solving
the multiple regression model, both analytically and on computer. In matrix form
there is no real difference between simple and multiple regression, neither in the way
it is presented nor how it is solved by computer.
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Let’s look again at the linear regression model in vector form, (2.1.30):

yi = x
T

i · β + ϵi

or, more explicitly,

yi =
(
1 xi1 xi2 . . . xiK

)
·


β0
β1
β2
...
βK

+ ϵi for i = 1 . . . N (5.5.1)

(Remember that the first component of the x is normally taken to be number 1
corresponding to the intercept β0, see Section 2.1.6 on page 154). Note we assume
we have N observations indexed by i and K + 1 unknown parameters β0, β1, . . . βK .
Alternatively we may say we have a single unknown parameter vector β. K+1 scalar
parameters correspond to K explanatory variables and the constant.

Note that the first term of the matrix product in (5.5.1) is just a row vector of
the data for the first observation. Hence we can take all the N rows corresponding to
each observation in the data, and arrange these underneath each other like this:


y1
y2
...
yN


︸ ︷︷ ︸
N×1

=


1 x11 x12 . . . x1K

1 x21 x22 . . . x2K
...

...
... . . . ...

1 xN1 xN2 . . . xNK


︸ ︷︷ ︸

N×(K+1)

·


β0
β1
β2
...
βK


︸ ︷︷ ︸
(K+1)×1

+


ϵ1
ϵ2
...
ϵN


︸ ︷︷ ︸
N×1

. (5.5.2)

This is the matrix form. It can be written in a more compact manner as

y = Xβ + ϵ (5.5.3)

where y is typically called outcome vector, X is design matrix, β is the same parameter
vector as in case of vector-form formula (2.1.30), end ϵ is disturbance vector.

A few comments may be helpful:

• X is the design matrix, the matrix that incorporates all data we use in the
model, already converted into the numeric form and potentially also normalized,
re-scaled, log-transformed and so on. If interaction effects are included in the
model, they must have been incorporated in X. So it is in a way a data matrix,
but it is usually not a matrix of unmodified original data.

• we have the design matrix X not transposed in the matrix notation, unlike in
the vector form where x

T

i is transposed. This is because we arrange the data
for one observation horizontally in the design matrix and we normally denote
horizontal vectors with transposition sign.
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Exercise 5.16: Matrix form
Show that (5.5.2) and (5.5.1) are equivalent.

Solution on page 494

(2.1.31): ŷi = β̂
T

· xi

In a similar fashion, we can stack all the prediction vectors in (2.1.31) as
ŷ1
ŷ2
...
ŷN


︸ ︷︷ ︸
N×1

=


1 x11 x12 . . . x1K

1 x21 x22 . . . x2K
...

...
... . . . ...

1 xN1 xN2 . . . xNK


︸ ︷︷ ︸

N×(K+1)

·


β0
β1
β2
...
βK


︸ ︷︷ ︸
(K+1)×1

(5.5.4)

and when writing this in the matrix form we get just
ŷ = Xβ. (5.5.5)

We can further compute the disturbance terms vector as
e = y − Xβ (5.5.6)

and SSE
SSE: sum of squared errors, see
Cheatsheet 2.3, page 148

as
SSE (β) = e

T

· e = (y − Xβ)
T

· (y − Xβ). (5.5.7)

Remember:
e
T · e = e21 + e22 + · · · + e2K ,

see Section 5.3.2 Vector
multiplication as matrix product,
page 274.

In order to use the matrix approach, we have to transform data into matrix form—
create the design matrix. Design matrix is our final data in a numeric matrix form. It
is “final” in the sense that it only contains the data that is actually used in the model,
and it must be in a form that can be directly plugged into the formulas. In particular,
this means all the non-numeric features must have been transformed to numeric ones;
if feature normalization is desired this must be done and so forth. Not all models
gain from construction of the design matrix, and there are models that contain more
than one design matrix. But design matrix is the primary form of feeding data into
linear regression and many other models.

Broadly, creating the design matrix proceeds through the following steps:
1. select only the relevant explanatory variables (i.e. no outcome variable) from

your original data. Add information from different datasets if needed.

2. convert all these variables into a desired numeric form. This may include con-
verting non-numeric variables into numeric (e.g. instead of gender ∈ {M,F}
we may use female ∈ {0, 1}). It also includes converting numbers into another
form if needed, e.g. continuous age into age groups or income into log income.

3. You may have to add additional columns, in particular constant–a column of
number ones–as this is not normally included in your data; interaction effects,
and other engineered features.

4. stack the observations on top of each other as a matrix. The result looks much
like a data frame but it must be a matrix in the mathematical sense of the word.
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Example 5.12: Convert data to design matrix

Assume we have a dataset that looks like

name age position salary
Liu Bei 28 manager 77,000
Sun Ren 23 employee 55,000
Thorgerd Egilsdóttir 26 employee 66,000
Freydís Eiríksdóttir 30 senior manager 123,000

We want to describe salary as a function of position and age using a linear model

salaryi = β0 + βa · agei + βm ·manageri + ϵi. (5.5.8)

Hence we want to estimate the effect of K = 2 variables (age and manager status)
using N = 4 observations. We need to learn K + 1 = 3 unknown parameters.

Before moving any further we have to decide how to code the variables. While
we can keep age as it is–it is already a numeric variable–we have to change
position to a numeric form. We may just convert it into a dummy manager =
1(person is manager) and the modified data will now be

name age manager salary
Liu Bei 28 1 77,000
Sun Ren 23 0 55,000
Thorgerd Egilsdóttir 26 0 66,000
Freydís Eiríksdóttir 30 1 123,000

In vector form the same equation would look

salaryi =
(
1 agei manageri

)
·

β0
βa
βm

+ ϵi (5.5.9)

where i ∈ {1, 2, 3, 4}.
The corresponding design matrix will look like

X =


1 28 1
1 23 0
1 26 0
1 30 1

 (5.5.10)

The first column, x0, is the constant. This is something normally needed in a
linear model but not included in data, and here we add it to the design matrix.
The second column is age, left unchanged. The third column is manager, equal to
unity if the person is manager and zero otherwise. Note we have removed name
as we don’t use this in our model, and salary as this is our outcome variable:

y =


77,000
55,000
66,000
123,000

 . (5.5.11)
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Now we can write the model (5.5.8) in matrix form as
77,000
55,000
66,000
123,000

 =


1 28 1
1 23 0
1 26 0
1 30 1

 ·
β0βa
βm

+


ϵ1
ϵ2
ϵ3
ϵ4

 . (5.5.12)

This is the expression (5.5.2) written for these particular data. Now we can solve
this for β.

Solving the Linear Regression Model

Prerequisites: Matrix product (Section 5.3.2), matrix inverse (Section 5.3.3), Linear
regression in matrix form (Section 5.5). Be able to follow matrix calculus rules but
not necessarily understand all of it. You know what is gradient and it’s notation
(Section 10.2.2 What is gradient, page 391).

Linear regression is the only statistical model where an analytic solution exists.
Here we demonstrate how to derive the solution. The proof is easy for those who
know matrix calculus. But before we get to the general matrix form, let’s find the
solution of the scalar version of the linear regression model. This serves as a template
that helps to understand the matrix version of the same problem.

We start with a model

yi = β · xi + ϵi, (5.5.13)

i.e. a linear regression model that does not contain the intercept β0. This is because
we want to derive the solution formula using only scalar algebra, and this is only
possible if we have a single unknown parameter (here labeled as just β).

We start with the definition of linear

(2.1.18):
(β̂0, β̂1) = argmin(β0,β1)

∑N
i=1 e

2
i

regression (2.1.18) as the parameter value
that minimizes SSE. As the model here does not include intercept β0, this is

β̂ = argmin
β

SSE (β) = argmin
β

n∑
i=1

(yi − β · xi)2. (5.5.14)

As we typically do when computing a minimum of a function, we take a derivative of
it w.r.t. β and set it to 0:

∂

∂β
SSE (β) = −2

N∑
i=1

(yi − β · xi) · xi. (5.5.15)
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When we set this to 0 then we get

−2
N∑
i=1

(yi − β · xi) · xi = 0 ⇒

N∑
i=1

(yi − β · xi) · xi = 0 ⇒

N∑
i=1

yi · xi −
N∑
i=1

β · x2i = 0 ⇒

β̂ =
1∑N

i=1 x
2
i

·
N∑
i=1

xi · yi.

(5.5.16)

(The last line is derived using the fact that β does not depend on i and hence it can
be moved out of the sum sign.) So the optimal β can be computed as a product of
a) sum of xi · yi and b) inverse of sum of x2i .12

Now it is time to replicate the exact same approach in matrix form. We start our
solution by writing the least squares conditions (2.1.32) and (2.1.33) in matrix form
using the SSE definition (5.5.7):

Remember:
y
T · y = y21 + y22 + . . . .

See Section 5.3.2 Vector
multiplication as matrix product,
page 274.

β̂ = argmin
β

SSE (β) =

= argmin
β

e
T

· e =

= argmin
β

(ŷ − Xβ)
T

(ŷ − Xβ).

(5.5.17)

This is the matrix equivalent of (5.5.14).
Next, we proceed as we did above when finding a minimum of SSE : we take

derivative of it with respect to β. Note that while SSE is a scalar, β is now a
vector. Hence we need vector calculus rules to proceed. In particular, we have to
keep track and preserve left- and right multiplication. In the scalar case (5.5.15) we
just used the chain rule but let’s here open the parenthesis instead of introducing the
matrix calculus chain rule. Opening the parenthesis is straightforward, but because
matrix multiplication is not commutative, we have to keep track of left and right
multiplication:

(ŷ − Xβ)
T

(ŷ − Xβ) =

= y
T

y − y
T

Xβ − β
T

X
T

y + β
T

X
T

Xβ =

= y
T

y − 2y
T

X β − β
T

XT X β. (5.5.18)

12Advanced pocket calculators in 1980-s allowed to compute regression coefficient using this
method. In one memory register they stored

∑
x2
i and in another

∑
xi · yi, and hence it was

possible to estimate a scalar regression model using just two memory positions.



290 CHAPTER 5. LINEAR ALGEBRA

The last line uses the fact that y
T

X β is a scalar and hence y
T

X β = β
T

X
T

y.
In order to find the optimum, we again compute gradient of (5.5.18) and set it to

zero. Just in case of matrices, the derivative is called gradient and instead of being
equal to scalar (number) 0 it must equal to zero vector 0. As we are optimizing over
a vector value β now, we have to use the rules of matrix calculus. As SSE is a scalar,
the result will just be a column vector.

The gradient can be computed as follows:

∂

∂β
SSE (β) =

∂

∂β

[
y

T

y − 2y
T

X β + β
T

X
T

X β
]
=

= −2 X
T

y +
(
X

T

X+ (X
T

X)
T

)
)
β =

= −2X
T

y + 2X
T

Xβ = −2X
T

(y − X β). (5.5.19)

This is the matrix analogue of (5.5.15). We used the following considerations to
compute the inidividual componentes:

• the first term, yT

y, does not depend on β and hence we drop it.
• we use (A.2.4) for the term ∂

∂β (y
T

X β);
• ∂

∂β (β
T

X
T

X β) is computed using (A.2.11) with X
T

X in place of A.
Using the optimality condition ∂

∂βSSE (β) = 0 we get

−2X
T

(Xβ − y) = 0 or (5.5.20)

X
T

X β = X
T

y (5.5.21)

By left-multiplying both sides by (X
T

X)−1, we get

β̂ =
(
X

T

X
)−1

X
T

y. (5.5.22)

(5.5.16):
β̂1 = 1∑N

i=1 x2
i

·
∑N

i=1 xi · yi.

This is the matrix analogue of (5.5.16). Note that the matrix formula uses matrix
products instead of sums of products, and that the term 1∑N

i=1 x2
i

has been replaced

by its matrix analogue
(
X

T

X
)−1

.
So we derived a simple analytic solution to the linear regression problem. It is the

only statistical model where we do not have to rely on non-linear optimization but
can just plug the numbers (matrices) into a formula and get the result right away.13

The solution involves three matrix multiplications (cheap operations) and one matrix
inverse (expensive operation). In practice, the analytic solution is the preferred way
only if the dimension of XT

X is small, i.e. we have no more than thousands of variables.
If we have more variables then gradient descent (see Section 10.2 Gradient descent

13Alghough the formula is very simple, the actual computations may be quite complicated and
imprecise. In particular, inverting the K ×K matrix X

T ·X may be time-consuming and imprecise if
the number of variables K is large. However, normally we leave these tasks for dedicated libraries.
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and gradient ascent, page 389) may be faster as that approach only requires repeated
computation of gradient (5.5.19) but not the expensive inverse

(
X

T

X
)−1

.

Note that in order for the solution to exist, the inverse
(
X

T

X
)−1

must exist. In
particular this means that X must be full rank.
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Chapter 6

Machine Learning Models

This chapter discusses several supervised learning methods and some mathematical
tools that are used in some of these models.
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6.1.1 Decision trees: introduction . . . . . . . . . . . . . . . . 294
6.1.2 How trees work: two examples . . . . . . . . . . . . . . . 297
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6.1 Trees and tree-based methods
Decision trees is a popular method for predictive modeling, both for regression and
categorization problems. Trees are easy to implement and easy understand. Trees is
one of the most explainable machine learning method, a method where it is possible

293



294 CHAPTER 6. MACHINE LEARNING MODELS

to explain someone how and why certain decisions were made. Our mental decision-
making is often based on tree-like way of thinking.

Trees are also a popular way to “grow forests”, a large collection different tree-
based methods combined into a single ensemble method.

First, we describe what exactly are the decision trees and what are the main
related concepts. Afterwards we look at algorithms to create trees; and finally tree-
based ensemble methods (forests).

6.1.1 Decision trees: introduction
A popular implementation of tree is the “animal game”, a children game where one
player thinks an animal, and the other player have to guess it by asking questions
regarding the animal. But the questions must be worded in a way that the answer is
always “yes” or “no” (Figure 6.1). Based on the answers, the player who is guessing
can narrow down the set of possible animals until it contains just the correct one.
One can write down the questions and yes-no answers, although no-one does it in
this game. The result will look like a tree, or more precisely like a single path from
the trunk (the first question) till a leaf (the answer). The other branches—questions
not asked—will remain incomplete. Note that the tree is depicted “upside-down”,
decision trees are traditionally depicted with the trunk at top and branches leading
downward.

Animal game. It is a simple ex-
ample of a decision tree where
one player has to think an an-
imal (here “Unicorn”) and the
other has to guess it by mentally
creating an incomplete decision
tree. The unconnected branches
mark parts of the tree that the
decision-making process did not
reach, and hence they are not
built.
Yuemin Cao, CC0 1.0

Figure 6.1: Animal game as a decision tree

However, the decision trees in this game are based on our pre-existing knowledge,

https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1
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not on any data. They are also created on-the-fly, depending on the answers to the
previous questions. As a result, they may be quite inefficient. Further below we
discuss how to build decision trees based on data and how to do it in an efficient
manner.

Figure 6.2 demonstrates a decision tree that is built on data. It describes survival
rate on Titanic, based on three variables–sex (male or female), passenger class (1st,
2nd or 3rd), and age. This example demonstrates all the basic concepts of decision
trees (although the exact details may differ).

sex = male

age >= 9.5

pclass >= 2 pclass >= 3

pclass >= 3

0.38
100%

0.19
64%

0.17
61%

0.12
48%

0.33
13%

0.58
3%

0.38
2%

1
1%

0.73
36%

0.49
17%

0.93
19%

yes no

Figure 6.2: Decision tree to predict Titanic survival. We start at the topmost root node
(survival rate 0.38 for 100% of the cases). The first decision is based on “sex”: if it is male,
we move to the left branch (survival rate 0.19 for 64% of cases), if not male, then to the
right branch (survival rate 0.73 for 36% of cases). The next decision is based on “age” for
men, and on “pclass” for women. Finally we reach a leaf node, e.g. for the 1st and 2nd class
women (the rightmost leaf) it tells that their survival rate was 0.93.

• The tree consists of nodes, branches, and leafs. Nodes are points where the tree
makes decision based on values in data. In the figure they are depicted as blue
ovals with two numbers inside–the survival rate, and percentage of the total
observations.

• The tree starts with the trunk node (at top). In Figure 6.2, it contains the full
(100%) dataset with the average survival rate of 0.38 (printed inside the blue
node, and also reflected in the blueness of it). Each node involves a decision,
printed underneath the blue node. The first decision is about gender. If the
corresponding individual is male, we take the left branch, if not male, then the
right branch. Each node has a single question with only two possible answers:
“yes” (left) and “no” (right).
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• Branches lead to new nodes (new questions) or leafs. These are points where we
do not ask any more questions but output the predicted value instead. In this
figure, these are the survival rates (first numbers inside of the node). However,
these may also be predicted categories, probabilities of the predicted categories,
counts in the dataset, or all the above.

There is a number of reasons why decision trees are popular:

• Trees are easy to understand, also be those who have no formal training in
machine learning methods. They are explainable.

• They reflect logic of human decision-making.
• Trees can be built with arbitrary complexity, they can be made very simple

(trunk and two branches), or extremely complex.
• There are well-established methods how to simplify too complex trees (pruning)

in order to avoid overfitting.
• Trees can be used both for both regression and classification tasks. There are

little conceptual differences between trees built for these two outcomes. Classi-
fication trees can handle any number of categories with no additional tricks.

• It is easy to modify the tree growing process in different ways. This makes it
easy to grow many different trees based on the same data and in this way to
create ensemble methods.

Here is a list of the downsides of decision trees:

• While decision trees are easy to explain, they may be hard to interpret. It may
be easy to explain how a decision was made, but hard to understand what does
this tell about the problem, and why the decision is done in this way and not
another way.

• Decision trees may be rather unstable, small variations in data may lead to to-
tally different trees. This makes is harder to understand and interpret trees, even
if the predictions remain similar. For comparison, think about linear regression–
small changes in data will affect the regression line just a little bit.

Unlike the animal game example above, typical decision trees are “made of data”
using one of the available algorithms. The popular recursive binary splitting (see Sec-
tion 6.1.3 Building trees: recursive binary splitting, page 298) works broadly in this
way:

• Pick a feature and split your data into two parts depending on if the value of
the feature is smaller or larger than a certain threshold.

• Now take these two parts, and repeat the process.

• When it is time to stop, for instance, when there is too few cases left in the
subset, then predict the result as the mean value (in case of regression) or as
the majority category (in case of the classification).

• Each time, when deciding how to split your data, choose such a split that
minimizes the total variance.
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6.1.2 How trees work: two examples
We begin with a simple classification task (Figure 6.3). The left panel displays the
decision boundary plot—a plane with red and blue dots. The tree is attempting to
categorize the regions according to the dominant color of the dots. The right panel
displays the corresponding decision tree. The first question the tree asks–the condition
at the the root node—is if x2 < 0.14, i.e. if the point lies below the horizontal line
approximately in the middle of the figure (orange horizontal dotted line). All 100
training observations are going through that test. If the condition is true (this is the
case for 51 observations), then we move to the next node left of the root. That node
does not do any further tests but classifies the result as red (labeled as “0” at right)
as 38 out of the 51 observations there are red. This is a leaf node. But if x2 ̸< 0.14,
the we move to right of the root node to the first node there. This tests if x1 < −0.47.
The condition corresponds to the orange vertical dotted line. If true, we are at left
of this line (and we are also above the x2 = 0.14 line, and we again categorize the
data points as red as 9 out of 16 observations here are red. However, if x1 ̸< −0.47
(top-righ region), then the predicted category is blue (category “1”).

−2

−1

0

1

2

−2 −1 0 1
x1

x 2

X2 < 0.14

X1 < −0.47

0
50 / 100

0
38 / 51

1
37 / 49

0
9 / 16

1
30 / 33

yes no

Figure 6.3: A simple decision tree solving a 2-D classification task. The decision boundary
plot (left) and the corresponding decision tree. Dotted orange lines denote the node condi-
tions.

This is a decision boundary plot. The tree splits the feature space into three
rectangles (the three leafs in the right panel). Two of these leafs predict red, one
predicts blue. Decision boundary is the boundary between the red and blue areas
on the figure. Because the conditions are testing if x1 and x2 are below certain
thresholds, the decision boundary is made of either vertical or horizontal lines. Hence
the corresponding decision regions are rectangles. One can easily see that if we add
a third feature to the data, the rectangles will transform into 3-D boxes, and in case
of more dimensions, these will be hyperrectangles of the corresponding dimension.
Such behavior–decision boundary, made up of recangles–is a feature of decision trees.
For other models, the boundary may look different, e.g. for logistic regression it is a
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straight line and for k-NN if may be rather complex (Figure 4.4). It also does not
have to be a single boundary, it is perfectly possible that the feature space is split
into multiple “islands” and “lakes” of different color (see, for instance, Figure 4.5).

The second example considers an 1-D regression task. We use Boston Housing
data to predict the median house values across neighborhoods, based on the average
number of rooms. The left panel of Figure 6.4 shows data (gray circles) and predicted
values (red line), and the right panel shows the corresponding regression tree. As
we can see, the tree splits the data into four leafs, with the corresponding predicted
values

m̂edv =


19 if rm < 6.5

25 if 6.5 ≤ rm < 6.9

32 if 6.9 ≤ rm < 7.4

45 if rm ≥ 7.4.

On the figure, each leaf corresponds to a horizontal stretch of the blue prediction line,
the decision boundaries between leafs are depicted as dotted vertical lines. As the
feature space is just 1-D, the decision boundaries are individual points, values 6.5, 6.9
and 7.4 where the dotted lines intersect the x-axis.

4 5 6 7 8

10
20

30
40

50

rm

m
ed

v

rm < 6.9

rm < 6.5 rm < 7.4

23
100%

20
85%

19
72%

25
13%

37
15%

32
9%

45
6%

yes no

Figure 6.4: Regression tree solving an 1-D problem. Predicting house values based on number
of rooms, Boston Housing data. On these data, the tree achieves RMSE = 5.93, while linear
regression (gray line) has RMSE = 6.60.

Exercise 6.1: Decision boundary with 3 features

You have a dataset with 3 continuous features, the target has two possible cate-
gories. How will the decision boundary look like if youre using

1. Classification trees
2. k-NN
3. Logistic regression
Solution on page 495

6.1.3 Building trees: recursive binary splitting
So far we just analyzed the existing trees and did not discuss how they were con-
structed. Now it is time to discuss how to make trees. In the broad terms, the
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algorithm tries to split the data in various ways, and picks the best way it finds. But
in case of anything resembling a reasonable datasets, there are too many possible
ways to split data, and hence we need a simpler option. Below, we discuss recursive
binary splitting, one of the most popular algorithms to build trees. We discuss a
categorization example here, but the regression case will be mostly similar.

To put it simple, trees split the feature space into rectangular blocks (leafs), and in
each leaf, they predict the majority outcome. We would like to find the best possible
way to slice the feature space–to create as pure leafs as possible. Unfortunately, there
are just too many possible ways to split a high-dimensional dataset, so we cannot find
the best solution. We need a simpler way instead.

The most popular, and feasible, algorithm is called recursive binary splitting. The
idea of it is fairly simple. You split your dataset into two halves (these do not have to
be of equal size). Thereafter you treat the two halves as two different datasets, and
just continue splitting until some sort of stopping condition is reached (Figure 6.5).
You probably need multiple stopping criteria, such as reaching a pure leaf (a leaf with
only one category of outcomes), or if the leaf is considered too small. Obviously, you
should not just split the data in an arbitrary manner but find the best available split
(see Section 6.1.5 Finding the best split, page 304).

Original data

Branch 1

Branch 2

Figure 6.5: Recursive binary split. Binary refers to the fact that the algorithm always splits
the original data (left) into two subsets “Branch 1” and “Branch 2” (right). Thereafter,
both of these subsets are treated as new datasets, and split again. The process can be
repeated many times until some kind of stopping condition is reached. This is why it is
called recursive.

Assume we are categorizing N cases into C different categories, using K features.
So the design matrix X is N × K and the outcome vector y is N × 1. Here we
discuss numeric features only, but trees can handle categorical features in a fairly
straightforward manner too. The classification tree splits the K-dimensional feature
space into M rectangular regions (leaves) Rm, m = 1,2, . . . ,M , and on each region
it predicts ŷ(m), one particular class (normally the one that is in majority in that
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region)
ŷ(m) = argmax

c=C

∑
i:xi∈Rm

1(yi = c)

Here ŷm is the predicted value for region m, and yi is the category of observation i
and C is the set of possible categories.

For instance, the tree in Figure 6.3 has a 2-D features space (consisting of x1
and x2), and the design matrix X is of dimension 100 × 2, and there are two classes
C = {red , blue}. The tree has three leafs (right panel), corresponding the rectangular
regions on the decision boundary plot. And in each of these regions, the tree picks the
majority category as the predicted value (this is the background color on the decision
boundary plot).

The basic idea of the algorithm is as follows:

• Check the stopping conditions: do we have too few datapoints left? Do we have
all y values the same? If yes, stop here.

• Find the best attribute k∗ out of the Kj that are available (see Section 6.1.5
Finding the best split, page 304 below). Note that after performing a few splits,
the number of available attributes Kj may be less than the original number of
features K.

• Split dataset into two, “left” and “right”, partitions, based on whether the con-
dition is true or not for each observation. Depending on the data and condition,
both partitions now contain less variation in the attribute k∗. In case there is
no variation left, one should not consider that attribute for splitting any more.
It has become “inactive”.

• Repeat the above with both left and right partition.

Before we can describe it more formally, we need some more notation. Data
D consists both of the design matrix X and the outcome vector y: D = (X,y).
Let’s denote by xik the elements of X for observation i, and by yi the corresponding
outcomes.

D = (X,y) =




x′
1•

x′
2•
...

x′
N•

 ,


y1
y2
...
yN


 =

(x•1,x•2, . . . ,x•K
)
,


y1
y2
...
yN


 (6.1.1)

K attributes of length N , a single endogeneous variable y of length N .
Now the algorithm more formally. It receives data D as an input.

• Do we have a pure leaf: yi = y∗ ∀i ∈ 1 . . . N? If yes, stop and predict the y∗.

• Do we have to few observations for splitting: N < N? If yes, stop here and
predict the majority category, or maybe the probability of belonging to the
majority category.
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• Split both the design matrix and the outcome vector into “left” and “right” part
based on condition

DL = {Di : x
k∗

i < θk
∗
} (6.1.2)

Here is the recursive binary splitting, written as a pseudo-code algorithm, assume
binary features xij ∈ {0,1}.
1 f unc t i on growTree((X,y))
2 l e t N = number of cases in X
3 i f yi = 0 for a l l i = 1,2, . . . ,N :
4 return l ea f (0)
5 i f yi = 1 for a l l i = 1,2, . . . ,N :
6 return l ea f (1)
7 l e t j = bestAttribute ((X,y))
8 # the best way to sp l i t (X,y) into two parts
9 # one corresponding to xj = 0 , the other to xj = 1

10 l e t D = X−j

11 # remove feature j from data
12 return node(j , growTree((Di, yi) for i : xij = 0) ,
13 growTree((Di, yi) for i : xij = 1))

Example 6.1: Splitting data for decision trees: income and education

Here we use males dataset about personal characteristics and income. An exam-
ple of the relevant variables in the dataset look like

school union ethn maried residence wage
12 no other no nothern_central 1.30
12 no other no nothern_central 1.57
9 no other yes 1.98

10 no other yes south 1.23

It contains 4360 observations in total. The task is to predict the wage (the
log hourly wage), based on the other variables; hence we are talking about a
regression problem. We make the trees shallow (maximum depth 2) in order to
make them easy to understand.

If we only include the variable school
(years of schooling), then we get the tree
at right. The root node asks if school <
12, i.e. if the person has not graduated
from high school. If true, the predicted
salary will be $1.5 per hour. If not, the
right branch now asks if school < 14, i.e.
if the person has taken some college ed-
ucation, but not even graduated from a
2-year college.
The RMSE of the model is 0.512.

school < 12

school < 11 school < 14

1.6
100%

1.5
34%

1.4
17%

1.5
17%

1.7
66%

1.7
52%

1.9
14%

yes no

https://bitbucket.org/otoomet/lecturenotes/raw/master/data/males.csv.bz2
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Next, we also include variable residence.
The corresponding tree is visible at
right. Perhaps surprisingly, the tree
turns out to be exactly the same! Obvi-
ously, the RMSE of the model is 0.512,
exactly the same value.
This is because for the first three splits
(the three nodes visible on the figure) it
turns out that school gives better splits
than residence. More information is
available, but it turns out not to be that
useful.

school < 12

school < 11 school < 14

1.6
100%

1.5
34%

1.4
17%

1.5
17%

1.7
66%

1.7
52%

1.9
14%

yes no

Finally, we include all available vari-
ables. Now the tree turns out slightly
different–the root node still asks about
schooling, but both second-level nodes
now test the marital status instead (and
assign lower wage to non-married peo-
ple). The splitting algorithm decides
that this is more useful than to test
schooling again, and indeed, RMSE is
now slightly smaller, 0.507.

school < 12

maried = no maried = no

1.6
100%

1.5
34%

1.4
20%

1.6
13%

1.7
66%

1.6
36%

1.9
30%

yes no

This example shows how trees work–they use the best information available
(or at least what the recursive splitting thinks is the best information available).
In the example above, the best information turns out to be embedded in the school
variable. Even what is left in this variable after using some of this information
(asking if someone has HS degree) is more useful than what is in residence. But
maried turns out to be more useful than the “depleted” school variable.

So far we discussed only binary splitting–the tests the nodes two always have
only have two possible answers (True or False). This turns out to be not really a
limitation, because we can always describe a multi-branch node as a series of two-
branch nodes. For instance, if gender is coded as “male”, “female” and “not specified”,
we could make a node that leads to three branches, one for each possible gender values.
However, we can can also make two two-branch nodes instead, the first of these may
distinguish between “male” and “not male”, and the second one between “female” and
“not female”. Down the line, we’ll have three branches that lead to further conditions
(or leafs) in both cases. This approach has the advantage that the corresponding
algorithms are simpler.

6.1.4 Information and Entropy
Entropy is a measure of information in a RV. It is sometime called Shannon entropy to
distinguish it from a concept of similar name in thermodynamics. Entropy tells how
much information do we gain when we learn about the outcome. It can take either
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value 0 or a positive number. “0” means we do do not get any new information—
everything was already known in advance; the RV did not contain any randomness at
all.1 Positive entropy, however, means that there is a certain amount of uncertainty
in the result, and learning about the outcome helps to clarify this. The larger the
entropy, the more uncertain is the outcome and the more information we gain when
we learn about it. As an example, consider two “random” events: the sun will rise
tomorrow, and the sun will shine tomorrow. The first of these is essentially a certain
event, so when we see sunrise the following day we’ll learn nothing. Entropy of this
RV is 0. The second one, however, depends on the random weather, and hence we
learn something when we experience either sun or rain in the following day.

In discrete case where the RV X can take values k = 1, 2, . . .K, entropy is defined
as negative expected value of log probability of possible outcomes:

H(X) = −E log Pr(X = xk) = −
K∑

k=1

Pr(X = xk) · log2 Pr(X = k). (6.1.3)

When using binary logarithm, the entropy is measured in bits. When using natural
logarithms, the units are called nats. It is easy to see that 1 nat = log2 e = 1.443 bits.
We use binary logarithms in this text but some authors prefer natural logarithms.

Note that for zero-probability states, 0 log 0 is undefined. However, as the cor-
responding limx→0 x log x = 0 (see (A.1.3) in Section A.1.1) the contribution to en-
tropy is 0. This means that when we expand our sample space with additional zero-
probability events, the entropy value is not affected. When we are aware of additional
kind of events that almost never happen will not affect the amount of information we
can gain. Only events with positive probability matter in terms of information.

Example 6.2: Entropy of uniform distribution

In order to have an intuitive understanding about what entropy measures, let us
analyze entropy of discrete uniform distribution. In case of K potential outcome
states with equal probability 1/K, (6.1.3) gives:

H(X) = −K
(

1

K
· log2

1

K

)
= log2K. (6.1.4)

So entropy is just logarithm of the number of states. Figure 6.6 displays such an
example. We have 8 possible states, A-H, some of which have probability 0 (white
on figure) while the others are equally likely. The first row depicts the case where
all the probability mass in concentrated in the state A with Pr(A) = 1 while every
other state S has Pr(S) = 0. Here we cannot gain any information as we know in
advance that A happens for sure. This is reflected by the corresponding H = 0.
However, the next state already contains some uncertainty: we don’t know if A
or B will happen, both are equally likely. When we learn about which event
happened, we gain log2 2 = 1 bit of information. Further down in the table,
there are more possible states and hence more uncertainty, and we gain more
information when we learn about the outcome.
1An example of such a “non-random” RV (degenerate RV) is get value 0 with 100% of probability.
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A B C D E F G H

1

P = 1

H = 0

2

P = 0.5 P = 0.5

H = 1

3

P = 0.333 P = 0.333 P = 0.333

H = 1.58

4

P = 0.25 P = 0.25 P = 0.25 P = 0.25

H = 2

5

P = 0.2 P = 0.2 P = 0.2 P = 0.2 P = 0.2

H = 2.32

6

P = 0.167 P = 0.167 P = 0.167 P = 0.167 P = 0.167 P = 0.167

H = 2.58

7

P = 0.143 P = 0.143 P = 0.143 P = 0.143 P = 0.143 P = 0.143 P = 0.143

H = 2.81

8

P = 0.125 P = 0.125 P = 0.125 P = 0.125 P = 0.125 P = 0.125 P = 0.125 P = 0.125

H = 3

Figure 6.6: Entropy in case of different probability over states. Different shades of
gray denote different probability, uniformly spread over 8 states A–H. The rightmost
column is the corresponding entropy.

Exercise 6.2: Entropy of Bernoulli random variable

Look at a Bernoulli process with parameter p. Compute it’s entropy as a function
of p. Explain the intuition behind how the result depends on p.

Hint: consider making a plot on computer.

6.1.5 Finding the best split
In order to come up with good predictions (leaves), the leaves should be as “pure” as
possible. In regression problems, it usually means that the leaves should have small
variance (or RMSE).

Minimize quadratic loss inside of regions:

ŷj = argmin
ŷ

∑
i:xi∈Rj

(ŷ − yi)2
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First split in 1 dimension:

s1 = argmin
s

min
ŷ1

∑
i:xi<s

(ŷ − yi)2 +min
ŷ2

∑
i:xi≥s

(ŷ − yi)2


n-th split among d dimensions: choose, s, d to minimize

min
ŷ1

∑
i:xid<s

(ŷ − yi)2 +min
ŷ2

∑
i:xid≥s

(ŷ − yi)2

Entropy: a measure of
information in distribution.
See Section 6.1.4 Information
and Entropy, page 302.

Establishing leaf purity for categorization tasks is a little more complex. There are
several methods to compute the leaf purity, below we discuss entropy-based purity.

Consider the same data as in Figure 6.5 (Figure 6.7). The left side of the figure
depicts the same split as in Figure Figure 6.5 above. In one of the branches we have
one circle and two crosses, the other has three circles and four crosses. The right-hand
side depicts another possible split: in the first branch we have a single circle and five
crosses, and the other branch as one cross and three circles. Which of these splits is
more useful?

Original data

Branch 1

Branch 2

Original data

Branch 1

Branch 2

Figure 6.7: Comparing two possible splits of the same data. The entropy of the original
node (6 crosses, 4 circles) is 0.971. The split at left results in entropy 0.965 and hence the
gain is 0.006. The split at right gives a much larger entropy gain, see Exercise 6.3.

In this figure, it is fairly obvious that the right-hand split is better: both leaves
are now fairly pure (83% and 75% respectively), while the left-hand split results in
leaves with 67% and 63$ of purity. However, such intuitive purity measure does not
generalize well to more complex cases, including more than two categories. Instead,
we should compute entropy gain of both of these splits.

(6.1.3):
H(x) = −

∑
x Pr(x) log2(Pr(x))

As a reminder, information is defined as

I(x) = − log2 Pr(x), (6.1.5)

and entropy is defined in (6.1.3). In order to compute the entropy gain, we first need
to find the entropy in the original data. It consists of 10 data points, 4 of which are
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circles and 6 of which are crosses. Hence entropy is

H0 = −Pr(circle) log2 Pr(circle)− Pr(cross) log2 Pr(cross) =

= −0.4 · log2(0.4)− 0.6 log2(0.6) ≈ 0.971. (6.1.6)

The first possible split consists of two branches: the first one of size 3 with one circle
and two crosses; and the other one of size 7 with three circles and four crosses. Their
corresponding entropies are

H1 = −1/3 · log2(1/3)− 2/3 log2(2/3) ≈ 0.918

H2 = −3/7 · log2(3/7)− 4/7 log2(4/7) ≈ 0.985.
(6.1.7)

The final entropy would be weighted average over these two values, where weights are
the corresponding branch sizes:

Hleft = 3/10 ·H1 + 7/10 ·H2 ≈ 0.965. (6.1.8)

Hence the split decreased entropy from 0.971 to 0.965, a gain of 0.006.

Exercise 6.3: Compute entropy gain

Compute the entropy gain at the right split of Figure 6.7.
Solution on page 496

6.1.6 Regularizing Trees
Decision trees are easy to overfit. This manifests in trees that are too deep and too
complex. Such trees can easily achieve 100% accuracy on training data. There are
three common solutions for overfitting.

1. Limit the tree growth by setting the maximum depth. This is perhaps the
simplest and most straightforward way to avoid overfitting–it only allows the
tree to grow until it reaches a given depth. Besides depth, one may want to
set minimum number of data points to be split, minimum leaf size, or other
parameters. Setting such limits is simple and may improve computation speed.
However, the resulting trees may turn out to be less efficient, as some potentially
useful branches will not be considered. See Figure 6.8 for an example how setting
maximum depth may cause either underfitting or overfitting.

2. Stop growing trees if split not significant. This requires a certain threshold
value, in terms of MSE or entropy improvement, so when the best split will not
improve the overall goodness of the model by at least this much, the tree will
stop.
This approach is too shortsighted though, as a mediocre split now may make it
possible to achieve a very good split later.

3. Pruning is a more far-sighted (albeit more complex) alternative to decisions
based on split significance. The idea of complexity pruning is similar to lasso
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regression, instead of minimizing MSE of the tree, we choose the loss function
that penalizes the number of terminal nodes T :

L(λ) =

||T ||∑
m=1

∑
i:i∈Rm

(yi − ŷi)2 + α||T || (6.1.9)

Thereafter we can build large trees for different α and cross-validate for the best
α.

6.1.7 Downsides of trees
Trees are powerful and flexible models but they are not a solution for every problem.

Above we discussed that binary splitting is not really a limitation. But tra-
ditionally, trees are built with very simple conditions only: these only involve a
single feature, and only greater-than/less-than comparisons, such as x1 > 1.5 or
sex == female. One can imagine that more complex conditions, such as x1 +x2 > 0,
may occasionally be a good choice, but that is not done in decision trees. This turns
out to be a real limitation and it means that decision boundaries for diagonal regions
are complex patterns of horizontal and vertical lines (see Figure 6.9). As a result,
trees are better in capturing vertical than diagonal structures. This also means that
trees, and their performance, depends on how data is rotated. Trees are not rotation-
invariant.

• Trees are unstable

• Capturing certain patterns requires overly complex trees

6.1.8 Ensemble Methods
So far we discussed just trees–decision-making based on a single decision tree. How-
ever, it turns out one can get better estimators when combining multiple trees into
“forests”. In this way we build ensemble methods. The idea of ensemble methods is
very simple: instead on relying on a single model, we use a number of models and see
what do they all predict. If they agree, this is good news. If they disagree, we just
pick the solution that most of the models agree on (we do “majority voting”). In case
of regression outcome we just aggregate the predictions of different models.

While ensemble methods are often based on various kinds of trees, one can do
ensembles of other types of models as well, e.g. by combining different neural net-
work models, different data sources, or different pre-processing. A major reason why
ensemble methods work well with threes is that trees are typically created by the
greedy splitting algorithm. As this is suboptimal (it is shortsighted), it leaves a lot
of potential information behind. Ensemble methods introduce more variation in how
the trees are built, and in this way help to gain some of that information back.
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Figure 6.8: Overfitting in regression trees. The true relationship is marked with the purple
line, observed values with black dots. The upper panel fits a tree of depth 2. This clearly
underfits and cannot capture the wavy pattern in data. The middle panel displays a tree
of depth 5. This seems about right–the tree clearly gets the main pattern but does not
jump to grab every single datapoint. The lower panel shows a tree of depth 8. This one
clearly overfits and attempts to catch individual datapoints. Right-hand side depicts the
corresponding tree structure.
The depth-5 model has the lowest RMSE on validation data, 1.05, the deepest tree achieves
the lowest RMSE on training data (0.18), but that is deception–overfitting.



6.1. TREES AND TREE-BASED METHODS 309

x1 < 0.84

x1 >= −0.78

Blue
0.10
43%

Red
1.00
28%

Red
1.00
30%

yes no

x1 < 1.5

x1 >= −1.4

x2 >= −1.3

x2 < 1.3

x1 < 1

x2 < 1

x2 >= −0.9

x1 >= −0.59

x2 < −0.23

x1 < 0.055

x2 >= 0.14

x1 >= 0.78

Blue
0.03
20%

Blue
0.00
4%

Red
0.86
5%

Blue
0.00
4%

Red
1.00
4%

Red
0.60
5%

Blue
0.08
4%

Red
1.00
5%

Blue
0.29
2%

Red
1.00
10%

Red
0.88
14%

Red
0.92
12%

Red
0.97
10%

yes no

Figure 6.9: Decision trees are sensitive to data rotation. At left, a very simple tree can easily
capture the pattern with accuracy 0.957 (on training data). At right, 45◦ tilted data has
accuracy 0.928 using a more complex tree. The actual tree structures are displayed below.

Bagging

Bagging (bootstrap aggregating) is basically averaging predictions from a large num-
ber of bootstrapped samples (random samples taken from the training data). The
basic reason why bagging works is as follows: as our data is a random sample for the
population, the trees (or other models) built based on it are random too and hence
predict random results. But we can make random results to be more stable if we
average a large number of them.

If we have B training sets, we can build B different trees, one for each training set,
and get B different predictors ŷ1, ŷ2, . . . , ŷB . The final predictor is just the average of
these, ŷ = 1

B

∑
i ŷ

i (or the majority category in case of classification). However, as we
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normally only have a single training set, we can rely on bootstrapping to build more
training sets. In case of bagging there is no need to prune the trees, the aggregation
functions as regularization.

The number of trees, B, is a hyperparameter that should be tuned, a good value
may be around 100.

Random Forests

The downside with bagging is that it tends to rely on the same main features for
all trees and hence gets too little variation in the model. Random forests solve this
issue by adding random feature selection. Each time the bagging algorithm considers
a split, it only considers K ′ features to use for splitting, instead of the full set of K
features. This forces the individual trees to use different features. In practice, random
forests are typically more precise method than bagging.

Random forests have two hyperparameters (in addition to the individual tree
parameters): number of trees, and number of features K ′ to include into individual
splits. A good choice tends to be K ′ =

√
K where K is the original number of features

in the data. In case of K ≈ 1000 features in the original data, each split is done on a
subset of K ′ ≈ 30 features only. This leaves the majority of features out, and forces
the trees to use information that may otherwise not be used.

Boosting

Boosting methods are in many ways similar to bagging and random forests. Below
we describe AdaBoost, one of the most popular boosting algorithms.

Imagine a two-class categorization task where the categories are “-1” and “1”. We
can create different models (e.g. different types of trees like in case of bagging or
random forest) that produce predictions ŷ ∈ {−1, 1}. For each of the model we can
compute the error rate

em =
1

N

N∑
i=1

1(ŷmi ̸= yi) (6.1.10)

where m denotes the model that predicts outcome ŷmi for observation i. Some of these
are weak classifiers where the error rate is not much above that of a random guess,
while others work much better.

Next, we combine all these predictions together not by majority voting but by a
weighted sum:

ŷi = sign

(
M∑

m=1

αmŷ
m
i

)
. (6.1.11)

Importantly, αm are model weights. Initially we can start by weighting all models in
an equal fashion, but afterwards we want to give much more weight to good classifiers
than to weak classifiers.

Algorithm:

1. build a simple tree

• may just be a stump
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2. predict

3. you get correct and incorrect results

4. compute weights:

(a) weights for this tree: better accuracy, higher weights
(b) weights for each observation: wrong get more weight by α.

5. repeat many times

6. your prediction is the weighted average of all trees.

Unfortunately, as is the case with other models, ensemble improve prediction ac-
curacy at the expense of interpretability. We cannot present a bagging or random
forest model as a decision tree any more.
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Table 6.1: Recent house sales

id price ($ 1000) m2 crime (per 1000)
a 800 200 2
b 1500 400 1
c ? 200 1

6.2 Metric Distance: A Revisit
TBD: merge with kNN?

Section 5.2.2 Metric distance, page 262 introduced the concept of metric. We
mainly discussed Euclidean and other Lp-related metrics. However, in machine learn-
ing applications it is often useful to let data decide the way we measure distance. This
gives rise to various data-based transformations, including feature normalization and
Mahalanobis distance.

Many ML applications also permit violating the strict assumptions behind the
distance metric. We may not be particularly concerned whether triangle inequality
holds, or whether distance is zero only for identical vectors. Instead, we want a simple
and good enough method to rank data vectors. This is why we can use the popular
cosine similarity measure that is not a distance in the sense as metric distance. Below
we discuss both cosine similarity and a number of other popular approaches.

6.2.1 Data-Driven Metrics
Imagine you are using the nearest neighbors method to predict house prices. Your
dataset contains two training examples (a and b) and you want to predict the price of
c (See Table 6.1). Nearest neighbors (see Section 6.3 k-Nearest Neighbors, page 321)
predicts the house c to have the same price as the most “similar” house among the
training examples a and b.

But which house is more similar? Clearly, house a is of the same size while b is
in a similar neighborhood. Obviously, we can choose a distance metric and compute
distance. For instance, the Euclidean distance dE(c,a) = 1 and dE(c, b) = 200 and
hence house c is more similar to house a than to house b. But does this way of
measuring similarity make sense? If we measure house size in km2 and crime rate
per million instead of per 1000 residents, we would come to the opposite conclusion.
So our similarity ranking depends on the measurement units. This looks like a false
start to begin with.

We can identify two separate issues here:

1. Ranking according to Euclidean metric (as well as other Lp metrics) is not
robust with respect to measurement units.

2. We don’t know how we should weight difference in size relative to the difference
in crime rate.

The first problem is actually a specific manifestation of the second problem. If we
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were able to address the weighting, the first problem would also vanish, as the weights
would presumably make the ranking unit-invariant.

One way to address this problem is to use a metric that is derived from data.
There are several popular approaches, all of these use measurement units that are
derived from certain variation in data. However, despite that these distance metrics
are “data driven”, they are not necessarily more correct than other units. Sometimes
the preferred metric can be deduced from the nature of the problem, but other times
one has just to experiment and find the best approach.

TBD: Example with an island

Feature normalization

Perhaps the most popular such data-driven metric is feature normalization: trans-
forming the features into mean-zero and variance-one features. This would constitute
an answer to the house-price-problem above along these lines: “we think that cus-
tomers value one standard deviation difference in house size about the same as one
standard deviation difference in the neighborhood crime rate”.

Technically, normalized features can be computed like this. Consider a feature
vector of length N , x = (x1, x2, . . . , xN ). It can be transformed into the normal-
ized vector x̃ by first subtracting its average and thereafter dividing it by standard
devitation:

x̃ =
x− x̄
sdx

(6.2.1)

where x̄ = 1
N

∑N
i=1 xi is the average value of x and sdx =

√
1
N

∑N
i=1(xi − x̄)2 is

the standard deviation of x. The normalized vector x̃ has mean zero and standard
deviation 1. Note that normalization is done for each feature vector independently,
the other features do not play any role here but we must know the values for all
observations for that vector to compute x̄ and sdx. The result, obviously, does not
depend on the units any more because sdx in (6.2.1) is measured in the same units
as x. Effectively we introduced a new unit of measurement, the standard deviation
of x.

Example 6.3: Data normalization

Consider the matrix X below. It contains three columns, x1, x2 and x3, and
three rows a, b and c. The first two columns have similar spread (2) but different
means (2 and 12 respectively), while the third column also has a different scale.

x1 x2 x3

a 1 11 10
b 2 12 20
c 3 13 30

mean x̄j 2 12 20
std.dev xj 1 1 10

The table also lists the mean value for all columns x̄j for j = 1, 2, 3, and (sample
size corrected) standard deviations. When normalizing data, we simply subtract
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the corresponding mean from each variable in data (i.e. “2” from values of x1,
“12” from x2 etc), and divide the resulting differences by the corresponding
standard deviation (i.e. “1” for x1 and x2, and “10” from x3). We get

x̃1 x̃2 x̃3

1 -1 -1 -1
2 0 0 0
3 1 1 1

One can see that all three variables are now equal—they are all (−1, 0, 1). This
is rather intuitive: they all have one observation in the middle, and two other at
each side and equally far from it.

Figure 6.10 shows a graphical comparison of normalized and non-normalized fea-
tures. The left panel depicts the data points in the original feature space where spread
of x2 is much larger than spread of x1. The dotted circle denotes a set of equidistant
points from the dark blue point in its center (using Euclidean distance in R2). One
can see that the circle encompasses the green dot but not the yellow dot–hence the
green dot is closer to the dark blue dot than the yellow dot. On the right panel we see
the normalized version of the same data. The visual impression confirms that both
features are now spread roughly equally. The solid circle depicts a set of equidistant
points from the dark blue dot in this feature space, the yellow dot is now closer to
the dark blue dot than to the green dot. Feature normalization reverses the distance
ranking. Both panels also show the circles in the other feature space, those are now
transformed to ellipses.

Figure 6.11 gives a similar example using Boston housing data. Both the left and
the right panel depict the same data, neighborhood crime rate versus the average
number of rooms. On the left panel we use the original features while on the right
panel we use the normalized features. Unlike in Figure 6.10, we do not force equal
aspect ratio here and hence both panels look exactly the same, only the values on the
axes differ. The Euclidean distances differ too. For instance, the Euclidean distance
between the green and the orange dot is 1.349, and between the green and the blue
dot 5.666 in the original features (left panel). These distances are 1.92 and 0.666 in
normalized features (right panel). Hence the closest colored neighbor to the green dot
is orange in the original features and blue in the normalized features.

From the technical point of view, normalization is a good option if the features
are roughly independent, and their distribution is roughly symmetric and does not
have fat tails. This assures that the variance is stable and the mean is in the middle
of the observations.

More conceptually, normalization is justified in such cases where standard devia-
tion is a relevant scale unit. In case of the house price example above, this is true if
people consider both house size and neighborhood security a relevant measure, and
standard deviation of the respective variables is a good proxy for how people value
these two factors. However, if the customers never care about crime, except for the
worst few neighborhoods, feature normalization may not be a good approach.

Another common reason to use feature normalization is to transform values that
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Figure 6.10: Non-normalized features (left) and normalized features (right). Dark blue,
green and yellow mark the same three datapoints on both images. The dotted line depicts a
circle in the original feature space, the solid line is a circle in the normalized feature space.
Note how the relative distance between dark blue and green, and dark blue and yellow dots
differ in the original and in the normalized features.

are measured in arbitrary and hard-to-understand units into more easily understand-
able (and comparable) ones. For instance, we may survey the support for a govern-
ment policy on a scale from 1 (very much against it) to 5 (very much in favor of
it). One unit in this scale is hard to understand while a sentence like “those whose
support is exceeds the average by one standard deviation…” carries more meaning.

Matrix condition number is the
ratio of the largest and the
smallest eigenvalue, κ ≡ |λ|max

|λ|min
.

See Section 5.3.4 Condition
number, page 279.

There is one more technical reason why it is advisable to normalize features–if the
design matrix contains columns of very different scale then its condition number will
be high and hence the numeric properties may suffer.

Min-max scaling An easy alternative to normalization is min-max scaling. It is
conceptually similar to normalization, just instead of dividing the centered values by
the standard deviation, it sets minimum value to zero and divides the values by data
range–the measurement unit is data range:

x̃ =
xi − xmin

xmax − xmin
(6.2.2)

where xmin and xmax are the minimum and maximum values of x. In this example,
all the features will be converted into the [0,1] interval, but we can shift and scale
these into another interval instead, say [−0.5, 0.5]. Min-max scaling works well if the
features are independent and have uniform-like distribution with no tails—all values
end abruptly at the boundary. This ensures that the minima and maxima are stable.
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Figure 6.11: Boston housing data: neighborhood crime rate (crim) versus average number
of rooms (rm). Non-normalized (left) versus normalized features (right). While the images
look exactly the same, the Euclidean distance rankings are different: the nearest (colored)
neighbor the green dot is the orange on the left panel, and the blue dot on the right panel.

As min-max scaling is very similar to feature normalization, its advantages and
disadvantages are similar too.

Mahalanobis distance Prerequisites: Section 5.2.2 Norm and Distance, page 259,
Eigenvalues and eigenvalue decomposition 5.3.4, feature normalization 6.2.1, covari-
ation matrix.

This is a generalization of feature normalization in case where the features may be
correlated. Consider Figure 6.12. Here the two features x1 and x2 do not just have
a different variance, they are also clearly correlated. If we use feature normalization
we discussed above, we will change the picture somewhat, but we cannot address the
fact that the data points are clearly clustered around the diagonal line.

Mahalanobis transformation, in contrast, stretches and rotates the data in a way
that is aligned with the axis of the data. In the left panel of Figure 6.12, the solid
ellipse depicts the equidistant points from the central dark blue dot. The ellipse is
elongated along the long axis of the correlated data, and compressed along its short
axis. So Mahalanobis distance measures distance with respect to he extent of the
point cloud in each particular direction, not just along the coordinate axes as is the
case with feature normalization.

xi• stresses that index “i” is the
column index, the bullet • is a
placeholder for columns.
See Section 0.1 Scalars, vectors,
matrices, page vii.

Mahalanobis distance can be done and understood easily using matrix notation
and eigenvalue decomposition. Consider X to be a N ×K data matrix and xi• and
xj• to be two rows (observations) from that data. The Mahalanobis distance between
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Figure 6.12: Original features (left) and Mahalanobis-transformed features (right). The
same three cases are marked with different colors on both images. The dotted line depicts a
circle in the original feature space, the solid line is circle in Mahalanobis feature space.

observations xi• and xj• is defined as

dE(xi•,xj•) =
√
(xi• − xj•)

TΣ−1(xi• − xj•) (6.2.3)

where Σ is the covariance matrix of X.
Mahalanobis distance is equivalent to transforming the data matrix into

X̃ =
(
X− 1N · x̄

T
)
Σ− 1

2 (6.2.4)

where x̄ is the vector of column means, and accordingly, 1N · x̄
T is the matrix of

column means.
Mahalanobis transformation is essentially the same as transforming data to prin-

cipal components (see Section 11.3) and Mahalanobis distance is Euclidean distance
in such a rotated and stretched feature space. If the features are uncorrelated, Ma-
halanobis distance is equivalent to Euclidean distance in normalized data.

Mahalanobis distance is a good measure for data where the data variation is a
meaningful distance measure, and not just along the features as in case of normaliza-
tion, but also along the axes of variation in data.

Example 6.4: Mahalanobis transformation of iris data

Figure 6.13 shows iris data, more specifically petal length and petal width (see
page 466). The left panel shows data in the original features and the right
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panel in Mahalanobis-transformed features. This is similar transformation as in
Figure 6.12. The different species, denoted by different colors, are reasonably well
separated on both figures. However, in the original coordinates (petal length and
width, left panel) the data points form an elongated cloud where the different
species cluster at different location. In transformed coordinates, the points are
stretched out along the minor axis, increasing the distance between dots for
similar species.
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Figure 6.13: Iris data: petal width versus petal length in the original coordinates (left
panel) and in the corresponding Mahalanobis-transformed coordinates (right panel).

In transformed coordinates the species do not form as tight clusters any more as
in the original coordinates, making categorization more difficult. This fact is also
visible from the example circles, the circle that centers on a red observation in
Mahalanobis coordinates (solid line) includes two green points while the circle in
the original coordinates (dotted line) includes only a single green dot. The circle
in the original coordinates also captures more red data points. For k-NN to work
well, it should be possible to draw circles around most datapoints that contain
many dots of the correct color and only a few of other colors. This is easier in
the original coordinates.

Note that here both features are originally measured in centimeters. Hence
one of the major reason for data transformation, transforming measurements to
similar units, does not hold here as both

6.2.2 Cosine similarity and angular distance
Prerequisites: Vector Norm 5.2.2

Sections 5.2.2 and 6.2.1 look at distance measures that are based on actual dis-
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tance, the difference between the “endpoints” of the vectors. Different metrics mean
defining the distance

Galaxy M104. One of the stars,
un-appealingly called as
USNOA2 0750-07912008, seem
much closer to the galaxy than
the other one, TYC 5531-979-1.
However, in the physical space,
the galaxy is perhaps 10,000
times farther away than the
stars, and hence the stars are
much closer to each other than to
M104. Our visual impression is
based on angular distance.
By Dylan O’Donnel, CC0 1.0, via
Wikimedia Commons

differently and possibly modifying the coordinate axes as well.
But this is not always what we want to do. For instance, when looking at the stars
in the sky, we may want to measure how far they seem from each other in the sky.
This is not the physical distance, neither Euclidean or any other–stars that look close
similar in sky may actually be quite far away from each other in space. What we may
want instead is angular distance, how big is the angle that separates them in the sky.

Cosine similarity is one such measure. It is closely related to angular distance
(in fact, it is just cosine of the angular distance). It is widely used when assessing
similarity in features that are not numeric, such as when comparing texts.

Cosine similarity between vectors x and y is defined as

c(x,y) =
x

T · y
||x|| · ||y||

x ̸= 0,y ̸= 0, (6.2.5)

where ||x|| =
√
xT · x is the Euclidean norm (see Section 5.2.2 Norm, page 259). It is

easy to see that c(x,x) = 1.
It’s name, cosine similarity, originates from the fact that inner product of vectors

equals to the product of their norms, multiplied by the cosine of the angle between
them:

x
T

· y = ||x|| · ||y|| · cosϕ, (6.2.6)

where ϕ is the angle between vectors x and y. Hence cosine distance equals just to
the cosine of the angle between the vectors. Note that it is solely the angle between
the vectors. Cosine distance is agnostic to the length (norm) of the vectors (as long
as this is positive). It is a measure in similarity in the direction the vectors point to,
and not a measure of the length of the vectors. For instance, when analyzing texts
using bag-of-words (see Section 8.3), this amounts to comparing word frequencies in
the texts. The number of words (text size) is irrelevant. Such an approach may be
very well suited when we try to understand the topic of the text while the texts itself
may be of very different size.

https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:The_Sombrero_Galaxy_crop.jpg


320 CHAPTER 6. MACHINE LEARNING MODELS

Example 6.5: Cosine similarity in R2

The easiest way to understand cosine
similarity is to analyze it on the R2

plane. Look at the vectors x1 and x2

(the figure at right). x1 = (1, 1) and
hence it points 45◦ upward. x2 = (2,−1)
and accordingly points 27◦ downward,
and hence the angle between the two vec-
tors is 45 + 27 = 72◦.

x

y

x
1

x
2

x
3

1 2

1

2

45
◦

−27
◦

Figure 6.14: Angle between two
vectors

Let’s calculate the cosine similarity of these two vectors. First, the Euclidean
norms are

||x1|| =
∣∣∣∣∣∣∣∣(11

)∣∣∣∣∣∣∣∣ =
√(

1
1

)T

·
(
1
1

)
=
√
1 + 1 ≈ 1.414

||x2|| =
∣∣∣∣∣∣∣∣( 2
−1

)∣∣∣∣∣∣∣∣ =
√(

2
−1

)T

·
(

2
−1

)
=
√
4 + 1 ≈ 2.236.

(6.2.7)

New we can plug the numbers into the cosine similarity definition (6.2.5):

c(x1,x2) =
x1T · x2

||x1|| · ||x2||
≈

(
1
1

)T

·
(

2
−1

)
1.414 · 2.236

=
2− 1

3.162
= 0.316. (6.2.8)

We can easily check that 0.316 is cosine of 71.6◦. Hence the computed cosine
similarity is equal to the cosine of the angle between x1 and x2. (The difference
is related to rounding errors.)

We can also compute the cosine similarity between x1 and x3 = (2,2). Its
norm is

||x3|| =
∣∣∣∣∣∣∣∣(22

)∣∣∣∣∣∣∣∣ =
√(

2
2

)T

·
(
2
2

)
=
√
4 + 4 = 2

√
2.

Plugging this norm into (6.2.5) we get:

c(x1,x3) =
x1T · x3

||x1|| · ||x3||
≈

(
1
1

)T

·
(
2
2

)
√
2 · 2
√
2

=
2 + 2

2 · 2
= 1.
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These two vectors point to the same direction and hence they are “perfectly
similar”.

Cosine similarity has a few very favorable properties, in particular it is easy to
compute, involving just multiplications, additions, and one division. In case of sparse
matrices, only non-zero components need to be considered. All this makes is very
well suitable for analyzing high-dimensional data, such as words in texts.

Unlike the distance measures above, cosine similarity is not a metric distance–a
larger value of cosine similarity mean more similar, not more distant data vectors.
The maximum similarity, distance between identical vectors is 1 while the minimum
similarity, distance between opposite vectors, is -1. This is sufficient to order vectors
according to their similarity, and often this is all we need.

In case one needs a difference measure instead of similarity measure, one can use
cosine distance dcos(x,y) = 1 − c(x,y). Cosine distance is zero in case of vectors
that point in the same direction, the maximal possible distance is 2 when two vectors
point in exactly opposite direction. Another option is to use angular distance, defined
as

da(x,y) =
cos−1 c(x,y)

π
, (6.2.9)

instead of cosine distance. However, there is little gain from selecting a more compu-
tationally demanding metric if our task is just to rank vectors according to similarity.

Exercise 6.4: Cosine similarity

Consider vectors x1 = (1, 2, 3), x2 = (3, 2, 1) and x3 = (1, 1, 1).

1. Compute the (Euclidean) norms ||x1||, ||x2|| and ||x3||.

2. Compute the normalized vectors xn1 = x1/||x1||, xn2 = x2/||x2|| and
xn3 = x3/||x3||.

3. Compute cosine similarity between x1 and x2, and between x1 and x3.
Hint: use the normalized vectors to compute similarity.

Solution on page 497.

Exercise 6.5: Cosine, angular distance are not proper metric distances

Show that neither cosine nor angular distance are proper metric distances (see
Section 5.2.2 Norm and Distance, page 259).

6.3 k-Nearest Neighbors
Prerequisites: Metric distance

Nearest neighbors is one of the simplest and most intuitive machine learning meth-
ods. We predict the value, or a class, of a new observation as the class of the most
similar observation in the training data set.
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Figure 6.15: Example data: some of the datapoints are categorized into yellow and violet,
but some are not (left panel). Intuitively, the empty circles should be classified according
to a colored one nearby. This is the intuition of the nearest neighbor method. On the right
panel, all the points that are closer to a violet one are painted violet and those that are
closer to a yellow one are colored yellow. All the empty circles now lie in one of these areas
of solid color and can be categorized either as yellow or violet.

6.3.1 Introductory Example
Imagine we have data as depicted on Figure 6.15, left panel. It contains yellow and
violet training observations, and our task is to categorize the empty unknown data
points into one of these color categories. Intuitively, it is reasonable to assume that
points that are “close” on the image should have similar color. So if an empty circle is
fairly close to a violet training observation and far from everything yellow, we should
consider violet as a good prediction for the unknown class.

This intuitive approach is the basis for nearest neighbor classification: we just
categorize an unknown data point into the category that corresponds to the category
of its closest neighbor. This has been done on the right panel of Figure 6.15: it
divides the figure into tiny squares (101× 101 squares) and categorizes the center of
each square into either yellow or violet by looking at it’s closest neighbor’s color. The
squares that coincide with the unknown data will tell us how the model will categorize
these data points.

This baseline approach is very sensitive to individual outliers in the data. If we
have a violet point sitting deep inside the yellow territory, we would immediately
think that everything in the close neighborhood of the outlier also belongs to the
violet class. Nearest neigbhors does not allow for reasonable smoothing. Fortunately,
a remedy here is very easy. Instead of using the category of the nearest neighbor
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Figure 6.16: The same data points as in Figure 6.15, but now categorized based on 5 (left)
and 25 (right) nearest neighbors. We can see that in the latter case, there are several groups
of points that are embedded in the area of different color.

as the predicted class, we can smooth the picture somewhat by using, say, 5 nearest
neighbors, and finding the category that is preferred in this group (often referred to
as majority voting). If 3 out of the 5 closest neighbors are yellow and 2 are violet, we
will pick yellow. This results in a noticeably smoother pictures (Figure 6.16 shows
exactly the same data categorized using 5 and 25 nearest neighbors).

This is the essence of k-nearest neighbors (k-NN). In case of only two categories,
k is ofter chosen to be an odd number in order to avoid ties in majority voting.

6.3.2 What is Distance
However, the simple and intuitive method is not without it’s issues. As soon as we
leave the 1-dimensional world, it may not be clear any more which observations are
closer to each other. The nice example in Figure 6.15 is somewhat deceiving, by
making you to believe that what looks close on the image is also close in the data
space. But take a simple example. Assume you are predicting house prices and you
have data of recent sales like in Table 6.2, including the price (in $1000), size (m2),
and neighborhood crime rate (incidents per 1000 residents). Your task is to predict
the price of the house c that is similar to a in terms of neighborhood crime rate, and
similar to the house b in terms of size. Which one is more similar? Your prediction
will be very different depending on which one you choose as the nearest neighbor.
Obviously, there is no correct way to tell. We have to weight the different features
somehow by using an appropriate distance metric.

Moreover, the previous example used simple numeric features, but this may not
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Table 6.2: Recent house sales

id price ($ 1000) m2 crime (per 1000)
a 800 200 0.2
b 1500 400 0.1
c ? 200 0.1

always be so. How can you tell which text is closer to another one? Which cus-
tomer is more similar to a third one? In these cases we don’t even have numeric
measures to start with, and our decisions about creating those add an additonal layer
of assumptions to the model.

Obviously, one can always choose a pre-determined distance metric, either Eu-
clidean or another one. Even more, k-NN does not require the metric to be a valid
metric in the sense of vector spaces, it is enough if it allows us to order the observa-
tions by “closeness” in a consistent way. This opens the option for cosine similarity
(more about it later).

6.3.3 Instance-based learning
k-NN is somewhat different from many other machine learning models, such as linear
regression, decision trees or neural networks in the sense of what does model training
mean. In case of linear regression, training the model means computing the best
coefficient vector β. Neural networks are similar, just we call the parameters “weights”
and “biases”. The case of trees is broadly similar, but the parameters are not just
numbers, but lists of splitting variables and locations. In all these cases, “training”
means computing the parameters or deciding the split locations, and the “trained
model” is just set of such parameters. Normally the set of parameters is much smaller
than the original data, e.g. we may have to compute 100 parameters out of 100,000
rows of data. In a way, model training is a way to compress data, this is hard work
and you may notice that training complex models on large datasets is slow.

But this is not true for nearest neighbors. Plain k-NN does not compute any
parameters or other model features. After all, predictions are made by finding the
closest neighbors to the point of interest, and this cannot be done if we do not have
access to the original data. So k-NN “learns” by just memorizing data. Obviously,
just storing data is in no way a compression algorithm, and hence “trained” k-NN
models are large, as large as the dataset (or more precisely, as large as the design
matrix).

This is also a reason why k-NN models are not interpretable. It does not help
to explain the relationship between variables, it is just a description: this point of
interest is more similar to one outcome, another point of interest is more similar to
another outcome. This is why we predict the outcomes to be different. But sometimes
such a description may be enough to explain the outcome to others.
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6.4 Support Vector Machines
Support Vector Machines (SVM-s) are simple models that can capture a complex
decision boundary. Figure 6.17 shows dots of two colors, arranged in a yin-yang
pattern. The linear decision boundary of logistic regression fails to capture the wavy
boundary between the gold and purple dots (see Figure 4.4). SVM with liner kernel
closely resembles the logistic regression. But SVM can represent it reasonably well,
given one choose a more powerful kernel, in this figure both polynomial with degree
3 and radial kernel will do.

Note that it is, strictly speaking, not correct to say that logistic regression cannot
capture such a complex boundary. It can, given we introduce suitable functions of the
features, e.g. a series of polynomials or splines. However, this is not what common
logistic regression implementation and applications do.
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Figure 6.17: SVM decision boundary using different kernels. Linear kernel results in a
pricture that is very similar to logistic regression (see Figure 4.4). In a similar fashion,
quadratic kernel (top right) is unable to replicate the wavy pattern of color dots. But
both 3rd degree polynomial and radial kernels can capture the main aspects of the decision
boundary.
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6.5 Comparison and Review
ML methods are powerful tools, but as with other tools, none of them is a universal
jack-of-all trades. There are many considerations when picking a suitable models.
Below we discuss a number of example cases.

Interpretability If interpretability—understanding what do the results mean—is a
major goal, then linear or logistic regression will be the first choice. No other method
can be understood in such a clean fashion.

Explainability In an analogous, if explainability—being able to explain someone why
such decisions were made—is desired, one should start with decision trees. Decision
trees can easily be explained to people with limited statistical literacy.

Predictive performance Typically, the models that offer the best predictive perfor-
mance are k-NN, random forests and other ensemble methods, SVM-s, and neural
networks. All of these have their strong and weak sides.

Neural networks are unmatched in their performance to identify complex patterns.
They beat all other methods in image or speech recognition and text procesing. How-
ever, that does not mean that neural networks are always the way to go. First, they
only help in cases where there actually is a complex patterns in data. Figure 6.18
shows an example with a complex pattern (left), where one might benefit from power-
ful and flexible models, such and random forests or neural networks. The RHS figure
shows a simple gradient from bottom left to top right. Here just a logistic regression
is adequate, and no more advanced model will do any better. There is just no in-
formation in data that logistic regression cannot use. Advanced models will perform
equally well at best, and at worst just overfit.

Unfortunately, it may not be obvious if such patterns exist in data. In certain
cases, e.g. in case of images, our brain can easily tell it, but in other kind of data it
is almost impossible to know. Experience is your friend.

Liner models can effectively do
Mahalanobis’ transformation, see
Section 6.2.1 Mahalanobis
distance, page 316

Sensitivity to scale Linear and logistic regression methods are not directly sensitive
to data scale and rotation. Both of these contain the linear transformation x

T · β.
This transformation is all you need to rotate and re-scale data, so they are able to
fit whatever direction or scale is needed. The same applies to more complex models
that contain linear layers as their first step, such as feed-forward neural networks.

However, even if linear models are not directly sensitive to scale, the numerical
properties of such models may suffer if the features are of very different scale. This
manifests in numerical errors and slow convergence. Even more, ridge and lasso
regression are sensitive to scale. This is because of the penalty term

∑
k |βk|p that

only contains the coefficients, not features xk. Different scale of xk will affect the
corresponding βk and hence penalty.

Models that include any kind of “distance” or “nearest”, are sensitive to data
scaling. This includes k-NN and clustering.
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(a) Complex pattern (b) Simple pattern

Figure 6.18: 2-D example of a complex pattern (left) and a simple pattern (right). While
advanced models, such as neural networks, can pick up the spiral pattern at left, even a
simple logistic regression is capable of identifying the left-right gradient at the right. No
more advanced model can beat it here.

Trees are not directly affected by scale of data–the split can be done at the same
place not matter of the scale. But as splits are always done along one feature, trees
are sensitive to data rotation (see Figure 6.9).

Computational and data considerations While simple models on small datasets are
computed almost instantaneously, training complex models on large dataset can easily
take days. Even if that is desirable from performance perspective, the associated cost
may render such models infeasible.

In a similar fashion, more flexible models typically require much more labeled
training data to be able to learn to generalize correctly. Again, it may not be feasible
to aquire enough labeled data of suitable quality. This is one of the reasons AI
applications sometimes fail unexpectedly, when confronted with a dark-skinned face
or female voice. The developers were just using training data that they were able to
get, and that happened to be about white males.



Chapter 7

Different Types of Data

Introductory machine learning problems are often presented using well-behaved numeric-
only datasets. Here we look at some of the different data types and explain how to
use these for ML models.

Contents
7.1 Numeric Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
7.2 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

7.2.1 Black-and-white images . . . . . . . . . . . . . . . . . . 330
7.2.2 Color images . . . . . . . . . . . . . . . . . . . . . . . . 332
7.2.3 Image transformations . . . . . . . . . . . . . . . . . . . 332

7.1 Numeric Data
This is one of the most common forms of data, and in a way the easiest one to
work with. Most machine learning and other analytical methods are designed for
numerical data, even more, typical mathematical operations we want to do, such as
multiplication and addition, can only be done using numeric data. However, numeric
data is not just numbers. It can come in various forms, and not all forms of numeric
data works with all methods.

7.2 Images
One of the distinct and valuable data source is images. Images are relatively straight-
forward to process and store as these are normally represented as pixel arrays where
each array element represents one pixel on the image. In this section we only discuss
bitmap images, wireframe images were discussed above in Section 5.4 Application:
wireframe images, page 281. We also do not discuss the compressed image formats,
such as jpeg or png that allow to compress and store such bitmaps in a more efficient
way.

329
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We start with black-and-white images, as these are stored in somewhat easier way,
and talk about color images thereafter.

7.2.1 Black-and-white images

Figure 7.1: Lyman Trestle in Connecticut, around 1876 (from Wikimedia Commons). It is
stored in memory as 820×526 array of gray values. The axes depict the corresponding pixel
coordinates.

Black-and-white images are normally stored as matrices of gray values. Figure 7.1
depicts one such grayscale image and Figure 7.2 shows a closer view on a 10×10 pixel
detail, centered at the locomotive’s smokestack. The image is made of pixels, small
squares of different shade of gray, these are made clearly visible in Figure 7.2. The
numerical values of the shades of gray for each pixel is what is stored in the image
matrix. The 10× 10 matrix itself, it’s size corresponding to the image size, is shown
in the lower panel. Here the uppermost line on the detail, where the shade transfers
from light of the sky to dark gray of the smoke, corresponds to the first (uppermost)
row of the matrix. The gray values range from 0.98 (light sky) to 0.43 (dark smoke
in the top-right pixel). One can also see that the darkest areas of the smokestack are
of value close to zero (the few lowermost lines) while the lightest points are of value
1.00 (the perfect white).

In practice, it is important to keep in mind that matrices are typically stored as
rows-by-columns, while images (and plotting coordinates) are typically presented as
width-by-height. Also, high values may correspond to either dark or low pixel intensity.
The gray values are sometimes coded as real numbers in [0,1], and sometimes as
integers from 1 to 255. All this is obviously software-specific, but causes quite a bit
of confusion when working with images for the first time.

https://commons.wikimedia.org/wiki/File:Lyman_viaduct_pacific_railway_1876.JPG


7.2. IMAGES 331

(a) Detail (locomotive’s smokestack) from Figure 7.1.

1 2 3 4 5 6 7 8 9 10
1 0.98 0.98 0.90 0.82 0.71 0.66 0.70 0.67 0.56 0.43
2 1.00 0.66 0.47 0.31 0.31 0.33 0.33 0.22 0.17 0.22
3 0.77 0.33 0.47 0.31 0.36 0.21 0.35 0.37 0.32 0.41
4 0.85 0.37 0.47 0.31 0.38 0.48 0.81 1.00 0.77 0.82
5 0.97 0.46 0.21 0.24 0.37 0.89 0.98 0.96 0.95 1.00
6 1.00 0.57 0.07 0.11 0.16 0.86 0.97 1.00 0.95 0.97
7 0.91 0.50 0.05 0.13 0.22 0.81 0.94 0.98 1.00 1.00
8 0.89 0.43 0.18 0.05 0.32 0.86 0.98 1.00 0.86 0.80
9 0.41 0.17 0.14 0.09 0.45 0.85 0.90 0.73 0.41 0.64

10 0.09 0.05 0.16 0.11 0.35 0.43 0.49 0.30 0.11 0.37

(b) The gray level values corresponding to the detail in the upper panel. The high values (near 1.0)
correspond to white and low values (near 0.0) correspond to black. One can see that the darkest
details of the smokestack are of value 0.05 and the lighest sky is of value 1.00.

Figure 7.2: Detail from image 7.1, and the corresponding gray values.
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7.2.2 Color images

Color images are constructed in broadly similar way as black-and-white images, just
these contain three separate layers for different colors, normally red, green and blue.

Figure 7.3 shows such a color image. The top panel is the original high-res image
(at left) and a low resolution (5 × 8-pixels) version of it to facilitate the display of
data matrices. The lower panels depict the three color channels, R, G, and B. Small
numbers close to “0” indicate little intensity (black), and high values close to “1”
indicate high intensity (either red, green or blue, depending on the channel). For
instance, the columns 4 and 5 in the first row of the R channel have values 0.00
indicating that these two pixels contain no red. The same pixels have value 0.37 in G
and 0.72 in B channel, indicating that the flag’s blue contains about 1/3 green and
the 2/3 blue, “pure blue” that is produced by the computer screen. The middle pixels
(row 3 and column 5) however are of value 1.00 in all channels. This means that pixel
is “pure white”, displaying the maximum color intensity in all channels.

Such 3-channel layout of images is very common for color images, for instance all
jpeg images are made of three channels. When working with image data in memory,
then all these layers are put “on top of each other”. So the Scottish flag may be stored
as a 5× 8× 3 or a 8× 5× 3 array, a tensor.

Other images, such as some png-s also contain a fourth layer, representing trans-
parency. In fact, the original png image contains such a transparency layer. But as
the image is completely oblique, the fourth layer has all pixels marked as “1.0”. There
may be even more layers, e.g. one that indicates the pixel’s distance (depth), but
that is not common.

7.2.3 Image transformations

Transforming Bitmap Images into Coordinate Matrix Form

Wireframe image data we discussed above contain vertex coordinates, while color,
a vertex attribute, is a secondary consideration. In contrast, bitmaps images only
contain the color values in a regular grid but do not explicitly contain the pixel co-
ordinates. In this sense wireframe images are similar to sparse matrices and bitmaps
to dense matrices. So in order to rotate a bitmap as matrix, we first have to create
it’s coordinate matrix. This can be done by creating an (x, y) coordinate pair for
each pixel so that the pixels can be described by a triple (x, y, value). As the pixels
are arranged in the matrix in a regular matrix, x and y correspond to either matrix
columns and rows, or the way around, depending on the software. Are vertex coor-
dinates and colors will be treated differently, we put the image information into two
matrices: a N × 2 coordinate matrix X, and a N × 1 pixel gray value matrix G. Note
that N is not the height but height × width of the image because each row in these
matrices correspond to a single pixel, not to a single row. For instance, the image

https://bitbucket.org/otoomet/lecturenotes/raw/master/img/flag-of-scotland-pixelized.png
https://bitbucket.org/otoomet/lecturenotes/raw/master/img/flag-of-scotland-pixelized.png
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(a) Original image (b) 5× 8 pixel version

(c) Red channel

1 2 3 4 5 6 7 8

1 0.93 0.81 0.31 0.00 0.00 0.23 0.77 0.95
2 0.18 0.74 0.95 0.64 0.58 0.95 0.78 0.25
3 0.00 0.00 0.55 0.99 1.00 0.63 0.00 0.00
4 0.04 0.68 0.96 0.71 0.66 0.96 0.73 0.16
5 0.90 0.86 0.38 0.00 0.00 0.33 0.82 0.93

(d) R pixel intensities

(e) Green channel

1 2 3 4 5 6 7 8

1 0.95 0.84 0.47 0.37 0.37 0.43 0.81 0.96
2 0.41 0.78 0.96 0.71 0.66 0.96 0.82 0.44
3 0.37 0.37 0.63 1.00 1.00 0.69 0.37 0.37
4 0.38 0.73 0.96 0.75 0.72 0.96 0.77 0.40
5 0.92 0.88 0.51 0.37 0.37 0.48 0.85 0.94

(f) G pixel intensities

(g) Blue channel

1 2 3 4 5 6 7 8

1 0.97 0.91 0.75 0.72 0.72 0.74 0.90 0.98
2 0.73 0.88 0.98 0.85 0.83 0.98 0.90 0.74
3 0.72 0.72 0.82 1.00 1.00 0.84 0.72 0.72
4 0.73 0.86 0.98 0.87 0.85 0.98 0.88 0.73
5 0.95 0.94 0.77 0.72 0.72 0.76 0.92 0.96

(h) B pixel intensities

Figure 7.3: Flag of Scotland. The upper left picture shows the original flag, the upper right
picture shows the same image in low-resolution for better display of data. The lower panels
depict the corresponding color channels, R, G and B; images at left and the pixel intensities
at right. The pixel intensities are close to “1” in the white cross as the white color is made of
all three color channels at full intensity. However, the blue areas have little red (values close
to 0) color, some green (values around 0.37), while blue channel remains at high intensity
(values 0.72). So in blue, the flag has low contrast.
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detail from figure 7.2 will be stored in two matrices,

X =



1 1
2 1
3 1
...
1 2
2 2
3 2
...


and G =



0.98
0.98
0.90

...
1.00
0.66
0.47

...


. (7.2.1)

The first column of X denotes the horizontal position, the column of the original image
matrix, and it runs from 1 to the image width for each row. The second column is the
vertical position, the image row, it is 1 for each pixel in the first row, 2 for each pixel
in the second row and so forth. G contains the same gray values as the data matrix in
Figure 7.2. The pixel coordinates X are conceptually the same as vertex coordinates
for wireframe images, just we are not connecting vertices by lines but instead we use
the gray value as the vertex color. The gray values will not change with rotation, just
the pixels must be plotted in a different place as the image rotates.

Accordingly the image rotation will consist of two steps:

1. rotate (or otherwise transform) the coordinates X into X′, and

2. paint a dot at coordinates (x′i1, x
′
i2) with the gray value Gi.

Figure 7.4 illustrates this approach with the original image rotated 10 degrees coun-
terclockwise:

Projecting bitmap images

As we can rotate bitmap images, we can also project these on 1-D line. Figure 7.5
depicts an image of a page of text that is rotated by 24 degrees. Suppose we want
to detect it’s degree of rotation for further processing. One approach is to rotate the
image and project the result onto the vertical axis. If the angle is correct, we should
see a clear pattern of dark (text lines) and white (interline gaps). If the angle is
wrong, the gaps will be unclear.

We can proceed in a similar fashion as above. First we translate the image into
the regular grid coordinate matrix X and the gray intensity levels G, and thereafter
we project X onto the vertical line (by dicarding the first coordinate component).
Thereafter we can either plot the density on the margin, or better, compute the sum
of gray levels in narrow intervals.



7.2. IMAGES 335

Figure 7.4: The same image rotated 10 degrees.

Figure 7.5: Image of a text page (left panel). It is rotated 24 degrees counterclockwise. Right
panel depicts the gray value density along the vertical axis. The galaxy image in the form
of a triangular dip, centered at row 200, is clearly visible. However, the text lines cannot be
distinguished in the plot.
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Figure 7.6: The same image as in Figure 7.5 but now rotated into correct position (left
panel). The image is now visible as the rectangular dip with vertical sides. Now also the
text lines are represented by a regular wavy pattern of lighter and darker stripes. Smooth
slopes on both sides of the true image are related to the tilted white background embedded
in the image.



Chapter 8

Text as Data

As literate humans, we produce and read quite a lot of written text (we do not discuss
voice here). So text is data and it contains a lot of information. But to process text
on computer poses a number of challenges. To start with, text is non-numeric, and
unlike images where we can easily see the pixel color values that are arranged in neat
rows and columns, it is not obvious what might be the features in case of text.

Below, we discuss one simple way of using text, document-term-matrix (DTM).
DTM can be done in different way, e.g. just by counting the occurrence of different
words, or by calculating term-frequency-inverse-document-frequency (TF-IDF). But
before we get to text itself, we have to talk about pre-processing, such as tokenization
and stemming because raw text is often not the best choice for processing.
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8.1 Preprocessing: Tokenization, Stemming, and Lemma-
tization

Text processing typically starts with simple methods to simplify the text by removing
various features that are not relevant for current task. For instance, we may consider
case of the word irrelevant, and we may want to consider different grammatical forms
of the same word, e.g. speaking and speaks to be the same. This may be a good choice
when we are doing topic modeling. But case may be very important for other task,
e.g. when we want to extract proper names.

8.1.1 Tokenization
Text is normally analyzed at word level. This means we have to split it into words.
This is relatively easy with English and other European languages where space and
certain punctuation symbols are reliable word boundary markers. But other languages
may not contain similar markers and hence the process is much more complex.

Even in English, we have a number of corner cases. For instance, what should
we do with don’t? Should we retain it as “don’t”, convert it to “do not”, or just
remove the apostrophe and make it into “dont”? In contrary, what about names like
Kuala Lumpur? Should it be retained as a single word containing space, or split into
two words? We have to make such decisions depending on the task at hand. As the
result may deviate from what we commonly call “words”, this process is usually called
tokenization instead, and the results are tokens, not “words”.

But we do not have to use words. We may break written text down to individual
characters, character pairs, or syllables instead. The smaller units may be useful where
we have to guess the meaning of words from how they are written, from prefixes and
suffixes they contain, or if they contain syllables that also occur in other, known
words.

TBD: names to ethnic background

8.1.2 Stemming
Stemming is a process where common prefixes and suffixes are removed from the
words. For instance, when encountering the word studying, we may remove the suffix
-ing leaving the stem study. More advanced stemming algorithms may leave only the
part of stem that never changes, in this example, this would be stud. Note also that
the never-changing-part of a word may differ between written and spoken language,
or be completely missing (like in case of go and went).

Stemming helps us to see the common stems of related words, and we can for
instance build a search engine that finds both study and studying when the user
enters either of them. This is often what the users want when they search.

8.1.3 Lemmatization
However, stemming is a simplistic method that often fail to produce consistent stems
for closely related words. For instance, a simple stemming algorithm may turn word
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studying into stem study, but the word studies will produce studi. As these stems are
not identical, the search engine may not understand that the corresponding words are
similar.

Lemmatization is a method that is in principle similar to stemming, but instead of
just removing the standard suffixes, it uses morphological analysis of words to deduce
the lemma, the standard base form of all the related words. Lemma is the standard
form of words that is listed in dictionary. In the example above, the lemma of both
study and studies is study. Needless to say, lemmatization is much more complex to
implement than stemming and needs some sort of dictionary lookup.

8.1.4 Stopwords and Other Simplification
We often want to start by simplifying text. Typically one converts all words to
lower case, removes punctuation, perhaps normalizes the grammatical constructs, and
removes stopwords, common words like and, not, but that carry little information.

Obviously, whether capitalization, punctuation and stopwords are just a noise or
actually helpful depends on the task. If you are predicting the topic of a news article,
the common stopwords carry little information. However, when deducing authorship
of a text, the subtle differences in stopword usage or the exact grammatical form of
words used may turn out to be quite important.

8.2 n-grams
n-grams are just ordered sequences of n words (or other objects, such as letters or
sentences). For instance, in case of document “The waiter opened the gate a little and
looked out”, we can create the following bigrams (2-grams): (the, waiter), (waiter,
opened), (opened, the), (the, gate), (gate, a), (a, little), (little, and), (and, looked),
(looked, out). n-grams can be used in a similar fashion as tokens, their main advantage
is that they preserve the order of the words. For instance, it is harder to deduce
meaning of two tokens (unigrams) “do” and “not”, while a bigram (do, not) is has
much more distinct meaning.

However, texts contain many more different n-grams than unigrams, and hence
working with n-grams typically needs more resources and training data.

8.3 Bag of Words and Document-Term-Matrix
Prerequisites: Metric distance, vector norm 5.2.2, cosine similarity 6.2.2.

Statistical methods only work on numerical data, so before we can apply any
common ML method on text we have to convert it into a numeric representation.
Bag of words (BOW) is a simple and popular approach to transform texts into a
numeric vector form, in essence just a frequency table of words in the text. An
essential property of BOW is that it does not preserve the order of words. One can
imagine throwing all the words into a bag, so for each document it will just contain
the counts of the words but not their order. We obviously lose a lot of information
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by such “bagging”, sometimes it is useful, sometimes it is undesirable. Normally
we work on many documents which may be short (like tweets) or long (like books).
We can construct a BOW for each of these and stack them into a matrix, called
Document-Term-Matrix (DTM).

DTM can be constructed in different ways, here we explain how to create it based
on word counts (or more precisely, token counts), but one can choose to remember
just the presence of words, not their counts. One can also construct bag-of-characters
or bag-of-bigrams instead of bag-of-words.

In this form we represent documents as vectors of word counts in the vocabulary:
first we collect all words in all the documents we analyze. This collection is called
vocabulary. Say there are V words in the vocabulary. Now we can represent each
document as a vector of length V , x = (x1, x2, . . . , xV )

T , where each component xj
equals to the count of that word j in the text. If the word is not present, we set
xj = 0.

BOW-s are numeric vectors we can use for various mathematical operations. For
instance, we can compute both Euclidean distance or cosine similarity between BOW-
s. When stacking BOW-s horizontally underneath each other, we get a DTM, essen-
tially a design matrix where features are the words, and feature values are the word
counts in each document (observation).

Example 8.1: DTM of Laozi quotes

Let us create a DTM of two Laozi quotes: “Knowing others is wisdom, knowing
yourself is Enlightenment”, and “Mastering others is strength. Mastering yourself
is true power”.

These quotes together form vocabulary of size 10 (in alphabetical order) en-
lightenment, is, knowing, mastering, others, power, strength, true, wisdom, your-
self. The first quote only contains words enlightenment, is, knowing, others, wis-
dom, yourself and hence the corresponding BOW is x1 = (1, 2, 2, 0, 1, 0, 0, 0, 1, 1)

T .
We must keep the word counts in a consistent order, normally in the same order
as the words are in the vocabulary. The number “1” in the first position indi-
cates that the word enlightenment is present 1 times, but for instance the words
is, knowing are there two times, and words mastering, power, strength, true are
not present at all. The second quote contains enlightenment, is, knowing, oth-
ers, wisdom, yourself and hence its BOW is x2 = (0, 2, 0, 2, 1, 1, 1, 1, 0, 1)

T . The
vocabulary and both BOW-s are shown in the table below.

Table 8.1: Two BOW-s x1 and x2, corresponding to the two Laozi quotes in the text.
Both BOW-s, stacked horizontally underneath each other as in this table, form a nu-
meric DTM that can be used in various machine learning models.



8.3. BAG OF WORDS AND DOCUMENT-TERM-MATRIX 341

en
lig

ht
en

m
en

t

is kn
ow

in
g

m
as

te
rin

g

ot
he

rs
po

we
r

st
re

ng
th

tr
ue

w
isd

om

yo
ur

se
lf

x1 1 2 2 0 1 0 0 0 1 1
x2 0 2 0 2 1 1 1 1 0 1

Now compute the Euclidean distance and cosine similarity between these
two quotes. For the Euclidean distance we need their difference x1 − x2 =

(1, 0, 2,−2, 0,−1,−1,−1, 1, 0)T and hence de(x1,x2) =
√
(x1 − x2)

T · (x1 − x2) =√
13 = 3.606. For cosine similarity, we need to compute the inner product

x
T

1 ·x2 = 6 and both norms, ||x1|| =
√
12 = 3.464 and ||x2|| =

√
13 = 3.606, and

hence c(x1,x2) = 6/(
√
12 ·
√
13) = 0.48. In some applications we may also want

to remove the stopword is.

The advantage of DTM is it’s simiplicity. Creating a BOW for given task requires
no training data and can be done fast and cheap. Sparseness of typical DTM helps
to increase the algorithm speed and decrease the memory requirements, as typical
vocabularies contain 10,000 to 100,000 words while most of the documents do not
contain most of the words. Hence the DTM-s are in practice mostly filled with zeros,
and we can use sparse matrices as the underlying data structures.

DTM-s have two major disadvantages. First, they are large. Typical word-based
DTM-s contain 10,000–100,000 words, and hence every document, even just a tweet of
a single word, contains this many numbers (almost all of them zeros). This may make
large DTM-s slow and sluggish.1 Second, by construction, DTM-s do not store the
order of words. Whatever the order of words, the data looks identical. A potential
way to address this issue is to use a bag of bigrams instead of BOW. As bigrams
retain the order of words, such a bag will contain much of the information of the
original word order. However, as there are many more bigrams compared to words,
the dimensionality problem will get worse.

A potential solution to the dimensionality problem stems from the typical word
distribution in natural languages. While there is a core of very frequent words, most
of the words in a vocabulary are rare. Note that in practice there is always a large
number of rare words. If we increase the sample size (the number or size of docu-
ments), we sample a larger number of formerly rare words so those are not rare in
our BOW any more. But in actual applications, larger documents will always contain
many even less common words, words in different languages, misspellings, names and
acronyms, so the problem of a large number of infrequent words does not go away by
just adding more data. But often we can just disregard such words–seeing a word only
a few times is arguably too little to make any inference about it’s role for language
models. Hence a common strategy is to exclude all words that are less frequent than

1This sounds like contradicting the praise of simplicity and sparsity in the previous paragraph,
but it is not. Sparsity often helps, but it is not a cure against all inefficiencies. Small dense matrices
are still much more efficient than large sparse matrices.
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a given threshold.
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8.4 TF-IDF
As DTM is effectively a numeric design matrix, we can use it with a plethora of
traditional ML methods. For instance, we may categorize texts using k-NN and
cosine similarity. Unfortunately, this measure may not perform very well in practice.
First, often the words that are common in both texts are popular ones that carry little
distinctive power. Even if we remove obvious stopwords, there are still many common
words that occur repeatedly in most of the texts. Second, less popular words tend to
be used in a “bursty” way, so if one word is already used in a document, it will be very
likely used again. Just word counts will put too much weight on a few words that
are used many times in the texts. As a remedy, one may use term-frequency inverse
document frequency (TF-IDF) transformation. There are many different specific
definitions of TF-IDF in the literature, here we follow the approach of Murphy (2012,
p 482).

First, we transform the word counts into tf form as

tf(xij) = log(1 + xij) (8.4.1)

where xij is the count of word j for the text i. This transformation suppresses large
counts of single words, but is still more informative than just binary contains/does
not contain features. By adding 1 to xij we ensure TF of a missing word is zero, and
TF for every word present in document is positive.

Second, for each word j in the vocabulary, we define idf as logarithm of the inverse
of number of documents that contain the word j. Normally we adjust the inverse a
bit, e.g. we take inverse of 1 plus the number of documents in order to avoid cases
where a vocabulary word is not found in any document.2 Formally, we may define idf
as

idf(j) = log
N

1 +
∑N

i=1 1(xij > 0)
. (8.4.2)

1(xij > 0) is the indicator function that equal to one if the document i contains
word j, and hence

∑N
i=1 1(xij > 0) is the count of documents that contain the word

j. We also use the total number of documents N as numerator. This is a form
of normalization where the words that are present in all documents will have the
fraction of N/(1 + N) ⪅ 1 and hence its logarithm idf ⪅ 0. In the opposite end,
IDF for a word that is found in none of the documents is logN and for a word in
a single document only, idf = logN/2. Hence idf assigns to words that are present
in many documents low weight, and words that are present in only a few documents
high weight. Note that idf assigns a single value for each word across all documents.
IDF is a word-specific value while TF-vectors are different for each BOW.

Finally, the TF-IDF transformation for word j is defined as

tf-idf(xij) = tf(xij) · idf(j) j ∈ 1 . . .K. (8.4.3)

Note that TF-IDF is not made of single document alone–it is a transformation of
the complete DTM X. While each single BOW (a row in the original data matrix

2There may be several reasons that a word that is in no document finds its way to the vocabulary.
For instance, one may use a standard vocabulary, derived from other documents. Also, training data
typically contains words that are in no validation document.
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X) has been transformed into a row of TF-IDF matrix X̃, the transformation needs
information about how common are the words across all documents. In some ways it
is similar to feature normalization.

Example 8.2: TF-IDF of Laozi quotes

Let us TF-IDF transform the DTM of the Laozi quotes, Knowing others is wis-
dom, knowing yourself is Enlightenment and Mastering others is strength. Mas-
tering yourself is true power, presented in Table 8.1.

Table 8.2 shows the results. The columns (features) are the V = 10 vocabulary
words and two first lines represent the DTM as in Table 8.1. The following two
lines, tf1 and tf2 show the corresponding tf -terms, essentially just log-transforms
of the DTM. The row idf is the IDF term. It is log 2/(1 + 2) ≈ −0.41 for words
that are in both documents and log 2/(1 + 1) = 0 for words that are in a sin-
gle document only. Although we do not have any such example, it would be
log 2 = 0.69 for words that are in none of the quotes. Finally, the last rows
tf-idf1 and tf-idf2 are just the corresponding tf -terms multiplied by idf. These
two rows form the TF-IDF-transformed data matrix X̃.

Table 8.2: Example vocabulary, bag-of-word vectors, and TF-IDF transformation for
quotes: “Knowing others is wisdom, knowing yourself is Enlightenment” and “Mastering
others is strength. Mastering yourself is true power”.
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x1 1.00 2.00 2.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00
x2 0.00 2.00 0.00 2.00 1.00 1.00 1.00 1.00 0.00 1.00

tf1 0.69 1.10 1.10 0.00 0.69 0.00 0.00 0.00 0.69 0.69
tf2 0.00 1.10 0.00 1.10 0.69 0.69 0.69 0.69 0.00 0.69
idf 0.00 -0.41 0.00 0.00 -0.41 0.00 0.00 0.00 0.00 -0.41

tf-idf1 0.00 -0.45 0.00 0.00 -0.28 0.00 0.00 0.00 0.00 -0.28
tf-idf2 0.00 -0.45 0.00 0.00 -0.28 0.00 0.00 0.00 0.00 -0.28

The TF-IDF-transformed data X̃ is a similar numeric data matrix like DTM and
can be used in different ML models as any other numeric data. It gives sometimes
quite a substantial improvement in the modeling accuracy. It is also easy and fast to
perform, involving just a few operations that can be easily vectorized.
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8.5 Naïve Bayes
Naive Bayes is a classification method that is based on very simplistic (naive) inde-
pendence assumption, and on the Bayes theorem. The independence assumption is
unrealistic in many cases, but tremendously simplifies the computations and makes
it able to handle high-dimensional cases. It turns out this tradeoff–computational
simplicity against unrealistic assumptions–pays off in many types of problems.

Before we get into Naive Bayes, we’ll talk about conditional probability, Bayes
theorem, and implement a Bayes Theorem–based spam filter that uses a single word
only.

8.5.1 A Single Word–Based Bayesian Classifier
Prerequisites: Bayes theorem 1.4.3

Many emails turn out to be
spam.
Chesie Yu, CC BY-NC-SA 4.0

Imagine you open your mailbox and see the following email:

I have very urgent and confidential business proposition for you. On
26th December 2004 an Oil Consultant/Contractor with the Myanmar
National Petroleum Corporation, Mr. A Y Mustafa …

Mr. A Y Mustafa died from an automobile crash …
I am looking for a foreigner who will stand in as the next of kin to Mr.

Mustafa …
Yours truly,
Mr. M. Lwin

In the email it is explained how you can get $4 million in a few days if you agree with
Mr. Lwin’s “proposition”. This would make your day! (Or maybe even your life?)

But before you hit the reply button, maybe you should check if this email is spam
instead? After all, the phrase “confidential business proposition” may catch your eyes
as somewhat weird. Will these words help us to build a spam filter? Our final task is
to build such a spam filter based on the Naive Bayes model, but before we get there,
let’s build a Bayesian spam filter based on a single phrase only.

We can never be 100% certain about the correct category in common applications,
so instead of directly modeling a spam/non-spam decision, we model the probability
that an email that contains the phrase “confidential business proposition” (CBP) is
spam. Formally, we are interested in the conditional probability

Pr(S|CBP) (8.5.1)

where S is the spam status (S = 1 for spam and S = 0 for no spam), and CBP is the
CBP status (CBP = 1 if the email contains the phrase and CBP = 0 if it does not).

Exercise 8.1: Spam given a word

Let W = 1 means email contains the word W and S = 1 means email is spam.
1. What does Pr(S = 0|W = 1) mean?

2. You have labeled data about emails. How can you compute the probability

https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
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above?

Solution on page 497

As both S and CBP can have two values, we have for four probabilities in total:

Pr(S = 0|CBP = 0) Pr(S = 0|CBP = 1)

Pr(S = 1|CBP = 0) Pr(S = 1|CBP = 1).
(8.5.2)

The first row represents the probabilities that the email is not spam (S = 0) while
not containing the phrase (CBP = 0 ) and while containing the phrase (CBP = 1).
In the second row we have the corresponding probabilities for spam (S = 1). Exactly
as in the upper row, the first probability refers to the case where the email is spam
while not containing the phrase, while the second probability represents the case that
an email that contains the phrase is spam. Obviously, as every email is either spam
or non-spam, the corresponding probabilities must sum to unity: for emails without
the phrase Pr(S = 0|CBP = 0) + Pr(S = 1|CBP = 0) = 1 and the same for emails
with the phrase, Pr(S = 0|CBP = 1) + Pr(S = 1|CBP = 1) = 1. For simplicity, we
often use the shorter notation (8.5.1) to represent all four probabilities.

Next, we can use Bayes theorem (1.4.10) to express the probabilities in (8.5.1):

Pr(S|CBP) =
Pr(CBP |S) · Pr(S)

Pr(CBP)
. (8.5.3)

As above, CBP represent the phrase status (email does contain or does not contain
CBP) and S represents the spam status (email is spam or not spam), so (8.5.3)
actually represents four different probabilities, exactly as does (8.5.1) above. To fix
the ideas, let’s focus on Pr(S = 1|CBP = 1), the probability that an email containing
“confidential business proposal” is spam. This version of (8.5.3) is

Pr(S = 1|CBP = 1) =
Pr(CBP = 1|S = 1) · Pr(S = 1)

Pr(CBP = 1)
. (8.5.4)

Let us now go over of all the probabilities on the right-hand-side of (8.5.4).

• Pr(S = 1) is the prior, the unconditional probability of the email being spam.
It is just the percentage of spam emails in our data. Note that while computing
the spam percentage is simple, it requires a training dataset, a manually labeled
set of emails.

• Pr(CBP = 1|S = 1) is the percentage of spam emails that contain the phrase.
This is the main source of information that includes both spam and content
data and allows us to improve our predictions. It is straightforward to calculate
this probability by simply selecting all the spam emails and computing the
percentage that contain “confidential business proposal”.

• Finally, the normalizer Pr(CBP) is just the unconditional probability that
emails contain the phrase, be they spam or not. This is the simplest proba-
bility to compute, we don’t even need labeled training data.
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So all these probabilities can be computed easily if we have training data, a dataset of
suitable size where the emails are already labeled into spam and no-spam ones. The
rest is essentially just tabulating, and using the Bayes theorem as the final step.

Example 8.3: Bayesian spam filter based on a single word

Assume you have labeled training data of 1000 emails, 400 of these are spam and
600 are not spam. We focus on a single word, “viagra” in these emails. Denote
the “viagra” status by V = 1(email contains “viagra”). The table below shows
the counts of all types of emails:

V = 0 V = 1 Total
S = 0 500 100 600
S = 1 150 250 400
Total 650 350 1000

Based on this table, let us compute Pr(S = 1|V = 1), the probability that an
email is spam, given it contains “viagra”. When using (8.5.4), we first have to
find the following probabilities:

• Pr(V = 1|S = 1), probability of “viagra” in spam emails. From the table
we can see that it is 250/400 = 5/8 = 0.625.

• The prior, Pr(S = 1), the proportion of spam emails. It is 400/1000 =
2/5 = 0.4.

• The normalizer, Pr(V = 1), the probability to see “viagra” in emails. It is
350/1000 = 7/20 = 0.35.

Based on these numbers we can easily compute

Pr(S = 1|V = 1) =
Pr(V = 1|S = 1) · Pr(S = 1)

Pr(V = 1)
=

=
5
8 ·

2
5

7
20

=
5

7
≈ 0.714. (8.5.5)

The Bayesian update based on a single word made the final probability 0.714,
close to 2-fold increase over the prior Pr(S) = 0.4. Such substantial improvement
was only possible because in this example data the word “viagra” is very common
in spam emails. If a word is rare, it can only identify a small number of spam
emails. If it is rare but very spam-specific, it gives us large precision but the
recall will remain low as most of the spam emails are left unidentified.
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Exercise 8.2: Probability of spam given no “viagra”

Use the data as in the Example 8.3. Compute the probability Pr(S = 0|V = 0),
probability that the email is not spam if it does not contain “viagra”. How much
larger is the posterior compared to the prior?

Solution on page 498.

Exercise 8.3: Spam filter with “free” and “dollar”

Consider the following six emails:

Text Spam
First month free! 1
Free trial coupong, worth $25 1
$100 off! 1
Application deadline 0
Campus free food 0
Off-trail running 0

These emails constitute your training data.
Construct Bayesian spam filter using a) the word “off”, b) the dollar sign

“$”. Use the Bayes theorem to compute the probabilites, do not compute these
directly!

What would you predict for emails
a) Leader of the free world
b) TA-job will now pay $19 an hour
Solution on page 498.

8.5.2 Smoothing: how to compute probabilities with too few data
In the examples above we did not talk much about how to compute the probabilities,
such as Pr(W = 1|S = 1). Intuitively, one may want just to use the proportion of
documents where the word is present (as we did above):

Pr(W = 1|S = 1) =
NW=1|S=1

NS=1
(8.5.6)

where NW=1|S=1 is the count of spam-emails where the word is present, and NS=1 is
the total number of spam emails. This intuitive approach is justified if the counts are
large. But if we observe just a few cases of the word, these probabilities may be far
from the truth. A common manifestation of this problem is the case where we observe
only a single instance of the word. Obviously, this means it only belongs to a single
class, say spam. Now every new email that contains that word will have probability
(from (8.5.4))

Pr(S = 1|W = 1) =
Pr(W = 1|S = 1) · Pr(S = 1)

Pr(W = 1)
=

1
NS=1

· NS=1

N
1
N

= 1 (8.5.7)
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where we denote the total number of emails by N , and spam emails by NS=1. In a
similar fashion, the probability that the email containing the word is non-spam is

Pr(S = 0|W = 1) =
Pr(W = 1|S = 0) · Pr(S = 0)

Pr(W = 1)
=

0
NS=0

· NS=0

N
1
N

= 0 (8.5.8)

where NS=0 is the number of non-spam emails. For instance, imagine we have seen
the word “viagra” just once, in a spam email. Hence every new email that contains
this word will be categorized as spam because Pr(viagra = 1|S = 0) = 0. No buts, no
ifs.

But typically it is not just a single word that occurs in our corpus only once.
Imagine the word “conference” also appears only once, in a valid email. So now we
categorize every message containing “conference” unambiguously as valid, and every
message containing the word “viagra” as spam. But what should we do with an email
that contains both “viagra” and “conference”? One word will unambiguosly say it is
spam, and the other word will say it is valid.

Obviously, it is problematic to rely on a single rare value for categorization. Rare
words are, by definition, rare, and hence may occur in one or another category just by
chance. The problem arises because we are drawing too strong conclusions from too
little data. Clearly, a single “viagra” and a single “conference” is not enough to claim
we have 100% certainty to categorize the email. As this certainty originates from
the probability calculation (8.5.6), that approach must be incomplete. Intuitively, it
is easy to see what is wrong with that formula—it does not take into account the
sample size. If we find 0 valid ones out of total N = 1 emails that contain “viagra”
then (8.5.6) will in the corresponding probability being 0. If we find 0 valid emails
out of N = 1000 such emails then (8.5.6) will still result in probability 0. But in the
latter case we clearly have much more reliable result.

A popular solution to this problem is called smoothing. Smoothing is equivalent
to Bayesian estimation3 of the probabilities. Instead of taking the strictly frequentist
approach (8.5.6),4 we should take a Bayesian approach where we include a prior for
the probability of interest. A Bayesian prior (beta-prior) is equivalent to adding a
small positive number to the counts.

Take the spam example. Let’s the prior for Pr(W = 1|S = 1) = 0.5, i.e. we
assume the word W is equally likely to be present or absent in spam emails. We can
assume that for every word we analyze, we have two additional spam emails: one
that contains the word, and one that does not contains the word. Hence we have
seen NW=1|S=1 + 1 spam emails with the word, out of NS + 2 in total, and instead
of (8.5.6) we have the probability is accordingly

Pr(W = 1|S = 1) =
NW=1|S=1 + 1

NS=1 + 2
. (8.5.9)

3“Bayesian” here refers to Bayesian statistics, not to the Naive Bayes estimator. Naive Bayes is
based on Bayesian theorem but Bayesian statistics includes much more than this method.

4This claim is a bit misleading. While frequentists may be happy with (8.5.6), they are not happy
with how we use this probability afterwards. In particular, ignoring uncertainty of computed values
is not a correct way of doing frequentist statistics.
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Now if none of the spam emails contained the word “deadline”, then we have

Pr(deadline = 1|S = 1) =
1

NS=1 + 2
> 0. (8.5.10)

This is not zero, and the hence we cannot say that every single mention of “deadline”
unambiguously shows that it is a valid email.

But we do not have to assume we have seen exactly one email that contains and
does not contain the word. We can instead assume we have seen α emails where α > 0
does not have to be an integer. So we generalize (8.5.9) as

Pr(W = 1|S = 1) =
NW=1|S=1 + α

NS=1 + 2α
. (8.5.11)

Now in case we have not seen the word in spam, the corresponding probability will
not be 0, but α/(NS=1 + 2α) instead. α describes our confidence in the prior, small
α mean little confidence and large α means a lot of confidence. Obviously, the more
observations we collect (the larger N), the less α matters and the result is close to
the pure frequentist probability NW=1|S=1/NS . Data overrides the prior. But it is
never exactly 0 and hence does not corrupt the estimator. Note that the term 2α in
denominator that takes into account that our prior was 1/2: if we haven’t seen any
example from spam, i.e. NS=1 = 0, then Pr(W = 1|S = 1) = α/(2α) = 1/2, i.e. the
prior. As the denominator in (8.5.11) is typically large (in thousands), the term 2α
in denominator plays a little role. The term that matters is α in the numerator.

Finally, we do not have to use prior 1/2, one can use different priors for different
words and classes, and also have priors for categories. See Murphy (2012, p. 87) for
more information.

8.5.3 Naive Bayes Classifier
Prerequisites: Bayes theorem, independent events: Section 1.4.3 Conditional Prob-

ability and Bayes Theorem, page 43

Obviously we should not base our spam filter just on a single word. It would
not catch much spam, and it may remove good emails that for some reason contain
a similar expression. A much better approach would be to look at many words,
potentially at all the words we have learned in the training data. But let’s start
with adding another phrase, lottery winner (LW ), to our spam filter. So now our
model contains two indicators, CBP and LW , both of which can be 0 or 1, and the
probability for spam can now be expressed as

Pr(S = 1|CBP ,LW) =
Pr(CBP ,LW |S = 1) · Pr(S = 1)

Pr(CBP ,LW )
. (8.5.12)

Here we have simplified the notation a little bit:

• The prior, Pr(S = 1), is unchanged. This is just the unconditional probability
that an email is spam.
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• Pr(CBP ,LW |S = 1) can be any of these four probabilities, depending on which
phrases the email contains:

1. Pr(CBP = 0, LW = 0|S = 1): probability that a spam email does contain
neither “confidential business proposition” nor “lottery winner”.

2. Pr(CBP = 0, LW = 1|S = 1): probability that a spam email does not
contain “confidential business proposition” but contains “lottery winner”.

3. Pr(CBP = 1, LW = 0|S = 1): probability that a spam email contains
“confidential business proposition” but does not contain “lottery winner”.

4. Pr(CBP = 1, LW = 1|S = 1): probability that a spam email contains
both “confidential business proposition” and “lottery winner”.

• Similar reasoning also applies to the normalizer Pr(CBP , LW ). We have to
pick one of the four possible normalizers depending on which of these expression
occur in the email.

• And finally, the question of interest itself, Pr(S = 1|CBP ,LW), also contains
four possibilities: it is the probability that the email is spam, given it contains
or does not contain any combination of “confidential business proposition” and
“lottery winner”.

So in order to use the Bayesian approach with two phrases, we need 9 probabili-
ties in all: one for the prior, four for the conditional probabilities, and four for the
normalizers. All these should be computed from the labeled training data. This is
straightforward to do, given we have a labeled training data set of a suitable size.

Example 8.4: Bayesian spam filter with two phrases

Assume we have data about 1000 emails that may or may not contain phrases
confidential business proposition (CBP) and lottery winner (LW ). We count the
spam/non-spam emails that contain or do not contain either of these phrases and
get:

CBP = 0 CBP = 0 CBP = 1 CBP = 1
LW = 0 LW = 1 LW = 0 LW = 1 Total

S = 0 400 100 60 40 600
S = 1 50 100 140 110 400

Total 450 200 200 150 1000

Let’s compute the probability that an email that contains CBP but does not
contain LW is spam, Pr(S = 1|CBP = 1,LW = 0).

From Bayes’ theorem,

Pr(S = 1|CBP = 1,LW = 0) =
Pr(CBP = 1,LW = 0|S = 1)Pr(S = 1)

Pr(CBP = 1,LW = 0)
.
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From the table, we can find that

Pr(CBP = 1,LW = 0|S = 1) = 60/600 = 1/10

Pr(S = 1) = 600/1000 = 3/5

Pr(CBP = 1,LW = 0) = 200/1000 = 2/10

Hence the probability of interest

Pr(S = 1|CBP = 1,LW = 0) =
1
10 ·

3
5

2
10

= 3/10 = 0.3

Again, this can be calculated directly as 60/200, but that approach will not work
for Naive Bayes below.

But unfortunately the story does not stop here. If we use three phrases instead of
two (e.g. we add “million dollars”, we have 8 combinations for both the conditional
probability and for the normalizer: one set of four where “million dollars” is present
and another set of four where it is absent. In case of four phrases we have 16 combina-
tions, and so on. It is easy to see that when we analyze K phrases or words, we have
2K different combinations. In case of a realistic text, K may easily exceed 10,000. So
a complete Bayesian approach will involve ∼ 210,000 different combinations. This is
infeasible to do.5 We run into the curse of dimensionality.

In case of independent events, the
joint probability is the product of
their individual probabilities:
Pr(A,B) = Pr(A) · Pr(B).
See Section 1.4.2 Probability of
independent events, page 40.

But it is easy to avoid the curse of dimensionality by introducing additional as-
sumptions. The most popular one, and the one that is the basis of the Naive Bayes
method, assumes that the presence of words in data is independent, given the email
is spam or no spam. So in case of our two phrases we can write the conditional
probability as

Pr(CBP ,LW |S = 1) = Pr(CBP |S = 1) · Pr(LW |S = 1) (8.5.13)

for spam emails and

Pr(CBP ,LW |S = 0) = Pr(CBP |S = 0) · Pr(LW |S = 0) (8.5.14)

for valid emails. As explained above, this formula represents four different proba-
bilities for all four different combinations of presence of these two phrases in spam
emails. To fix the ideas, let’s look at Pr(CBP = 1 ,LW = 1|S = 1), i.e. prob-
ability that a spam emails contains both these phrases. The assumption means
that if e.g Pr(CBP = 1|S = 1) = 0.1 and Pr(LW = 1|S = 1) = 0.1, then
Pr(CBP = 1,LW = 1|S = 1) = 0.01. If 10% of spam emails contain CBP and
10% of spam emails contain LW, then 1% of spam emails contain both phrases. Our

5It is often not appreciated just how incredibly big are these numbers. For comparison, the age
of Universe is approximately 1018 ≈ 254 seconds, and the visible universe contains ∼ 1090 ≈ 2300

elementary particles. 210,000 is just way way beyond of what fits into our universe, so there is no
way we can ever collect and analyze this much data. (As before, we do not talk about quantum
computing).
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assumption claims that this is true for spam emails, and that it is also true for non-
spam emails, but not necessarily for all emails when we combine both spam and valid
ones. This is what the conditioning on spam status S does in (8.5.13).

Let’s first look at the good news. Where we formerly had to calculate four different
probabilities, one for each combination of CBP and LW, now we only need two: one
for CBP and one for LW. And even better, when we add another feature, we only need
one additional probability. So in case of 10,000-word vocabulary, we only need 10,000
different probabilities. This is fast and trivially fits into the computer memory. So we
have circumvented the curse of dimensionality in case of the conditional probability
in (8.5.12). The normalizer still has too many combinations but we’ll discuss what to
do with it below.

But what does this assumption mean and why is it called “naive”? Independence
of random variables means that realization of one RV does not contain information
about realizations of the other one. If we learn about the first phrase, “confidential
business proposition”, this does not tell us anything about the presence of the other
phrase, “lottery winner” in case we are just looking at the spam emails. So the method
ignores the fact that the words may be correlated, and not just correlated but the
correlation may carry different meaning than the individual words. For instance, when
tokenizing “New York” into individual words, we treat the resulting “new” and “york”
as separate independent identities. The model does not understand that “New York”
carries a distinct meaning, very different from what these two single words carry.
These are the bad news, and this is why the approach is called “naive”. But here
the good news outweigh the bad ones, as we now have a model that can actually be
computed.

Let us now build a full two-class Naive Bayes model. Assume we have a vocabulary
of size K of words W1,W2, . . . ,WK where Wi denotes the presence (if Wi = 1) or
absence (if Wi = 0) of word i in the document. We are looking for a category S
where S ∈ {0,1} denotes whether the document is spam or not. We can write the
independence (naive) assumption as

Wi ⊥⊥Wj |S. (8.5.15)

This assumption means we describe the words as picked randomly from different
distributions, one for S = 0 and one for S = 1. As we discussed above, the assumption
is unrealistic as it ignores the relationship between words but it resolves the curse of
dimensionality problem. In fact, the Naive Bayes method scales surprisingly well.

Remember that by definition of independent events their joint probability is equal
to the product of individual probabilities. For two words we have Pr(W1,W2) =
Pr(W1) · Pr(W2) (see 1.4.4). The same applies for more than two probabilities,
Pr(W1,W2, . . . ,WK) =

∏K
j=1 Pr(Wj) (see (1.4.6)). It also applies for conditionally in-

dependent probabilities as conditional probabilities are just word probabilities either
in spam or non-spam category, so we can write

Pr(W1,W2, . . . ,WK |S) =
∏
j=1

Pr(Wj |S). (8.5.16)

This is the conditional probability we need in the Bayesian approach if we include
all K words, and above we discussed that when using the independence assumption,
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we only have to find 2K probabilities from the training data, Pr(Wj = 1|S) and
Pr(Wj = 0|S) for j = 1, . . . ,K, in order to compute the joint probability.

Let us now solve the spam email problem by using the independence assumption
(8.5.16). We want to estimate Pr(S = 1|W1,W2, . . .WK), the probability of email
being spam, given the words it contains or does not contain. We start by expressing
this probability through Bayes theorem:

Pr(S = 1|W1,W2, . . . ,WK) =
Pr(W1,W2, . . . ,WK |S = 1) · Pr(S = 1)

Pr(W1,W2, . . . ,WK)
=

= (here we use the independence assumption (8.5.16)) =

=
Pr(W1|S = 1) · Pr(W2|S = 1) · · · · · Pr(WK |S = 1) · Pr(S = 1)

Pr(W1,W2, . . . ,WK)
=

=
Pr(S = 1) ·

∏K
j=1 Pr(Wj |S = 1)

Pr(W1,W2, . . . ,WK)
. (8.5.17)

Now the numerator is factorized into a product of K + 1 factors in the form of
Pr(Wk|S) and Pr(S = 1). These are just K conditional probabilities in the form
probability the word k exists/does not exist in spam emails. So we need just K
numbers, as probability of absence of the word is just 1 − probability of presence of
it. These conditional probabilities can easily be calculated based on word counts in
spam/non-spam documents.

But this only solves one part of our problem: the normalizer Pr(W1,W2, . . . ,WK)
is still there, and it is still intractable.6 But fortunately we can eliminate the normal-
izer in a simple way. Let’s also compute the probability that the email is not spam.
Using the same approach as in (8.5.17), we get

Pr(S = 0|W1,W2, . . . ,WK) =
Pr(S = 0) ·

∏K
j=1 Pr(Wj |S = 0)

Pr(W1,W2, . . . ,WK)
. (8.5.18)

As above, we have a numerator, a product of K word frequencies in non-spam emails
and the prior Pr(S = 0), and an intractable normalizer in the denominator. But note
that these two expressions, (8.5.17) and (8.5.18), contain exactly the same normalizer.
Even more, as the normalizer is a probability, it must be positive (between zero and
one). So we can just leave the normalizer out and still compare these probabilities!
However, if we leave the normalizer out in expressions (8.5.17) and (8.5.18) then the
results are not probabilites any more. These are now called likelihoods. Likelihoods
are not valid probabilities, in particular, they do not sum to unity, and they may
exceed 1. So we cannot interpret the results as probabilities but we can still say that
the largest likelihood corresponds to the largest probability. If likelihood for spam is

6Note that we assume independence of conditional distribution Wi ⊥⊥ Wj |S, not independence
of unconditional distribution which would be written Wi ⊥⊥ Wj . The former means that words are
independent in each class, spam and non-spam; the latter means that the words are independent
when combining both classes. The latter is not a result of the former.
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larger, we call this email spam, if the likelihood for non-spam is larger we say it is
non-spam.

So we can now follow these steps to predict whether the email is spam. All of it
can be done on training data.

1. Compute the priors Pr(S = 0) and Pr(S = 1).

2. For each word W in the vocabulary, compute the conditional probabilities
Pr(W = 1|S = 1) and Pr(W = 1|S = 0).

3. Compute the numerators (likelihoods) of the naive Bayes formula (8.5.18)

L(S = 1|W1,W2, . . . ,WK) = Pr(S = 1) ·
K∏
j=1

Pr(Wj |S = 1)

and

L(S = 0|W1,W2, . . . ,WK) = Pr(S = 0) ·
K∏
j=1

Pr(Wj |S = 0)

(8.5.19)

where L(·) denotes the corresponding likelihood.

4. Which likelihood is larger, L(S = 1|W ) or L(S = 0|W )? (W denotes a vector
of all vocabulary words, W = (W1,W2, . . . ,WK)

T .) This is the prediction. If
likelihood for spam is larger we have a spam email, if non-spam likelihood is
larger, it is not a spam.

In this example we only consider the presence of words Pr(Wj = 1|S = 1), but one
may also add information about absence of words Pr(Wj = 0|S = 1) = 1− Pr(Wj =
1|S = 1). Obviously, these probabilities differ for spam and non-spam cases.

In practice, it is better to work with logarithms of likelihoods (log-likelihoods)
instead of the likelihoods as the latter typically contain too small numbers. The
corresponding log-likelihoods are

ℓ(S = 1|W ) ≡ logL(S = 1|W ) = log Pr(S = 1) +

K∑
j=1

log Pr(Wj |S = 1)

ℓ(S = 0|W ) ≡ logL(S = 0|W ) = log Pr(S = 0) +

K∑
j=1

log Pr(Wj |S = 0).

(8.5.20)

The probability Pr(Wj |S = 1) in the sum above denotes two probabilities: Pr(Wj =
1|S = 1) and Pr(Wj = 0|S = 1) and we have to pick the one that corresponds to the
message, the former if the word is there and the latter if it is not there. However, it is
often easier to just look at the presence of words and ignore the information contained
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in their absence. In that case (8.5.20) transforms to

ℓ(S = 1|W ) = log Pr(S = 1) +

K∑
j=1

log Pr(Wj = 1|S = 1) · 1(Wj = 1)

and

ℓ(S = 0|W ) = log Pr(S = 0) +

K∑
j=1

log Pr(Wj = 1|S = 0) · 1(Wj = 1)

(8.5.21)

where 1(Wj = 1) is the indicator function. So we only include the log-probabilities
for words that are actually present in the message. We follow this approach below.

Normally the prediction will be the category that corresponds to the largest prob-
ability, and the category with the largest probability is the one with the largest
log-likelihood. So we can write both equations in (8.5.20) as

Ŝ = argmax
S

ℓ(S) = log Pr(S) +

K∑
j=1

log Pr(Wj = 1|S) · 1(Wj = 1) (8.5.22)

where Ŝ means the predicted category.
Let us repeat the algorithm above for log-likelihood. To compute Naive Bayes, we

need:

1. Compute the log prior probabilities log Pr(S = 0) and log Pr(S = 1).
This amounts to two probabilities.

2. For each word W in the vocabulary, compute the log conditional probabilities
log Pr(W = 1|S = 1) and log Pr(W = 1|S = 0).
This is two probabilities for each word, or 2 ·K probabilities in total.

3. Compute the Naive Bayes log-likelihoods (8.5.20)

ℓ(S = 1|W ) = log Pr(S = 1) +

K∑
j=1

log Pr(Wj = 1|S = 1) · 1(Wj = 1)

and

ℓ(S = 0|W ) = log Pr(S = 0) +

K∑
j=1

log Pr(Wj |S = 0) · 1(Wj = 1)

(8.5.23)

where ℓ(·) denotes the corresponding log-likelihood.

4. Which log-likelihood is larger, ℓ(S = 1|W ) or ℓ(S = 0|W )? This is the predic-
tion.

In case of typical texts where the vocabulary size is ∼ 10,000 we have to compute
tens of thousand of log-probabilities. This is an easy task for modern computers given
we have suitable training data.
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Example 8.5: Email classification

Assume we have categorized the following emails as spam/no-spam:

1. viagra is good in life: spam
2. life is good: no spam
3. viagra in life: no spam

Hence the training data tells us that the unconditional probability of spam
Pr(S = 1) = 1/3 and the unconditional probability of non-spam Pr(S = 0) = 2/3.

These three emails contain vocabulary (in alphabetical order) “good”, “in”,
“is”, “life”, “viagra”; and the corresponding document-term-matrix (see Sec-
tion 8.3) is in table below:

go
od

in is lif
e

vi
ag

ra

x1 1.0 1.0 1.0 1.0 1.0
x2 1.0 0.0 1.0 1.0 0.0
x3 0.0 1.0 0.0 1.0 1.0
NW 2.0 2.0 2.0 3.0 2.0

Pr(W = 1|S = 1) 1.0 1.0 1.0 1.0 1.0
Pr(W = 1|S = 0) 0.5 0.5 0.5 1.0 0.5

Table 8.3: DTM of the three example emails (rows x1, x2 and x3), the corresponding
word counts (NW ), and conditional probabilities of word in spam (Pr(W = 1|S = 1))
and no-spam (Pr(W = 1|S = 0)) emails.

Now we receive a new email: “no viagra no life”. We want to categorize it
based on our training data above. We convert it into BOW representation using
the existing vocabulary:

good in is life viagra
x4 0 0 0 1 1

Table 8.4: The new email as BOW. Note that the word “no” is missing in the training
vocabulary. We ignore it here as we have no way of telling what would the corresponding
probabilities be.

These tables together are sufficient to compute the likelihoods. We also only
analyze the presence of words (Pr(W = 1|S) for “life” and “viagra”) and leave
out the word absence–related information (Pr(W = 0|S) for “good”, “in” and
“is”). Although we normally prefer log-likelihood, let’s first do the likelihoods.
The likelihood for spam is:

L(S = 1|x4) =

= Pr(S = 1)× Pr(life = 1|S = 1)× Pr(viagra = 1|S = 1) =

= 0.333× 1× 1 = 0.333. (8.5.24)
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There are only two known words present in the new message, hence we have only
three tersm in (8.5.24): the prior Pr(S = 1) and the conditional probabilities for
each of these words. Next we compute the likelihood for non spam:

L(S = 0|x4) =

= Pr(S = 0)× Pr(life = 1|S = 0)× Pr(viagra = 1|S = 0) =

= 0.667× 1× 0.5 = 0.333. (8.5.25)

Our method gives a tie as both likelihoods are 1/3.
We can repeat the exercise with log-likelihood, this is the method we normally

use. First we compute log likelihood for spam:

ℓ(S = 1|x4) =

= log Pr(S = 1) + log Pr(life = 1|S = 1) + log Pr(viagra = 1|S = 1) =

= −1.099 + 0 + 0 = −1.099, (8.5.26)

and the likelihood for no spam:

ℓ(S = 0|x4) =

= log Pr(S = 0) + log Pr(life = 1|S = 0) + log Pr(viagra = 1|S = 0) =

= −0.4050− 0.693 = −1.099. (8.5.27)

The conclusion is the same as in case of likelihoods, it is a no surprise as we are
just looking at the logs of the same numbers.

Exercise 8.4: Categorize using Naive Bayes

Use the training data in Example 8.5, and categorize the sentence “life is life”.
Solution on page 499.

There is an additional advantage of using log-likelihood instead of likelihood.
Namely, the log-likelihood in (8.5.22) can be computed using a matrix product. The
log-likelihood for a single email can be expressed as

ℓ(S) = log Pr(S) +

K∑
j=1

1(Wj = 1) · log Pr(Wj = 1|S). (8.5.28)

Remember: W
T
· P S =

W1·PS1+W2·PS2+· · ·+WK ·PSK .
See Section 5.3.2 Vector
multiplication as matrix product,
page 274.

Denote by W the vector of presence (1)/absence (0) of each word in the vocabulary,
and by logP S the vector of log probabilities log Pr(W = 1|S). Now we can write the
log-likelihood as

ℓ(S) = log Pr(S) +W
T

· logP S . (8.5.29)

Here we compute the likelihood using a single addition and a vector product. But
note that it is only the vector W that depends on the email, the word log-probabilities
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lP S do not. Hence we can compute all log-likelihoods by a single matrix product

ℓ(S) = log Pr(S) +W · logP S (8.5.30)

where W is just the document-term matrix.
It is very easy to generalize Naive Bayes to more than two classes–you just need to

compute the log-likelihoods for each class, and then to pick the class with the largest
log-likelihood.

Smoothing is a way to compute
probabilites, see Section 8.5.2
Smoothing, page 348.

Naive Bayes almost always requires smoothing. In typical applications there are
many rare words that only occur in one or another class. Let’s imagine “viagra” only
occurs in a spam email, and “deadline” only in a valid email. If we calculate the
word probabilities without smoothing using (8.5.6), then we have have Pr(viagra =
1|S = 1) > 0 and Pr(viagra = 1|S = 0) = 0, and Pr(deadline = 1|S = 1) = 0 and
Pr(deadline = 1|S = 0) > 0. Now whenever you encounter a document that contains
“viagra”, we have L(S = 0) = 0 (see (8.5.19)) and hence it will be unambiguously
categorized as spam; the opposite is true for “deadline”. The other words in the text
play no role because zero remains zero even when multiplied by many other positive
probabilities. But intuitively, how can we base our prediction on a single observation
of a single word, while ignoring everything else in the message, and claim we are 100%
certain in our conclusion? Note that replacing likelihood by log-likelihood only shifts
the problem from zero-likelihood to minus-infinity-log-likelihood and does not offer
any solution.

Additionally, the NB classifier fails completely if the text to be categorized contains
two rare words, each pointing to a different class, like both “viagra” and “deadline”
in the example above. In that case all likelihoods will be zero and the prediction will
either be arbitrary, or undefined. Note that more data is not a solution to the rare
word problem: with more data, one also includes words that are increasingly rare, so
we always have many-many words that are represented just 1-2 times in the corpus.

Smoothing addresses both of these issues by effectively replaing zero probability
with a small positive number. In practical applications, the smoothing parameter
α (see (8.5.11)) is a hyperparameter that should be tuned using cross-validation or
another similar approach. A good value for α tends to be small, typically much
smaller than 1.

Example 8.6: Email classification with smoothing

Let us revisit the example 8.5 and add smoothing to that model. Let’s pick
α = 0.2. We have the following data

go
od

in is lif
e

vi
ag

ra

x1 1.00 1.00 1.00 1.00 1.00
x2 1.00 0.00 1.00 1.00 0.00
x3 0.00 1.00 0.00 1.00 1.00

Table 8.5: DTM of the three example emails from example 8.5. The first row (the first
email) is spam, the following two are not spam.
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However, now we have to adjust the way we compute the probability by us-
ing 8.5.11. For good we get

Pr(good = 0|S = 0) =
1 + α

2 + 2α
= 1.2/2.4 = 0.5

Pr(good = 1|S = 0) =
1 + α

2 + 2α
= 1.2/2.4 = 0.5

Pr(good = 0|S = 1) =
0 + α

1 + 2α
= 0.2/1.4 ≈ 0.143

Pr(good = 1|S = 1) =
1 + α

1 + 2α
= 1.2/1.4 ≈ 0.857.

(8.5.31)

Remember that in the case of no smoothing in example 8.5 the probabilities were
Pr(good = 1|S = 0) = 0.5 and Pr(good = 1|S = 0) = 0.5. Now the former,
0.5, remains unchanged while the latter is moved away from the original extreme
value 0. It is easy to see that this type of smoothing moves the calculated
probabilities toward 0.5, the prior, the uninformative “middle ground”.a The
fewer observations we have, the larger is the shift. This process makes intuitively
sense: the fewer observations we have the less certain we are in the calculated
probabilities, and the more we are willing to admit that we don’t know well what
do these words mean. “We don’t know” is a way to say that we should pick
probabilities close to 0.5.

It is also easy to see why did we write 2α in the denumerator. One α applies
to the presence, and another to the absence of the word. This ensures that the
probability of presence and absence of the word sum to unity.

The next table shows the smoothed probabilities:

go
od

in is lif
e

vi
ag

ra
Pr(W = 1|S = 0) 0.50 0.50 0.50 0.92 0.50
Pr(W = 1|S = 1) 0.86 0.86 0.86 0.86 0.86

Table 8.6: Smoothed probabilites for the DTM above for α = 0.2.

Now we continue the process in exactly the same way as earlier, just using the
smoothed probabilites instead of the original ones.

aYou can see this by taking a very large α value, say 100.
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8.6 Word embeddings
In Section 8.3 we introduced bag of words (BOW), a way to encode text as vectors.
BOW is essentially a sum of one-hot-encoded word vectors. These vectors are based
on the vocabulary, a list of all tokens in the text, typically arrange in an alphabetical
order. But such one-hot encoded vectors have a few downsides: first, their dimension
is very large (typically in tens of thousands), and second–they do not convey any
information about the meaning of the words. For instance, if you compare the one-
hot representations of “man”, “bro” and “dude”, then there is no way to tell that
these words refer to closely related concepts. All these are long vectors of zeros, with
a single “1” in an apparently random location.

Word embeddings is a method to address these two shortcomings. Typical word
embeddings are vectors of about 100 components for each word, and similarity of the
embedding vectors means that the underlying concepts are similar too. The idea of
embeddings is that the word vectors are not based on some kind of arbitrary encoding
(and alphabetical order is arbitrary when talking about word meaning), but are based
on the context, other words that are located nearby. Hence the words that are used
in a similar context will have similar embeddings.

Below, we discuss a few ways to construct word embeddings. We start with long
embeddings that only address the concept similarity but leave us with similar long
vectors like one-hot encoding. Thereafter we discuss the two popular approaches:
word2vec and glove.

8.6.1 Term co-occurrence matrix
Embeddings are based on term co-occurrence matrices (TCM-s). This is essentially
a set of frequency tables, where for every term (word) in the document, we count how
many times any other word occurs in the same context.

In order to compute TCM, one has to decide what context to analyze. In the
broad sense, context means the other words that occur near the given word. But this
is a too vague definition, so if you actually want to compute it, you must define it in
a precise manner. For instance, context may be three words before and three words
after the current word, all weighted equally. Alternatively, we may define it as the
five preceding words, weighted inversely to the distance from the current word. There
are many other options.

Denote the TCM as X where the elements, xij denote how many times the term
j occurs in the context of term i. If the context is symmetric (we are including
both the preceding and trailing words with similar weight), then TCM is symmetric
too: xij = xji. As an example, consider the sentence “the cat plays cat games”
(Table 8.7, left). Let’s look at the symmetric context of length 1–one word before
and one word after the current token. Now the context of “the” is (cat) and the
context of “cat” is (the, plays). “the” occurs once in the context of “cat” and the
way around. The word “cat” is present twice in this document, once with context
(the, plays) and in the other time in context (plays , games). So the complete context
of “cat” is (the, 2×plays , games). The word “plays” has the context of two cat-s, and
finellly, “games” just has cat. The TCM is symmetric.
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The right panel shows the same embeddings, but now with an asymmetric context–
just a single word at left. Now “the” has empty context, while “cat” is preceded both
with “the” and “plays”. The TCM is asymmetric.

Table 8.7: Long embeddings of the sentence “the cat plays cat games”. At left, the context
is one word before and one word after the current word. At right, it is just one word before
the current word. All words in the context are weighted equally.

th
e

ca
t

pl
ay

s

ga
m

es

the 0 1 0 0
cat 1 0 2 1
plays 0 2 0 0
games 0 1 0 0

th
e

ca
t

pl
ay

s

ga
m

es

the 0 0 0 0
cat 1 0 1 0
plays 0 1 0 0
games 0 1 0 0

Exercise 8.5: Long embeddings: rows or columns?

When using this definition: xij denotes how many times the term j occurs in the
context of term i, will the embeddings be the rows or the columns of TCM?

Solution at page 500

Example 8.7: TCM of Laozi quotes

Let’s use the same Laozi quotes from Example 8.1 to compute the corresponding
term co-occurrence matrix. As a reminder, the quotes are “Knowing others is
wisdom, knowing yourself is Enlightenment”, and “Mastering others is strength.
Mastering yourself is true power”. The corresponding long word vectors are

en
lig

ht
en

m
en

t

is kn
ow

in
g

m
as

te
rin

g

ot
he

rs
po

we
r

st
re

ng
th

tr
ue

w
isd

om

yo
ur

se
lf

enlightenment 1 0 0 0 0 0 0 0 0 0
is 0 1 0 0 0 0 0 0 0 0

knowing 0 0 1 0 0 0 0 0 0 0
mastering 0 0 0 1 0 0 0 0 0 0

others 0 0 0 0 1 0 0 0 0 0
power 0 0 0 0 0 1 0 0 0 0

strength 0 0 0 0 0 0 1 0 0 0
true 0 0 0 0 0 0 0 1 0 0

wisdom 0 0 0 0 0 0 0 0 1 0
yourself 0 0 0 0 0 0 0 0 0 1

Note that this is just a table of the long vectors of all vocabulary words, it is not
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the encoded text. The encoded text using these vectors, the first quote, is

en
lig

ht
en

m
en

t

is kn
ow

in
g

m
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te
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r

st
re

ng
th
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w
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se
lf

knowing 0 0 1 0 0 0 0 0 0 0
others 0 0 0 0 1 0 0 0 0 0
is 0 1 0 0 0 0 0 0 0 0
wisdom 0 0 0 0 0 0 0 0 1 0
knowing 0 0 1 0 0 0 0 0 0 0
yourself 0 0 0 0 0 0 0 0 0 1
is 0 1 0 0 0 0 0 0 0 0
enlightenment 1 0 0 0 0 0 0 0 0 0

Here we chose to put the words in the quote in successive rows, the columns
correspond to the vocabulary entries.

Let’s choose a simple symmetric context, one word before and one word after
the current term. The word “is” is included twice in the first quote. The first
“is” is associated with context c1 = (others ,wisdom), and the second one with
c2 = (yourself , enlightenment). The BOW of the first context c1 is

en
lig

ht
en

m
en

t

is kn
ow

in
g

m
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te
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g

ot
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0 0 0 0 1 0 0 0 1 0

and for the second context, c2 is

en
lig

ht
en

m
en
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is kn
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g

m
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te
rin

g

ot
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1 0 0 0 0 0 0 0 0 1

The combined context vector for the first quote is just a sum of these two, c =
c1 + c2 (ignoring the component names):

1 0 0 0 1 0 0 0 1 1
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We can compute the context vector for the other quote in an analogous fash-
ion. When repeating the process for all words for both quotes, we get the complete
TCM:

en
lig

ht
en
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om
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enlightenment 0 1 0 0 0 0 0 0 0 0
is 1 0 0 0 2 0 1 1 1 2

knowing 0 0 0 0 1 0 0 0 1 1
mastering 0 0 0 0 1 0 1 0 0 1

others 0 2 1 1 0 0 0 0 0 0
power 0 0 0 0 0 0 0 1 0 0

strength 0 1 0 1 0 0 0 0 0 0
true 0 1 0 0 0 1 0 0 0 0

wisdom 0 1 1 0 0 0 0 0 0 0
yourself 0 2 1 1 0 0 0 0 0 0

8.6.2 Simple embeddings: long vectors
The simplest and the most intuitive way of constructing word embeddings is to use
the bag-of-words of the context of the words as their embeddings. This proceeds
broadly in the following manner:

1. Construct the vocabulary. All common considerations hold here, e.g. it may
contain all tokens, or only tokens that are frequent enough, and one may choose
to keep or remove numbers.

2. For each word (token) in the text, find its context, the closest words around
it. Note that we talk about each individual occurrence in the text, i.e. for a
particular token, we have as many contexts as many times it occurs in the text.

3. Construct bag-of-words of the context. Again, there is a multitude of options,
e.g. one may just look for presence of the words in the context, or one may
count these words (and weight by distance).

4. Aggregate the bag-of-words for all similar tokens. Again, there are multitude
of ways, e.g. one can just add them (as vectors). These aggregated BOW-s are
essentially embeddings.

5. Finally, in order to make the embeddings comparable, we need to normalize
those somehow–remove the differences caused by the fact that some words are
used more frequently in more different context. Usually it is achieved by setting
their Euclidean norm to 1.

It is fairly obvious that if certain words tend to be used in a similar context, then
their embeddings, computed in this manner, will also be similar. The more different
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are the contexts, the more different are the embeddings too.
However, such embeddings have downsides. First, it is obvious that the dimension

of the embeddigs is the same as the vocabulary size, and hence the vectors are long.
Second, and more importantly, such tables suffer from the fact that the most frequent
words will have disproportionate impact of the vectors. The most frequent words like
the, and and to may occur thousands of times in the contexts, but they carry little
information about the words’ usage. So we’ll discuss the other methods to compute
the embeddings below.

Example 8.8: Long embedding vector of Laozi quotes

Euclidean norm ||v|| =
√∑

i v
2
i .

See Section 5.2.2 Norm,
page 259.

Let’s transform the TCM entry for “is” to the corresponding normalized
embeddings vector. As a reminder, the TCM entry was (see Example 8.7):
c = (1, 0, 0, 0, 2, 0, 1, 1, 1, 2). This vector has Euclidean norm ||c|| = 3.46, and
hence the normalized embedding vector for is is

||e|| = c/||c|| = (0.29, 0, 0, 0, 0.58, 0, 0.29, 0.29, 0.29, 0.58).

Exercise 8.6: Laozi embeddings with asymmetric context

Consider the same Laozi quotes as in Example 8.7. Compute the relevant (nor-
malized) word embeddings, but now take the following context: the preceding
word with weight “1”, and the word before that with weight “0.5”.

Answer at page 500

8.6.3 Short embedding vectors: word2vec and GloVe
Creating long embeddings vectors, frequency tables as we did above, is easy and
intuitive, but unfortunately the results are less than perfect. First, such embedding
vectors are long, as long as the size of the input vocabulary. But more importantly–
the vectors are much more dependent on the more frequent context words, rare words
that are very important for the context may be almost ignored when calculating the
resulting similarity. In practice, one computes the embeddings in a different way. The
most popular approaches are word2vec and GloVe.
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TCM: term-co-occurrence matrix
counts the number of times one
word occurs in the context of the
other word. See Section 8.6.1
Term co-occurrence matrix,
page 361.

GloVe GloVe (Pennington et al., 2014) is computed from TCM in a somewhat similar
way as the long embedding vectors (see Section 8.6.2 Simple embeddings: long vectors,
page 364) are based on TCM.

Let X be the TCM where xij denotes how many times the word j occurs in the
context of word i. Denote by xi =

∑
j xij the number of times any word appears in

the context of i. The probability that the word j appears in the context of the word
i can now be written as Pij = Pr(j|i) = xij/xi. The authors motivate their approach
with the following table:7

j = solid j = gas j = water j = fashion
Pr(j, ice) 1.9 · 10−4 6.6 · 10−5 3.0 · 10−3 1.7 · 10−5

Pr(j, steam) 2.2 · 10−5 7.8 · 10−4 2.2 · 10−3 1.8 · 10−5

Pr(j, ice)/Pr(j, steam) 8.9 0.085 1.36 0.96

TBD: complete GloVe

Table 8.8 shows the most similar words for a selection of words, and the corre-
sponding cosine similarities underneath. These are computed from the small Common
Crawl dataset, an internet scraping project from 2012.8 The similar words are often
strikingly obvious. For instance, for common words like woman and hiking, the most
similar words are of no suprise. The word embeddings also recognize geopgraphy–the
Thailand–related words are all from South-east Asia, and the most similar of these,
Bangkok, is the Thai capital. Embeddings also recognize local geography: Bainbridge
is a small island outside Seattle, of the closest tokens Bremerton, Poulsbo, and Belle-
vue are cities nearby, Kitsap is the county where the island is located, and Vashon
is another nearby island. Further down are numbers and weekdays, not only are the
other numbers and weekdays the most similar ones, but they are also broadly in cor-
rect order. It can also relate top US-politicians (Hillary Clinton was the U.S. foreign
secretary) to other politicians, Russian women names to other Russian women names,
and smileys to smileys.

A slightly different result, based on the larger Common Crawl, is is presented in
Figure 8.1. The upper panel represents the word “trade” and the lower panel the
word “regime”. As one can see, “China” was the most common country that was
mentioned in the same context as “trade”. The lower panel shows that “regime” is
mainly associated with Iran, but also with Libya and Syria, reflecting the Arab Spring
events of 2011.

Obviously, the embeddings reflect the texts they are based on, and include all the
representation problems and biases that we see in actual data.

TBD: word2vec
TBD: Converting text to features. BOW/embeddings + n-grams + part-of-speech

+ other kind of features
7Table 1 in Pennington et al. (2014)
8There are two Common Crawl datasets: the smaller one includes 42B tokens, the embeddings

matrix’ (uncased) size is 1.9M. The larger one contains 840B tokens, the embedding matrix’ (cased)
size is 2.03GB. See more at https://nlp.stanford.edu/projects/glove/.

https://nlp.stanford.edu/data/glove.42B.300d.zip
https://nlp.stanford.edu/data/glove.840B.300d.zip
https://nlp.stanford.edu/projects/glove/
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Figure 8.1: Similarity between words “trade” (top), “regime” (bottom), and the country
names. Multi-word country names, such as “Saudi Arabia” cannot be used here, so these
countries are left gray.
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Word Most similar words and the corresponding cosine similarity

woman man girl women she lady mother
0.80 0.76 0.71 0.70 0.69 0.68

hiking biking backpacking trekking camping climbing kayaking
0.79 0.75 0.72 0.71 0.70 0.69

thailand bangkok cambodia malaysia laos asia singapore
0.75 0.72 0.70 0.69 0.67 0.67

bainbridge bremerton poulsbo kitsap bellevue vashon marietta
0.59 0.57 0.51 0.50 0.50 0.50

tuesday wednesday thursday monday friday saturday sunday
0.98 0.98 0.97 0.94 0.86 0.85

seven eight nine six five four three
0.94 0.94 0.94 0.94 0.91 0.89

clinton hillary obama barack mccain bush biden
0.82 0.79 0.76 0.75 0.75 0.69

olga maria elena irina tatiana kurylenko alexandra
0.57 0.57 0.56 0.56 0.55 0.53

:) ;) :-) :d =) ;-) !!
0.94 0.93 0.91 0.88 0.85 0.84

Table 8.8: A selection of words and the corresponding similarities from Common Crawl data
(42B token, 300D vectors).
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Neural networks are one of the fastest developing classes of machine learning
models. These have achieved tremendous progress in a variety of fields, in particular
image and natural language processing. Modern neural networks can recognize im-
ages, faces, fingerprints, can convert pictures to text and text to pictures, understand
spoken language and answer question.

While they are definitely exciting methods, these are also some of the most de-
manding ones with the number of trainable parameters in millions or even billions.1
This makes training and using such models slow and demanding, not only do such
models require a lot of computing ressources, they are also complicated to train. One
also needs a large amount of training data which may be challenging to obtain. An-
other major downside of neural networks is lack of interpretability. As ML models
are increasingly employed as decision-making aides, there is an increasing interest for
model transparency. Neural networks and other complex models are essentially black
boxes even for data scientists who train them.

We start the discussion with fee-forward neural networks, and introduce convolu-
tional networks, the ones used for image processing, thereafter.

1The largest language model as of 2021, Switch-C, contains 1.57 · 1012 parameters.

369
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9.1 Feed-Forward Networks

9.1.1 Biological Origins

Humans have been interested in how brain works since ancient times. The first step in
solving the puzzle was understanding the basic working mechanisms of neurons, the
brain cells (Figure 9.1). In a very simplistic view, each neuron receives signals from
other neurons through its dendrites, and outputs a signal to the dendrites of other
neurons through its axon. Normally the axon is quiet and does not send any signal,
but if large enough number of the neuron’s input dendrites become active, then the
neuron “fires”, i.e. sends a signal through its axon to another neuron.

Dendrite

Cell body

Node of
Ranvier

Axon Terminal

Schwann cell

Myelin sheath

Axon

Nucleus

Figure 9.1: Schematic look of neuron. The cell has a long “tail”, axon, that is connected to
the dendrites of other neurons. If a neuron receives enough electrical signals to it’s dendrites,
if will “fire”, i.e. send a signal out of its axon.
By Dhp1080, CC BY-SA 3.0, from Wikimedia Commons

Next, we model this simple neuron using mathematical tools and create an artifi-
cial neuron. These artificial neurons are the fundamental building blocks of all com-
putational neural networks. The simplest networks, made of such artificial neurons,
are called perceptrons. We start by introducing and-perceptron and or-perceptron,
both are essentially made of a single neuron. Thereafter we move to more complex
perceptrons with hidden layers.

9.1.2 Perceptron

Perceptron (feed-forward neural network) is a simple neural network that can be built
using such artificial neurons. Perceptrons can perform various prediction tasks but
cannot compete with more specialized networks, such as convolutional networks for
image processing or LSTM blocks for natural language processing. However, the more
specialized models almost always contain embedded perceptrons–feed-forward layers.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/w/index.php?curid=1474927
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AND and OR Perceptron Imagine we have a neuron that gets two inputs (e.g. from
other neurons) and outputs a signal only if both of these inputs are “high”. We can
model the neuron activity by the following way:

1. Label the inputs x1 and x2. These are the signals it receives through “dendrites”,
and these can be either “low”–0, or “high”–1.

2. Let the neuron add both signals x1 and x2. We are a little more general here
and compute the weighted sum z = w1x1 +w2x2 where w1 and w2 are weights,
so the neuron can assign different importance to different signals.

3. Let the neuron fire (output 1) if z > z̄ where z̄ is a threshold, otherwise it will
be quiet (output 0). So we can write output y = 1(z > z̄).

1(z > z̄) is indicator function, see
Section 0.1 Functions, page viii

Such a process activates the neuron if the input values are large enough (given w1

and w2 are positive), and it outputs 1 when active. We can write it formally as

y = 1(w1x1 + w2x2 > z̄). (9.1.1)

Figure 9.2 depicts this perceptron as a simple neural network. The figure indicates
some of the most important components of neural networks. The inputs are entering
through input layer. The input nodes do not really do any operations, these are
simply the feature vectors that are fed into the model. In this example we only have
two inputs, but in complex networks, such as image processing, the input layer may
contain millions of nodes corresponding to the input pixels.

In this example, input layer feeds its data directly to the output layer. Output
layer contains a single node (neuron) that does two operations: first the linear trans-
formation z = w1x1 + w2x2 and thereafter activation y = 1(z > z̄). w1 and w2 are
typically called weights and z̄ is called bias. Both of these operations are done almost
universally by all nodes (except input nodes) in all networks. However, in practice
it is rare to use indicator function (step function) for activation. The most popular
function in practice is ReLU, see below.

This simple perceptron can perform logical AND and OR operations when choos-
ing the weights and the bias accordingly. AND and OR operations are binary logical
operations that take two inputs x1 and x2, both of which may only have two values, 1
or 0, and always return either 1 or 0, depending on the inputs. See Table 9.1. Logical
AND is 1 only if both inputs are 1, logical OR is 1 if any of the inputs is 1, and
logical XOR (exclusive or) is 1 if exactly one of the inputs is one. This table can
be understood as a dataset where we observe two features (inputs) x1 and x2, and
predict any of the outputs AND, OR or XOR (or maybe all three outputs at the same
time). Unlike traditional datasets, this small table is comprehensive data, i.e. there
are no more possible combinations of inputs, and the outputs are always exactly the
same given inputs. No stochastic noise is possible here.

In order to perform the listed operations, we need to find suitable parameters, a
triple of numbers (w1, w2, z̄). A possible solution for AND-perceptron is to choose
w1 = w2 = 1 and z̄ = 1.5. For instance, if x1 = 1 and x2 = 0, then z = 1 ·x1+1 ·x2 =
1 < z̄ and hence y = 0. However, if both x1 = x2 = 1, then z = 2 > z̄ and so
y = 1. Obviously, there are infinitly many possible solutions, for example, when
keeping w1 = w2 = 1, every z̄ ∈ (1,2) will produce correct results.
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x1

x2

z = w1x1 + w2x2

(linear transformation)

Output

w1x1

w2x2

1(z > z̄)

(activation)

Input layer

Output layer

Figure 9.2: And Perceptron. The inputs x1 and x2 form the input layer, the single computing
node forms the output layer. While the input layer only provides output to the node, the
output node itself performs two operations: linear transformation z = w1x1 + w2x2, and
activation, y = 1(z > z̄).

Table 9.1: AND, OR and XOR operations

inputs outputs
x1 x2 AND OR XOR
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Exercise 9.1: OR-perceptron

Use the same perceptron model as in Figure 9.2. Construct OR-perceptron: find
a suitable set of (w1, w2, z̄) that performs OR-operation.

Solution on page 500.

The neural networks and network operations are normally presented in vector form
(and very often in matrix or even tensor form). In these examples, the input layer
is feeding a vector x = (x1, x2)

T to the output layer, and output layer is performing
and operation

y = 1(x
T

·w > z̄) (9.1.2)

where w = (w1, w2)
T is the single neuron’s vector of weights.

XOR-perceptron and hidden layers Can we use the same perceptron structure to
perform XOR-operation? For XOR-perceptron, using the same model, we need values
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w = (w1, w2) and z̄ that represent the XOR column in Table 9.1. Using the vector
notation (9.1.2), we can write four equations, one for each row of data in the table:

(
0 0

)
·
(
w1

w2

)
= 0 < z̄

(
1 0

)
·
(
w1

w2

)
= w1 > z̄

(
0 1

)
·
(
w1

w2

)
= w2 > z̄

(
1 1

)
·
(
w1

w2

)
= w1 + w2 < z̄.

(9.1.3)

The first expression shows us that z̄ is positive; the second and third equation show
that both w1 and w2 are larger than z̄; but the fourth equation, corresponding the
x1 = 1 and x2 = 1 case contradicts the previous results by requiring that w1+w2 < z̄.
Hence XOR-perceptron, using the model of Figure 9.2, is not possible.

A solution is to use a more complex network by introducing a hidden layer between
the input and output layers (Figure 9.3). Now instead of connecting inputs x to the
output node y, we connect inputs to hidden layer nodes. In XOR-perceptron, the
hidden layer contains two nodes, h1 and h2. Both of these nodes work in a similar
fashion as the output node in the AND-perceptron: they read inputs, perform a linear
transformation in the form χ = x

T

w, and activation in the form h = 1(χ > bh).
However, their outputs h are not the network final outputs, but are instead fed to
the output layer as inputs. The output layer works exactly the same way as in case
of AND-preceptrons above, just it takes its inputs not from the input layer but from
the hidden layer.

Why is hidden layer called “hidden”? This is because we cannot observe these
values in our data. Both inputs x and outputs y are observable in labeled training
data. But we usually have no information about the “correct” values of the hidden
layer values. Even more, there may be no such thing as hidden layers in the actual
data generating process, our hidden layer nodes are just convenient mathematical
tools that do not correspond to anything in reality. However, in certain cases hidden
layers may represent concepts that are interpretable. For instance, one has found that
in image processing tasks, some layers and nodes tend to recognize lines, arcs, bright
regions on the image, and similar basic image features.

Let us now finish the XOR perceptron. There are many ways to set the parameters
in a way that our network performs XOR operation. One particular way is to notice
that x1 XOR x2 = (x1 OR x2)− (x1 AND x2). Can we somehow, using the network
in Figure 9.3, perform this subtraction? Yes we can. We can take the input nodes
x1, x2 and the hidden layer node h1 and convert these into an AND-perceptron by
setting wh1 = (1 1)

T and bh1 = 1.5. Thereafter we can take x1, x2, and the second
hidden layer node h2 and make an OR-perceptron by setting wh2 = (1 1)

T and
bh1 = 0.5. And finally we can make the output layer node y to subtract AND from
OR by setting wy = (−1 1)

T . The activation process must leave both values “1”
and “0” unchanged, so we can pick by = 0.5.

TBD: figure of “or - and” in perceptron
Table 9.2 lists all the parameters for the perceptron in Figure 9.3. All in all we

have 9 parameters. Obviously there is an infinite number of possibilities to choose the
parameters, e.g. if we multiply all the weights and biases by a (positive) constant,
the results are unaffected. We can also swap the role of h1 and h2, and introduce
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x1

x2

χ1 = x
T

·wh1

h1 = 1(χ1 > bh1)

χ2 = x
T

·wh2

h2 = 1(χ2 > bh2)

z = h
T

·wy

y = 1(z > by)

x1 · wh11

x1 · wh21

x2 · wh12

x2 · wh22

h1 · wy1

h2 · wy2

Output
y

Input layer

Hidden layer

Output layer

Figure 9.3: XOR Perceptron. The inputs x1 and x2 form the input layer, but now both
input layer nodes are connected to both hidden layer nodes h1 and h2, and not to the output
layer. Both hidden layer nodes perform linear transformation and activation, using different
weights wh and biases bh. The single output layer node behaves exactly like in case of
AND-perceptron, just it gets its inputs from the hidden layer, not from the input layer.

many other changes without affecting the predictions of our network. Although such
flexibility may seem advantageous, it also suggests that neural networks are prone
to overfitting and should normally be used with some form of regularization. It is
also obvious that XOR binary logical operation does not have anything like “hidden
layer”. There is no way to measure the “true values” of χ1 and χ2, these values are
just a trick to make the perceptron to perform XOR. So at least in this perceptron,
the hidden values remain “hidden”–or you may say the they do not even “exist” in
the real world.

Table 9.2: XOR-perceptron parameters

node weights bias
h1 1, 1 1.5
h2 1, 1 0.5
y −1,1 0.5

Exercise 9.2: Use the perceptron for XOR

Show that the perceptron with parameters as given in Table 9.2 can perform
XOR. In particular, show that 0 XOR 1 = 1.

Hint: set x1 = 0, x1 = 1, and compute all the hidden values χ1, h1, χ2, h2
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and z. Do you get y = 1?

Computations the network nodes do are usually written (and coded) in matrix (or
tensor) form. We can explain this by re-visiting the hidden layer of XOR perceptron
example. The first hidden node χ1 does the linear transform χ1 = x

T ·wh1 and the
second hidden node χ2 = x

T ·wh2. We can combine these two transformations into

(
χ1

χ2

)
=

w
T

h1 · x+ bh1

w
T

h2 · x+ bh1

 . (9.1.4)

And simplify this into a matrix form

χ = Wh · x+ bh. (9.1.5)

Here χ is the vector of linear terms inside of the hidden layer nodes, Wh is matrix
of hidden layer weights, where rows are the nodes and columns are the elements that
correspond to the input vector. Finally, bh is a vector of hidden layer biases.

9.1.3 Multi-layer perceptrons
The XOR-perceptron above (Figure 9.3) is a small multi-layer perceptron. Multi-
layer perceptrons are neural networks, made of the same building blocks as XOR-
perceptron. Figure 9.4 show a larger similar perceptron:

• The network has an input layer with four nodes. This means we use four features
for predicting the outcomes y1 and y2.

• The middle of the network is made of two hidden layers, the first one with five
and the second layer with four nodes.

• Finally, it has an output layer with two nodes. Two nodes is a common feature
for binary outcomes, in those cases one node predicts the probability of the first
outcome, and the other node the probability of the second outcome.

This network is densely connected: all nodes of a given layer get inputs from all nodes
of the previous layer, and send their output to all nodes of the following layer.

Each node in the network works in a similar way as in the XOR-perceptron. But
let’s discuss it in a more detail.

• The input layer nodes do not really do anything–they are just the input features,
four in this example. In this example, the network takes in an N × 4 design
matrix X, or a data frame if you wish, with four columns and an unspecified
number of rows, N . But when you build the neural network, you still need to
provide some code here, to ensure that right data goes to right place, to check
it’s size, and so on.

• The first hidden layer performs linear transformation in the same way as in
the XOR-perceptron. For instance, the node h11 computes the linear transform
χ1
1 = x

T · wh1
1 + bh11 . Here wh1

1 is the weight vector for the node χ1
1, and x is

the input vector. This operation is exactly the same as linear regression, and it
results in a single number.
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x1

x2

x3

x4

h11

h12

h13

h14

h15

h21

h22

h23

h24

y1

y2

Input layer

Hidden layer 1

Hidden layer 2

Output layer

Figure 9.4: Multi-layer perceptron: this is a dense network with four inputs, two outputs,
and with two hidden layers, the first one with five and the second one with four nodes. It is
a dense network in a sense that all nodes in the previous layer are connected to all nodes in
the following layer.

Vectors should be stacked
horizontally, see Section 5.5
Application: Linear Regression,
page 284 and Example 5.12.

As in linear regression, you want to stack input vectors into a design matrix
and write the operation instead as χ1

1 = X ·wh1
1 + bh11 . Here θ1

1 is a vector–one
number for each row of the input data.

• The hidden layer contains not a single node, but five nodes. Together, these
operations look like

χ1
1 = X ·wh1

1 + bh11

χ1
2 = X ·wh1

2 + bh12

. . .

χ1
5 = X ·wh1

5 + bh15

(9.1.6)

Instead of writing (and coding) a stack of vector operations, it is useful to stack
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all the hidden layer weights w1
i into a weight matrix Wh1:

Wh1 =
(
wh1

1 wh1
2 . . . wh1

5

)
=


wh1

11 wh1
21 . . . wh1

51

wh1
12 wh1

22 . . . wh1
52

...
wh1

14 wh1
24 . . . wh1

54

 . (9.1.7)

Note that W is a 4 × 5 matrix in this example–we chose to stack the column
vectors vertically next to each other. We could have chosen to do it differently,
but this approach saves us from one transposition sign below ,2 We can also
stack the hidden layer biases into a vector

bh1 =
(
bh11 bh12 . . . bh15

)T
. (9.1.8)

the hidden layer outcomes into a matrix
So instead of (9.1.6), we can now write

χ1 = X ·Wh1 + bh1
T

. (9.1.9)

This is the most effective way to write (and code) a fully connected network
layer.

• After linear transformation it performs a non-linear activation f(χ1
1) (see below).

9.1.4 Activation
Above we explained that all nodes do both the linear operations (that can be expressed
in matrix form), and activation. There are several popular activation functions, below
we discuss a few of these.

ReLU (rectified linear unit) is perhaps the most popular activation function for
neural networks (except in the output layer). It is essentially a line with a kink at 0,
and defined as

ReLU(x) = max(x, 0) =

{
0 x < 0

x x ≥ 0
(9.1.10)

It has the advantage of being simple and being piecewise linear, and hence easy to
compute. It’s derivative is either 0 or 1, although is not differentiable at 0. It seems
to matter little in practice, although most theoretical optimization literature seem to
focus only on differentiable (Lipschitz continuous) functions (see Bottou et al., 2018).

The downside of ReLU is that it is constant on the whole negative domain. Hence
the gradient is just zero on a whole range of parameter values and training performance
may suffer.

2This also corresponds to how sklearn weight matrices are built. TBD: double-check this.
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Leaky ReLU is a version of relu where the function value is not identically zero at
the negative domain, just it has a small slope there (see Figure 9.5)

ReLU(x) = max(x, 0) =

{
α · x x < 0

x x ≥ 0
. (9.1.11)

0 < α < 1 is a hyperparameter that must be specified, not trained.
Leaky ReLU is used in contexts where one needs non-zero gradient in the negative

domain.

Softmax or Logistic (multinomial logit) is defined as logistic transformation of input
vector x. It’s i-th component is

Λ(x)i =
exi∑
j e

xj
(9.1.12)

Its one-dimensional version is the same as logistic function , and is often called sigmoid
function in ML literature. It is often denoted by σ(x). See Figure 9.5

Softmax has a very useful property: namely, whatever the value of xi, exi is always
positive. And hence

∑
j e

xj is always positive, and hence the components of Λ(x) sum
to unity. So softmax is a transformation that converts all kind of inputs into valid
probabilites, this is why it is the most popular output layer activation function for
categorization problems. Whatever comes to the output layer, it always outputs a
valid probability vector.

Example 9.1: Softmax outputs

Below is a small table of sample inputs, exponents, and softmax outputs for a
three-valued softmax output layer.

Inputs xi Exponents exi
∑

i e
xi Probabilities exi∑

i e
xi

0.10 0.20 0.30 1.11 1.22 1.35 3.68 0.30 0.33 0.37
1.00 2.00 3.00 2.72 7.39 20.09 30.19 0.09 0.24 0.67
0.10 -0.10 3.00 1.11 0.90 20.09 22.10 0.05 0.04 0.91

The table shows three sets of inputs: (0.1, 0.2, 0.3), (−1, 0, 5) and (0.1,−0.1, 2).
The first of these consists of rather similar probabilities, (0.30, 0.33, 0.37). In the
second case, the third probability is noticeably larger, while the first and second
are small but positive. In the third case, the first two probabilities are rather
similar, but the third one is much larger again.

Exercise 9.3: Softmax property

a) Compute softmax (1 ,2 ,3 ) and softmax (4 ,5 ,6 ).

b) Prove that
softmax (x) = softmax (λ+ x) (9.1.13)
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Figure 9.5: A few popular activation functions for neural networks. Leaky ReLU with
α = 0.2 is shifted slightly up for clarity.

where x is the vector of inputs, and λ ∈ R.

Solution on page 501

No activation Finally, one can also leave activation out (use identity function as the
activation function). This is useful for regression models. In fact, neural network
with no hidden layers and identity activation is equivalent to linear regression.

TBD: multiple outputs
TBD: outputs: prediction vs regression

9.2 Convolutional Neural Networks
Convolutional neural networks are networks that incorporate convolutions, certain
kind of weighted sums over spatially arranged data. Convolutional filters are well-
known methods to manipulate and enhance images or other signals, and have been
widely used long before the neural networks became popular.

In the following sections, we explain what are convolutions, how they can be used
to detect image elements, and how they can be incorporated into neural networks.

9.2.1 Convolutions and convolutional filters
Convolution is essentially a weighted sum or average over certain spatial region of
the data. It is a function of two sources of information–data and weights. Spatial in
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this context means not necessarily space, but all other kind of arrangements where it
makes sense to talk about distance between data points. This includes images where
we can talk about neighboring pixels, or pixels that are farther apart, or time series,
where we can talk about observations that are taken in next day, versus two days ago.

For instance, a convolution of series of daily temperatures Tt may involve sum
of temperature T of the given day t, plus two days before and after that day. The
weights may be larger for the given day and smaller for the other days, for instance
w−2 = w2 = 0.25, w−1 = w1 = 0.5 and w0 = 1. Here the index for weights denotes
how many days off we are from the central day of interest. Convolution is often
denoted by ∗, and for the daily temperatures we may write the convolution as T ∗w.
As we can choose an arbitrary day t as the day of interest, the result depends on t
and we write (T ∗ w)(t):

(T ∗ w)(t) = w−1Tt−2 + w−1Tt−1 + w0Tt + w1Tt+1 + w2Tt+2. (9.2.1)

The vector of weights w = (w−2, w−1, w0, w1, w2) is called kernel or filter. Note that
as we approach the “edge” of our data, we cannot compute the convolution any more:
for instance, for the last data point we do not know the values of Tt+1 and Tt+2. So
convolution either “loses” some data at the edge, or alternatively, the “over-the-edge”
data must be filled in (padded) somehow (see Section 9.2.3 Padding, page 385 below).

Example 9.2: 1-D convolution

Imagine we are measuring temperature on Pluto. But it is far away and we only
get time at the expensive telescope once a month to do the measurements. We
measure the temperature in five consecutive months and get T1 = 40K (-233C),
T2 = 44K, T3 = 44K, T4 = 52K, and T5 = 44K. As our measurements are im-
precise, we may want to smooth the individual observations over time (compute
moving average). But we also want to put more weight on the current month’s
measurement and less weight on the neighboring months, as the measured dif-
ferences may reflect true processes on Pluto. So we choose weights w−1 = 0.25,
w0 = 0.5, and w1 = 0.25. The convoluted (averaged) temperatures are:

(T ∗ w)(2) = w−1T1 + w0T2 + w1T3 = 43K

(T ∗ w)(3) = w−1T2 + w0T3 + w1T4 = 45K

(T ∗ w)(4) = w−1T3 + w0T4 + w1T5 = 48K.

In this way we can use convolutions for smoothing noisy observations. This is
also why we want the weight to sum to unity in this case–we do not want our
smoothed temperature values to be systematically biased.

For 2-D case, convolutions are defined in a similar fashion. For instance, we may
convolve surface temperature over certain geographic area by averaging measurements
in this area while giving more distant measurements lower weight. The main difference
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between 1-D and 2-D case is that now we need a 2-D weight structure. So instead of
a simple sum, now we need a double sum

(T ∗W)(k,l) =
∑
i

∑
j

wijTk+i,l+j , (9.2.2)

where the weight matrix W = {wij}. For instance, when doing a similar temperature
measurements, but now over a rectangular grid, we may set the weight matrix to

W =


1
16

2
16

1
16

2
16

4
16

2
16

1
16

2
16

1
16

 . (9.2.3)

As in case of time series smoothing, we chose the weights to sum to unity in order
to avoid systematic bias in temperature. But in other applications, the weights do
not have to sum to one. We also do not have to choose a 3 × 3 kernel, it may be of
any dimension, including even numbers like 2× 2 or 4× 4, or we can use non-square
kernesl, such as 2× 3.

In neural networks, 2-D convolutions are one of the main workhorses for image
processing. Let us demonstrate 2-D convolution by constructing a filter that detects
vertical edges in images. We pick a very simple 3 × 4 image, that include a 2 × 2
black box in the top-right corner (see Figure 9.6 left). For simplicity, the image only
has two possible pixel values, 0 (white) and 1 (black). We choose a 2× 2 kernel with
weights as

W =

(
−1 1
−1 1

)
. (9.2.4)

One can easily imagine convolutions as moving this kernel window over the image,
pixel-by-pixel. At each location one has to multiply the pixel values with the corre-
sponding kernel weights and add the results.

The image has one vertical edge in the upper-middle of the image, the one that
separates the black and white area. We start moving the filter across the image from
the top-left corner (green frame). This results in zero value, as all the pixel values
are 0, and multiplying those with the corresponding filter values does not change the
matters. Next, we move the kernel window right by one pixel (red frame). In that
position the negative filter weights overlap with 0-values pixels while positive weights
overlap with 1-value pixels. As a result, the filter returns 2. Finally, in the rightmost
position (blue frame), both positive and negative weights overlap with equal pixel
values (1) and hence the output is again 0. The filter only “fires” if there is a vertical
edge on the image. The figure only depicts convolution along the upper row of the
image. If we lower the filter down by one pixel, then the all-zero lowermost row does
not contribute to the output, and we get values 0, 1, and 0. The filter still “fires” for
the vertical edge in the middle, but now it fires only “partially” because the vertical
edge is only partially in the filter’s window.

The result of moving over the image (ther “Result” box in the figure) is a new
image where brightness corresponds tof “vertical edgeness” of the original image. In
this example, the largest edgeness value is in the middle-upper position, the position



382 CHAPTER 9. NEURAL NETWORKS

0

0

0

0

0

0

0

1

1

0

1

1

−1

−1

1

1 0

0
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0

(−1 · 0) + (−1 · 0) + (1 · 0) + (1 · 0) = 0
(−1 · 0) + (−1 · 0) + (1 · 1) + (1 · 1) = 2

(−1 · 1) + (−1 · 1) + (1 · 1) + (1 · 1) = 0

Image

Filter

Result

Figure 9.6: Vertical edge detection using 2D convolution filter. Moving the convolution filter
across the image, the top-left corner (green frame) results in zero, as all the pixel values are
0. In the next position (red frame) the negative filter weights overlap with 0-values pixels
while positive weights overlap with 1-value pixels. As a result, the filter returns 2. Finally,
in the rightmost position (blue frame), both postive and negative weights overlap with equal
pixel values (1) and hence the output is again 0. The filter only “fires” if there is a vertical
edge on the image.

where the window exactly overlaps the vertical edge. Values 0 correspond to the case
where the image does not contain any vertical edges, and value 1 corresponds to the
case where the filter window only partially contains a vertical edge. Now if we want to
know if any particular location contains a vertical edge, we have to see what are the
values of the result layer in that location. Large value represent to a vertical edge.3

Example 9.3: Edges on image

3Large positive values represent an edge between white pixels at left and black pixels at right.
Large negative values correspond to the opposite case.
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Figure 9.7: Edge detection: original image (left), vertical edges (center), and horizontal
edges (right). Unlike Figure 9.6, this is a color image, and the edge detection filters

contains three similar layers, one for each color channel. The filters used are
(
−1 1
−1 1

)
for the vertical edges, and

(
−1 −1
1 1

)
for the horizontal edges.

Exercise 9.4: Corner detection with convolutions

Consider image M =


0 0 1 1
0 1 1 1
0 0 1 0
0 0 0 0

 and filter F =

(
−1 −1
−1 3

)
. What is the

convolved image M ∗ F? Explain where/which kind of corners does the filter
detect.

Solution on page 502.

9.2.2 From convolutional layers to convolutional networks
In the previous example, we just moved a single convolutional filter around over
the image, and got another image where high pixel values denote “edginess” on the
original image.

In case of convolutional networks, this process is embedded in a neural network,
and we typically use more than just a single filter. Figure 9.8 shows what happens
when using four filters (kernels) on a color image. At left, we see the three color
channels (red, green, blue) of the image. The filter is currently locate at the lower-
right corner of the image. But now it is not a 2×2 filter but 2×2×3 filter instead–2×2
is its spatial dimension, and the last dimension encompasses all image channels. Note
that in the spatial sense it is still a 2 × 2 filter. This is because the pixels in each
channel are aligned—they have well-defined position with respect to each other. But
the color channels are not aligned in this way, there is no inherent reason to say that
the green channel is located underneath the red one, or the way around. Colors are
unordered, non-spatial features. Hence we usually just talk about 2×2 filters, even if
they encompass all the channels. But be aware that in reality they are of dimension
2× 2× 3 and hence contain 12 weights, not 4 weights. Weights for the filter’s 3 layers
wil differ, in general.

Each filter, when moved across the image, produces a new channel, the image
convoluted with this particular kernel. These are shown at right on the figure. If
the original image was of size 100 × 100 pixels, the convoluted image has 99 × 99
pixels, because we lose one pixel at the edge. But instead of a single convolutional
filter, we use four filters in this example, labeled as “kernel 1”, “kernel 2” and so
on. Accordingly, the convolutional layer contains 4× 12 = 48 weights, 12 weights for
each kernel. Each of these kernels creates a convoluted image. These are the four
black-and-white images at right on the figure. So the size of the final output of this
convolutional layer is 99 × 99 × 4. These are depicted as black-and-white, because
they are not interpretable as color channels. They may capture edges, or bright spots,
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Figure 9.8: Color image and multiple filters (kernels). The input image contains three
channels: red, green and blue (left). All kernels work on all layers, hence in some sense they
are not 2 × 2 but 2 × 2 × 3 kernels with 12 weights each. Each kernel, when moved across
image, creates a new convoluted channel (right). In this example, we have four different
kernels, so together they produce a 4-channel convolution image. The new channels do not
represent colors but certain other properties of the image, hence here they are represented
as black-and-white only. We can take these four channels as inputs for a second layer of
convolutions.

or corners, or other details instead, depending on the what exactly the kernels are.
Also, while the dots on the resulting channels (black-and-white layers at righ on

the Figure) have clear spatial position, this is not the case for ordering of the channels.
There is no reason to think that, for instance, corners should be underneath edges
or the way around. Hence one set of convolutional filters gave us a multi-channel
convoluted image that is in some ways similar to the original image—its width and
height have clear spatial meaning, but the channels are unordered. Hence we can
add another set of convolutional filters that take the first convoluted image as input,
and perform another set on convolutions on that image. The input image now has as
many channels as how many filters we had in the first layer of convolutions, four in
this example, and hence the second layer convolutional filters would be of size 2×2×4
and contain 16 weight each.

It is possible to hand-craft all these filters. For instance, we can add a filter for
horizontal edges, a filter for corners, a filter for diagonal lines and so on. However, in
case of neural networks, we normally do not hand-craft the filters but let the networks
learn what is a good combination of kernels. For example, the network may learn that
many vertical edges are associated with buildings, while human face may be better
visible when using curved lines. This is partly because hand-crafting filters is a rather
laborious task, but more importantly—in typical image processing tasks we do not
know what a good set of filters might be. It not hard to manuually design kernels that
distinguish between lines and curves, but what kind of kernels can distinguish between
cats and dogs? Instead, in typical image processing tasks we allow the network to
learn a large number (e.g. 64) filters in multiple layers, so the network does not have
to rely on just vertical edges, but can find various details that may allow to distinguish
complex images.

Note that filters are not limited to 2× 2 size, they may be a lot larger, and they
do not have to be of square shape.
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Above we discussed just convolutions—the linear part of the convolutional layers.
The actual layers in neural networks also include activation. So a single convolutional
filter in a convolutional layer outputs

f(b+ (T ∗ w)(x, y)) (9.2.5)

where T is the input image tensor (100 × 100 × 3 in the example above), w is the
tensor of weights (2× 2× 3 in this example), x and y are pixel coordinates, b is bias,
and f(·) is the activation function. Hence a single convolutional filter in this example
contains w×h× l+1 parameters, where w is the kernel width, h is kernel height and
l is the number of layers. “+1” is because of the bias in the activation function. In
the example above it is 2× 2× 3+ 1 = 13 parameters for each filter, and 4× 13 = 52
parameters for a convolutional layer.

9.2.3 Padding, Pooling, and Strides
Pooling After running the data through a convolutional filter, we have another ma-
trix that tells how well did each place in the image correspond to what the filter
captures. In the example in Figure 9.6 we can see that the edges of the image do not
correspond to vertical edges, the lower-middle of the image corresponds somewhat,
and top-middle corresponds the best. Often we are not interested in such a detailed
knowledge. For instance, we may be interested in the location of the cleanest vertical
edge while willing to ignore the other less-clean representation nearby.

In this case we may run the resulting data through a pooling layer. Popular max
pooling finds the maximum value in a small area, e.g. in a 2× 2 square on the layer.
In this example, max pooling will result in value 2, indicating that there is a clear
vertical edge somewhere in that region. It will however ignore 0-s and 1-s, so we
do not learn that there is also places that do not represent vertical edges. If we are
interested in the latter, we may choose average pooling instead. This will correspond
to average “edgeness” of that region on the image.

Padding It is obvious from Figure 9.6 that the resulting layer is smaller than the
original image layer. We have to fit the whole filter onto the image, and as soon as
its dimension is more than 1, we have fewer points in the output than in the input.
We can proceed in different ways:

• We can just accept that this is the case, and that the layers get smaller and
smaller as the data proceeds through successive convolutional layers.

• Alternatively we can “pad” the layers with certain values, e.g. some pre-
determined values, or values from nearby pixels. This is called padding.

Strides Finally, we do not have to move the convolution window by a single pixel
each time. We may choose another step size, called stride. A large stride may be
useful if the image is fuzzy, or if the features do not change rapidly from pixel to
pixel. Large strides are a way to lower the resolution in the middle of the network.
One may also choose different strides for horizontal/vertical movement.
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Example 9.4: Distinguishing squares and circles

The task is to distinguish somewhat distorted squares, circles and crosses. The
training data contains 4800 32× 32 pixel black-and-white images (see the figure
below). The convolutional network used in this test is the following:

• First, the optimizer runs for 50 epochs of batch size 16. This is followed by
5 epochs of batch size 80.

• The only convolutional layer contains 160 4 × 4 convolutional filters (see
the image below). The filters are of size 4×4 with strides 2. The activation
function is leaky relu (with leak size 0.05) and dropout 0.2. It is combined
by max pooling with pool size and strides 7.

• The convolutional layer is followed by a dense layer 40 nodes. It is activated
by leaky relu (leak 0.25) and its dropout is 0.8.

Figure 9.9: Example images of squares, circles and crosses (left). All of these are
somewhat distorted, rotated and sometimes cropped. At right, a sample of the corre-
sponding convolutional 4× 4 filters.

As you can see, the filters may pick up certain line patterns, but it is not obvious
how these are related to the images at left.

The confusion matrix on 1200 validation images is

Predicted: Circles Crosses Squares
Circles 409 0 0

Actual Crosses 0 384 0
Squares 1 1 405

Validation accuracy is 0.9983.
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10.1 Loss Function and Non-Linear Optimization
Statistical problems typically require estimation of certain parameters (fitting the
model) based on data. The parameters may be interesting itself, or these may be
needed for predictions, hypothesis testing or other reasons. For instance, in case
of linear regression, these are parameter β, in case of regression trees these are the
splitting and stopping rules for each branch. More complex models, such as neural-
network based image recognition tasks can be imagined as many layers of linear
regression models on top of each other and can contain millions or hundreds of millions
of parameters.

If we move beyond the simplest cases, it is completely infeasible to find the best
parameter values manually. We need methods to do this on computer, to do it fast,
and in a reliable fashion. Typically this proceeds through non-linear optimization,
a technique where a certain function (called loss function or objective function) is

387
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minimized or maximized by manipulating the parameters. The parameter value that
results in the smallest loss value is the best parameter, the solution.1

Next we will look at some details of non-linear optimization. These notes will only
give a brief overview of the methods in order to prepare you for applications.

10.1.1 Loss Function
A large class of statistical models involves a function, loss function, that describes
how “bad” is the model. For instance, linear regression is defined through sum of
squared errors as

SSE (β) =

n∑
i=1

(yi − ŷi)2 = (y − Xβ)
T

(y − Xβ). (5.5.17)

SSE is a measure of model “badness” and hence SSE (β) can be understood as the
loss function. It depends on the parameter vector β and hence we can manipulate β
to get larger or smaller losses. Non-linear optimization is a technique (more precisely,
a set of many different techniques) that systematically manipulate the parameter in
order to find the smallest loss.2

Why do we want the smallest loss? If we are interested in prediction, then SSE
is one of the most obvious measures of the model predictive power (or rather lack of
it as large SSE corresponds to low power). So in this case it is almost trivially true
that small loss is equivalent to good model. If we are interested in inference, we may
need additional assumptions regarding the “true” model and data.

Let us illustrate the loss function with a figure. Figure 10.1 shows the Hubble
regression (see Example 2.1 on page 129). The regression is in a form

vi = β0 + β1R+ ϵi (10.1.1)

where v is velocity of galaxies (km/s) and R is distance (Mpc). So this model only has
two parameters and hence it can be visualized. On one axis of the figure we display
β0, on the other β1 and the vertical axis describes SSE. The loss function describes
an elongated parabolic surface with minimum at β∗ = (−40.4, 453.9). This is the
solution to the linear regression problem shown in Example 2.1 above.

Sometimes we want to maximize a function instead of minimizing it, in that case
it is often referred to as objective function instead of loss function. More strictly
speaking, objective function is a more general term, it is a function that should be
either minimized or maximized (i.e. optimized) in order to find the solution. So loss
function is also an objective function.

1Not all models require such non-linear optimization. For instance, k-nearest neighbors do not
cointain any parameters, and Naive Bayes parameters (conditional probabilities) can be computed
directly from the data without any optimization.

2As a side note–we do not actually need non-linear optimization for linear regression. This is
the only statistical model where we can do the optimization analytically and directly compute the
solution.
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Figure 10.1: SSE as a function of β0 and β1.

10.2 Gradient descent and gradient ascent
Prerequisites: Vectors and matrices, gradient (Section 10.2.2 What is gradient,

page 391).

Gradient descent (GD) and it’s mirror image gradient ascent (GA), is a popular
method to find functions’ maxima and minima (collectively called optima). GD is
widely used in various machine learning applications, it also serves as a basis for a
large number of more complex optimization methods, such as Newton-Raphson.

Many machine learning methods compute the parameters by optimizing the loss
function. This can be done easily only for very simple losses, practically only for
linear regression. For all other methods we have to rely on numerical step-by-step
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approaches, such as GD.

10.2.1 The idea
Humans can easily spot the highest points on a graph with no additional tools. For
instance, the function on Figure 10.2 clearly has three maxima, with the middle one
being the tallest (global maximum). How do we see this? Humans understand the
surface on the picture and make a mental 3-D model of it. And from the model we
can immediately “see” where is the global maximum. This approach can be replicated
on computer too–one can calculate the function values over and x1-x2 array, and just
pick the maximum value there. This is approach, called grid search, is indeed quite
widely used.

Humans can immediately see
where is the maximum value on
a graph. But this picture is de-
ceiving, because it is only possi-
ble for 1-D and 2-D functions.

x1 x2

f(x1, x2)

Figure 10.2: 2-D function with multiple maxima

But unfortunately, grid search is very limited, both for computers and for humans.
Most importantly, humans can “see” the maximum for only 1-D or 2-D functions. Add
another dimension to the problem, and we cannot visualize the function any more.
And hence we cannot spot the maximum either. For computers, the problem with
grid search is less severe, but still severe enough. Computers can compute the values
over a grid of arbitrary dimension, but it will be exponentially slower. For instance,
the function values in Figure 10.2 are currently calculated on a 2-D 47 × 47 grid. If
the function included three different x-s, the grid were to contain 473 = 103,823 grid
points instead of 472 = 2209 points. Add a few more dimensions and such a grid will
be infeasible to compute. We need a different approach.

In fact, humans cannot always see where is the highest point even on a 2-D surface.
An example of such case are “whiteout” conditions, thick fog on snow that is fairly
common in mountains. Although the weather is not dark, it is impossible to see
further than a few steps ahead of you because both snow and sky just white. But
even in such conditions, it is fairly easy to walk to the top of the mountain–you just
walk up, toward the steepest ascent, until the surface flattens out. Then you have
reached the top. This is exactly the idea of gradient ascent.

The idea of gradient ascent is the same. If you want to maximize a function f(β)
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Hiker setting up the tent in
whiteout conditions. While the
immediate surroundings are eas-
ily visible, it is impossible to un-
derstand whether the ground is
going up or down in the back-
ground.
OT at Sahale Arm, North Cas-
cades National Park, 2019.

Figure 10.3: Hiker in whiteout conditions

you just compute the gradient (this is the direction of steepest ascent), and take a
step in that direction. Thereafter you re-compute the gradient (find which way to go
next–which is the new steepest direction uphill), and take the next step. You’ll stop
when gradient is close to zero (the ground flattens out). A step-by-step algorithm
might look like:

1. Start somehere (at initial parameter x0)
2. Find which way the ground rises fastest (calculate gradient ∇f(x)).
3. Make a step in that direction (compute β1 = x0 + λ · ∇f(x)).
4. Repeat 2-4 until the ground flattens out (until gradient is close to 0).

Figure 10.4 shows an example of the algorithm at work, using the same three-peaked
function of Figure 10.2. But before we discuss the algoritm any further, let’s explain
what is gradient.

10.2.2 What is gradient
Prerequisites: Calculus, and a basic understanding of multivariate calculus

Gradient is a vector of derivatives

Gradient is generalization of derivative for functions on Rn. While the derivative
describes the slope of the function in 1-dimensional case, gradient indicates both the
slopes (along different axes) and the direction of the steepest ascent for functions of
n variables (functions on Rn). Below, we only look at the scalar functions Rn → R,
i.e. the function take an n-dimensional input but return a scalar value.

Perhaps the easiest way to understand this is to imagine a hilly landscape. El-
evation is a function R2 → R: from two inputs (longitude and latitude) to a single
number (elevation). Gradient tells at which rate the ground rises, and which in which
direction is the steepest uphill.

Let us take a simple example

x = (x1, x2)
T means x is a

column vector x =

(
x1

x2

)f(x) ≡ f(x1, x2) = e−(3x2
1+x2

2) (10.2.1)
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The idea of gradient ascent.
Start somewhere (at the initial
point x0. Compute the gradi-
ent and take a step in that di-
rection. This will lead you to
the next parameter value x1.
Repeat the procedulre until the
gradient gets close to 0. This is
the maximum x∗.

x1 x2

f(x1
, x2

)

Figure 10.4: Gradient ascent: the idea

where x is the 2-dimensional input vector (x1, x2)
T . Two-parameter functions can

easily be visualized as surfaces, f(x) is depicted in Figure 10.5.
For this function, the partial derivatives are

∂

∂x1
f(x) = −6x1e−(3x2

1+x2
2) (10.2.2)

∂

∂x2
f(x) = −2x2e−(3x2

1+x2
2). (10.2.3)

In a way, gradient, commonly denoted by ∇f(x) or sometimes ∂f(x)/∂x, is just a
compact way to write this in vector form:

∇f(x) =

(
−6x1e−(3x2

1+x2
2)

−2x2e−(3x2
1+x2

2)

)
. (10.2.4)

This is a 2× 1 vector. So gradient is just a habit to stack the partial derivatives into
a vector.

Compared to the function itself, the gradient is harder to visualize as here it has
two values (it’s range is in R2). Figure 10.6 shows two options for visualizing ∇f(x).

In case of functions of n-dimensional arguments, Rn → R, we have n partial
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f(x1, x2) = e−(3x2
1+x2

2) as func-
tion of x1 and x2. The level
sets, contours of equal values,
are marked both on the surface
and at the bottom of the figure
box.

x[1] x[
2]

f(x)

Figure 10.5: Surface of the function e−(3x2
1+x2

2).
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Figure 10.6: Two ways to visualize gradient. Gradient of f(x), depicted as two surfaces
(left panel). The red surface corresponds to ∂

∂x1
f(x) = −6x2

1e
−(3x2

1+x2
2), the blue surface to

∂
∂x2

f(x) = −2x2
2e

−(3x2
1+x2

2). The right panel depicts the gradient as arrows and the levels
(contours) of the function. The length of the arrows is proportional to the gradient length,
their direction is equal to the gradient direction. One can easily see that the norm of gradient
is proportional to the steepness of the function surface, and gradient points to the direction
of the steepest climb.

derivatives ∂
∂x1

f(x), ∂
∂x2

f(x), … ∂
∂xn

f(x) and we stack these into the gradient as

∇f(x) =


∂

∂x1
f(x)

∂
∂x2

f(x)

. . .
∂

∂xn
f(x)

 (10.2.5)
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so the gradient is n × 1 vector. Note that gradient is a function too, although not
a scalar valued one but a vector valued function Rn → Rn: it associates each n-
dimensional argument value x to a n-dimensional vector ∇f(x). This is analogous
with the derivative in one-dimensional case R→ R, that one is also an one-dimensional
function R → R. Unfortunately, it is almost impossible to visualize gradient beyond
two dimensions.

While gradient itself is a function, when we calculate its value for any particular
argument of x, the result will be a vector (not function). This is exactly the same as
the ordinary derivative–it is a function, but when calculated at a particular x value
it is a number. A function’s value is not a function.

As an example, let’s take the function f(x) we defined above and let’s calculate
it’s value, and it’s gradient’s value at x = (0.5, 1)′:

f(x)|
x=(0.5,1)T

= e−(3·0.52+12) = e−1.75 ≈ 0.174. (10.2.6)

One rarely uses such a long notation, almost all texts write it as f((0.5, 1)T), or just
f(0.5, 1) instead. Gradient works in a very similar way. It’s value at (0.5, 1)

T can be
written as

∇g(x)|
x=(0.5,1)T

=

(
−6x1e−(3x2

1+x2
2)

−2x2e−(3x2
1+x2

2)

)
x=(0.5,1)T

≈
(
−0.521
−0.348

)
. (10.2.7)

As before, this value is often written in shorter but imprecise way as

∇f
(
0.5
1

)
. (10.2.8)

It is imprecise because f
(
0.5
1

)
is a constant, 0.174, and gradient of a constant is

always 0. So this notation must be understood that first you compute the gradient of
f(·) (this is a vector function), and thereafter you compute gradients value at (0.5, 1)T .

However, it appears gradient is much more than a handy way to write a number
of derivatives in a compact form. It naturally generalizes a number of properties of
1-dimensional derivatives.

Exercise 10.1: Compute gradient

Consider a function f : R2 → R, f(x) = e−x·x
T

where x
T

= (x1, x2).
1. Express this function without vector notation, as f(x1, x2).
2. Compute its gradient (as a function ∇f : R2 → R2). Try to convert the

gradient back to a vector function, as ∇f(x), not as ∇f(x1, x2). (This is
useful for coding.)

3. Compute the gradient value at x1 = (0, 1)
T , x2 = (1, 0)

T and x3 = (1, 1)
T .

4. Sketch these thee gradient values on a figure, similar to Figure 10.6, at
right.

Solution on page 502.
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Figure 10.7: Function increasing along x2 while constant along x1.

Gradient and Direction of Steepest Ascent

As components of gradient are just ordinary partial derivatives, each component indi-
cates the slope of the function along that axis: how much will the function value grow
if we move along the axis, while keeping the location on the other axes constant. If
one component is large and another is small, we have a steep hill in the first direction
while it is pretty flat along the other axis.

Let’s look at linear functions, simple even surfaces with no curvature whatsoever.
A linear function may look something like the plane depicted on Figure 10.7. If
the surface is rising rapidly along x2 while staying constant along x1, the direction
of fastest climb is just along x2. Analogously, if the function grows along x1 while
staying flat along x2, we have to move toward x1. Such a situation is depicted on
Figure 10.8 although here the first gradient component ∂f(x)/∂x1 < 0 and hence we
have to move toward smaller values of x1 instead if we want to climb uphill. Obviously,
if none of the gradient components are zero, we have to move somewhere in-between
of these two directions. This is shown on Figure 10.9. It is also intuitive, that the
“somewhere in-between” should be closer to the steeper gradient than to the smaller
gradient component.

It is easy to show that the exact direction of the steepest climb is the same as the
direction of the gradient vector. Let’s choose a point (x1, x2) where the function’s
value is f(x1, x2). Now move away from this point by (∆x1,∆x2). This causes the
function to grow by

∆f ≡ f(x1 +∆x1, x2 +∆x2)− f(x1, x2) ≈ g1 ·∆x1 + g2 ·∆x2 (10.2.9)

where g1 and g2 are the corresponding gradient components, calculated at (x1, x2).
However, for not to go too much wild, we’ll change the coordinates in this way that
the total move will be of length one. Hence ∆x21 +∆x22 = 1, or alternatively ∆x2 =
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Figure 10.8: Function increasing along −x1 while constant along x2.

Figure 10.9: Function increasing both −x1 and x2. The direction of steepest climb is some-
where between these two gradient components.
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√
1−∆x21, and the change of the function can be written as

∆f ≈ g1 ·∆x1 + g2 ·∆x2 or ∆f ≈ g1 ·∆x1 + g2 ·
√
1−∆x21. (10.2.10)

Which ∆x1 results in the largest value of ∆f? The optimality condition gives us

∂∆f

∂∆x1
= g1 + g2

−2∆x1
2
√
1−∆x21

= g1 − g2
∆x1
∆x2

= 0 (10.2.11)

where we used the fact that
√

1−∆x21 = ∆x2. The solution is

∆x1
∆x2

=
g1
g2
. (10.2.12)

In other words, this means that the direction vector (∆x1,∆x2) must be parallel to
the gradient vector (g1, g2).

10.2.3 How to use gradient for hill climbing
The idea of gradient ascent is the same as when climbing a hill in the whiteout
conditions. The ground is white, the sky is white, and you cannot see which way is
up, which way down. How will you get to the top of the hill? Using gradient ascent!
You start wherever you are (this is the initial parameter x0 below). You feel which
way the ground is rising (this is the gradient). Now you take a careful step in that
direction. You are at a new location (this is your parameter vector x1). You repeat
the process until you have reached flat ground. This is the hilltop.

In practice, it is very common to climb downhill (find the minimum) instead of
uphill. This is done in almost exactly the same way, except that you take the step
down–in the opposite direction of the gradient.

More formally, the algorithm is as follows (see Figure 10.10):

1. Start with an initial guess x0 of the location of the maximum.
Note: I use superscript 0 the initial vector, it’s components are denoted by
subscripts, e.g. in the two-dimensional case x0 = (x01, x

0
2).

2. Compute the gradient ∇f(x0).

3. Now take a step in the direction of the gradient (or in the opposite direction
if going downhill). This leads to a new location x1 = x0 + R · ∇f(x0). Scalar
R, learning rate, determines the length of the step. As the gradient is pointing
uphill, the function value at x1 is larger than at x0.

4. Now repeat the process choosing x1 as the starting point. This gives you the
next approximation x2.

5. Repeat until gradient is close to zero and the function value does not improve
any more.
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Figure 10.10: One step of Gradient Ascent. We start from an initial guess x0 and take a
step along the gradient. This moves us uphill to x1. The function f(x) is depicted by the
surface overlied by (rather circular) level sets.

Now it is time for a numeric example. We can use the same function (10.2.1) as
in Section 10.2.2:

f(x) = e−x
T
Ax = e−(3x2

1+x2
2)

where A =

(
3 0
0 1

)
. It is visualized on Figure 10.5, its gradient is (10.2.4), displayed

on Figure 10.6:

∇f(x) =

(
−6x1e−(3x2

1+x2
2)

−2x2e−(3x2
1+x2

2)

)
= −2xf(x).

Now the algorithm.

1. Pick a starting point. We know that its maximum is at (0,0), so let’s pick another
location–otherwise there is nothing to calculate. Let’s pick x0 = (0.5, 1)′ as in
Section 10.2.2. The function value at that point is 0.174.

2. Above, we found that its gradient is

∇g(x)|
x=(0.5,1)T

≈
(
−0.521
−0.348

)
see (10.2.7).

3. Now take a step from x0 in the direction of the gradient. But first we have to
decide how long the step should be–to choose the learning rate R. Let’s pick
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R = 1. Now we have

x1 = x0 +R · ∇f(x1) =

= (0.5, 1)
T

+ 1 · (−0.521,−0.348)
T

= (−0.021, 0.0.652)
T

(10.2.13)

The new function value is f((−0.021,−0.652)T) = 0.652. Indeed, we moved
uphill.

4. Now we can repeat the process by taking x1 instead of x0, computing the
gradient, taking the next step, and continuing until we reach a flat point–the
maximum.

One Gradient Ascent step for
f(x) = e−(3x2

1+x2
2). At the ini-

tial point x0 = (0.5, 1)
T , the gra-

dient (−0.521,−0.348))
T points

bottom-left. We move in that
direction by the amount (learn-
ing rate) R = 1. This leads us
to (−0.021, 0.652)

T , our next ap-
proximation for the maximum.
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Figure 10.11: A single step of gradient ascent.

This particular example is illustrated on Figure 10.11 by contour plot. At x0 the
gradient points toward bottom-left.

Now let’s describe the algorithm in more detail for the general n dimensional case.

1. Pick an initial value of the parameter x0 = (x01, x
0
2, . . . , x

0
n)

′. It is always good
idea to choose parameters as close to the actual maximum as you can as this
may have a huge impact on speed, and the algorithm can even fail to find the
optimum if you happen to pick an unfortunate starting point. Often though
you have little guidance about how to choose good starting values, and ran-
dom numbers are frequently used to initialize the parameters of more complex
models.

2. Compute the gradient of your objective function ∇f(x) at x = x0. You want to
have the gradient calculated, coded, and thereafter calculated. But computing
and coding the gradient may be quite complicated, and often people resort on
numeric gradients. Those are typically slower and less precise, but may be
preferable if the calculations and coding takes too much time otherwise. It is
also possible to use software that can automatically compute gradient using
compute graphs.
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3. Take a step from x0 in the gradient direction. The step should be neither too
long (you may overshoot and land on the other side of the hill) nor too short (it
takes very long time to find the maximum). So we employ the learning rate R
and take the step of length R · ∇f(x)|x=x0 . This will land you in a new place
we call x1:

x1 = x0 +R · ∇f(x)|x=x0 (10.2.14)

This is our new best bet for the location of maximum. It is probably far from
the actual maximum, but unless your learning rate is too large (or the function
is constant at x0), it is a better place than x0.

Note: This is the only difference between GA and GD algorithms. If we want to
move downhill, we have to take a step to the direction of the steepest descent,
i.e. a step to the opposite to the gradient, and hence the updating rule is
x1 = x0 −R · ∇f(x)|x=x0 .

Choice of a good R value is important. This is a hyperparameter of your model.
Unlike many other hyperparameters, such as choice of k for k-nearest neighbors,
this one should not affect your final results, just the speed of convergence, and
it may determine if your model will converge in the first place. But in complex
models with many local optima, different learning rate may lead to a different
solution.

4. Are we in the correct place? You recognize the top of the mountain by the fact
that the ground is flat there–and flat means the gradient is very small. Say,
||∇f(x1)|| < ϵg, where || · || is norm (length) of the vector, and ϵg is a small
number, say 10−6. Small gradient indicates that the function is flat at that
point, and hence we are likely at a maximum or minimum.

Such conditions are called stopping criteria. In practice, you always need an
additional, bail-out criterion: stop if the process has been repeated too many
times already. This is because we too often choose too small learning rate, run
into numerical problems, or have coding errors.

5. If we are in correct place, stop here. If not, set x0 ← x1 and repeat from step
2.

Finally, another note about Gradient Ascent and Gradient Descent. The GD
algorithm is almost exactly the same as GA. The only exception is that you have to
take the step toward steepest descent, not steepest ascent. There are two easy ways
to turn the GA problem into a GD problem or the way around:

1. flip the sign of your objective function: instead of minimizing f(x), maximize
−f(x).

2. use negative learning rate R–this will also reverse the step in (10.2.14).



10.2. GRADIENT DESCENT AND GRADIENT ASCENT 401

10.2.4 Problems with gradient ascent

Local Minimum

Convexity Function f(x) is convex iff:

∀x1,x2, t ∈ (0,1)

f(tx1 + (1− t)x2) <

< tf(x1) + (1− t)f(x2)

beta1

beta2

L(beta1, beta2)
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Noisy Objective Function

10.2.5 OLS Example
Linear Regression “Least Squares” means

min
β
L(β) =

∑
i

(ŷi − yi)2

where
ŷi = β̂

′
xi

• find β that minimizes L(β)

– L is “loss function” (objective function, cost function)
– how?

Example: Predict September Arctic Sea Ice by March Extent
Trial-and-Error Exercise

(Grid Search)

• OLS model yi = βxi + ϵi

• Use the data at right

• Find the optimal β

– Calculate L(0), L(0.5), L(1), L(1.5), L(2).
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• Plot L(β) versus β

data:
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2D Case
TBD: SGD
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10.3 Feature Selection and Regularization
10.3.1 Feature Selection
In applied analysis it is quite common to have datasets with a large number of fea-
tures. Often we have little knowledge about the importance of many of these. Many
of these may be highly correlated and many can show certain importance in our
models. For instance, when using a large international survey data, such as World
Value Survey, one may find the variable country is highly correlated with domestic
language, language used to fill out the survey, and the id of the team member. It
may also be somewhat unexpectedly related to certain lifestyle questions, e.g. there
are probably very few affirmative answers to the question “do you have a boat” in an
arid landlocked area. Such closely correlated variables may cause various problems
with data modeling. To name a few

• Large and unstable parameter values and large standard errors. This is mainly
a problem for inferential modeling and may obscures the interesting effects that
are in fact there.

• Overfitting. This is how the same issue manifests in predictive modeling.
• Model does not converge, or converges into a sub-optimal solution. While linear

regression (almost) always works well, more complex model are much more
demanding in terms of data properties. Even if data looks good globally, we
may run into a trouble in a region where the correlation is high.

In case of a smaller well-documented dataset, it may be possible to manually select
the interesting features. But this approach does not scale to larger datasets where
we have thousands of similar variables we do not understand well. For instance,
imagine analyzing urban movements using millions of cellphone calls, or doing sports
analytics with thousands of datapoints about athletes’ movements. In such cases it
is not obvious what to include or exclude in the model.

Feature selection is a method (more like a set of several methods) that helps to
include only the “best” features in the model. It is in some ways similar to regular-
ization, a method that does not directly select features but manipulates the model
parameters and may achieve a comparable effect.

Consider the following example. We generate one variable x ∼ N(0,1) and form
a number of other highly correlated variables:

x ∼ N(0,1)

x1 = x+ ϵ

x2 = x+ ϵ

. . .

where ϵ ∼i.i.d N(0, 0.1). We generate the outcome y as y = x+u, where u ∼ N(0,0.3).
Thereafter we estimate linear regression model in the form

yi = β0 + β1x1i + β2x2i + · · ·+ ei
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i.e. we model y using a number of highly correlated variables. Importantly, we keep
the number of cases very low, the example below is made for N = 12 training data
observations and 7 different x vectors.
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Figure 10.12: Linear regression (left panel) versus ridge regression (right panel). Solid dots
represent data and empty triangles are predictions. Black is training and red testing data.
Linear regression make much more noisy predictions than regularized ridge regression. There
are 6 other highly correlated features not visible in this figure.

Figure 10.12 shows an artificial example with 7 highly correlated predictors. Solid
black are the training data and red are validation data, solid dots represent training
and empty triangles testing data, and the dotted lines between those are residual
errors. The left figure depicts the linear regression results. One can see that errors
in training data are mostly small but for testing data the errors are much larger, in
particular for data points that are far from training observations. The fact that the
model behaves much better on training than on testing data is also confirmed by the
corresponding R2 values, 0.957 and 0.541 respectively.

The right panel show results for a penalized ridge regression. Ridge suppresses
the noise from highly correlated variables and correctly finds that all predictors con-
tain essentially the same information. Hence the predictions (triangles) form almost
perfect line on the figure. The corresponding R2 values are 0.934 and 0.853. The flex-
ibility in the linear model largely captured the noise, making the model less flexible
forced it to focus on the signal instead.

10.3.2 Regularization
More complex models we use on large datasets are often very flexible. This flexibil-
ity may easily lead to enormous overfitting, and technical problems, such as lack of
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convergence.
Regularization is a simple way to force flexible models to be less flexible in order

to improve their performance on unseen data. It can be done in various ways like

• by adding a penalty term to the objective function

• by using a Bayesian prior over the parameter values

• by terminating iterative optimization (such as stochastic gradient descent) early

One can show that under certain assumptions, all these methods produce similar
results.
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Chapter 11

Unsupervised Learning
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11.1 Introduction
In the previous sections we were working with supervised learning. In case of super-
vised learning, our task is to predict outcome y based on features x. As we have
labeled training data, we can tell the algorithm for each case how “far off” was the
prediction from the true value. Later we use the trained model to do similar predic-
tions on unlabeled data. As we have analyzed the prediction errors on training data,
we have some confidence to assume the errors are similar on unknown data. Formally,
our task is to estimate the function f : X → Y where X is the feature space and Y is
the target space. A good result is such a function where the predicted value ŷ = f(xi)
is close to the true value yi.

409
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Unsupervised learning is the case where we don’t know the “correct” labels yi and
hence we cannot tell if our predictions are close or not to the true values. Even more,
there is often no such things as true labels, cases can be categorized in many different
ways and all of these may be correct in some sense.

Instead of trying to predict “correct” values that we do not know or that may
even not exist, unsupervised learning is used to discover and exploit various traits in
data. The common examples include:

• Cluster analysis: we group data into clusters, groups of cases that are reasonably
similar to each other while being different from cases in other clusters. A small
number of such clusters can thereafter be used as data simplification. We may
use a single “representative” in each cluster instead of individual values and in
this way to tremendously reduce the complexity of data.
For instance, the consumers can be categorized into a small number of clusters,
and afterwards one may design a different marketing strategy for each cluster.
It may be infeasible to have a large number of such strategies but unsupervised
learning helps us to reduce the complexity to a manageable number.

• Principal component analysis: we analyze which kind of values tend to occur
together in the data. This allows us to find certain combination of features,
principal components, that carry most of the information. The principal com-
ponents may give us novel insight into the problem, but it also allows to remove
the less important traits and simplify the data in this way.

• Market basket analysis: as in PCA, we attempt to find values that tend to occur
together. However, our task will be to construct claims like “consumers who
bought x usually also buy y.

• Also usually not considered as unsupervised learning, various descriptive graphs
and tables play a similar role. They help us to discover the traits in the data,
their limits, and structure.

11.2 Cluster Analysis
Prerequisites: Metric distance, vector norm: Section 5.2.2 Norm and Distance,

page 259

Cluster analysis is one of the most widely used unsupervised learning. It is a way
to partition data points into a number of groups, “clusters”. We want the data in
cluster to be similar in some sense while data in different clusters may differ. This
typically serves as a tool for simplifying and understanding data, e.g. for designing
a small number of manageable strategies, or just for understanding the main treats
and processes we are encountering.

First we discuss the basic idea of cluster analysis and thereafter introduce perhaps
the most popular clustering algorithm, k-means.
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11.2.1 Idea
Cluster analysis attempts to find natural groupings in the data. As it is an unsuper-
vised learning method, we do not normally provide it with any pre-defined grouping
information. All this will be derived directly from data. This also applies to the
number of clusters–we normally do not know what is the correct number. Even more,
there may not be anything like the “correct number”, one can look at the data in dif-
ferent ways, just some of the approaches may be more insightful regarding the current
problem. The key of deciding which observation goes to which cluster is similarity–
observations in the same cluster should be more similar than observations in different
clusters. There are many ways of deciding which cases are more similar, these are
associated with different clustering methods.

Figure 11.1 displays and example 2-D dataset (left panel) and the result of the
corresponding cluster analysis (right panel). This dataset is exceptionally well suited
for cluster analysis, and we can immediately see that five clusters are just a right
choise, with distance within clusters being very small compared to inter-cluster dis-
tance. Such luxury is usually not there, first data may not contain such well-defined
clusters; and second, in higher dimensions one cannot visualize the data space in a
similar fashion. We have to rely on mathematical methods when trying to analyze
the value of the particular clusters.
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Figure 11.1: Original data (left) and cluster centers (right). This artificial dataset contains
five clearly separated groups and hence it is exceptionally well suited for cluster analysis.
The left panel shows the original data, the right panel the five cluster centers as computed
by k-means. Colors denote which cluster each data point belongs to. Note that the ordering
of clusters is different.

Clustering has many practical applications. Here are a few examples:
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• Market segmentation. There are thousands of customers with many different
interests and habits. But the marketing department cannot handle thousands
of different strategies. We want to apply a small number of strategies only, and
hence we need to partition customers into a small number of groups, “clusters”.

• Land use analysis in for urban planning. We want to compare land use of
different cities, but the land is split into a tremendous number smaller lots,
parks, streets, industrial areas, and so on. We may want to group cities into a
small number of different “types” based on the land use.

• Biological classification. We combine similar organisms into “species”, similar
species into “genera” and so on.

• Medical diagnosis. Different patients show a very large variety of symptoms. We
may want to combine those symptoms into a small number of “types” (clusters).
This allows to either prescribe a treatment, or maybe additional analyses for
each cluster.

Sometimes we are interested in hierarchical clustering, i.e. not just clusters of data
points but also of clusters of clusters.

All these examples are in some sense about simplifying and compressing data.
Instead of looking at thousands of different individual cases, we replace this unfath-
omable diversity with a small number of different options (clusters). This may help
to design a manageable number of strategies (like in case of marketing), or serve as a
simplification for understanding the problem (as in case of biological classification).

11.2.2 Cluster Analysis More Generally
In order to split data into clusters we need four things: suitable data, distance metric,
loss function, and an algorithm that can actually compute the clusters.

First, we obviously need data. In the Figure 11.1 aboce we imagine data as points
on the 2-D x-y-plane, but in general these are in a high-dimensional space and cannot
be easily visualized. Normally we imagine data in a form of a numeric design matrix
but in certain cases it may also be in a different format. For instance, one can
compute string distance between words, and in that case the data may be in the form
of character strings.

Second, in order to measure similarity, we need something like distance metric
(see Section 5.2.2 Metric distance, page 262). If the design matrix is numeric, we
may rely on Euclidean or other Lp type metrics, but we may also carve out our own
dedicated metric. For instance, when comparing portraits, we may want to design a
metric that only looks at the faces and ignores the background. In case of more than
a single feature, we also have to weight the features somehow, i.e. feature scaling
matters (see Data-Driven Metrics in Section 6.2.1).

Loss function shows “badness” of
a particular cluster. A large loss
value means the cluster is bad.
See Section 10.1 Loss Function
and Non-Linear Optimization,
page 387.

Third, we need a way to decide if a particular data point is a good fit for one or
another cluster. We may do this by defining a per-cluster loss function L(C) where
C is the cluster, a set of data points that belong to it. The loss function typically
penalizes intra-cluster distance (dissimilarity) as we would prefer all member points
to be close to each other (similar to each other).

Finally, we also want to compute the set set of clusters, not just the “badness”
(loss) of the result. Hence we also need an algorithm that can find a good set of
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clusters based on data, distance metric, and loss we selected above. The algorithm
should consider different ways to put data into clusters C1, C2, . . . and pick such
an arrangement that produces minimal loss (it should minimize the loss function).
Ideally it should find the smallest possible loss but if this is not feasible, a good enough
solution may do. The algorithm should return the partition—which observations go
to which cluster. Formally:

{C1, C2, . . . , CK} = arg min
C1,C2,...,CK

K∑
k=1

L(Ck).

Unfortunately, in typical problems there are way too many possibilities how to parti-
tion data into clusters, so it is in general not possible to find the best way. But there
are many algorithms that work well enough.
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Figure 11.2: Two ways to partition data x1, x2, . . . , x5 into clusters. The upper panel assigns
x3 to the red cluster, and hence the intra-cluster distances in the red cluster are 1, 2, and
3. This is more than in the good case (lower panel) where the black cluster contains intra-
cluster distances 1, 1 and 2. A simple loss function that just adds the intra-cluster distances
would prefer the good way over the bad way.

Figure 11.2 demonstrates two ways to partition five data points x1, x2, . . . ,x5 into
two clusters in an 1-D case. These five dots are the data points. In 1-D case we can
measure similarity as Euclidean distance, just as the (absolute value of the) difference
between the data points. Third, we can compare the two clusters using a loss function.
We can pick a loss function for cluster C as sum of intra-cluster squared distances:

L(C) =
∑
i,j∈C

d2ij =
∑
i,j∈C

|xi − xj |2 (11.2.1)

(dij is just distance between data points i and j). Now let’s compute the black and
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red loss when partitioned in the “bad” way:

L(Cblack ) =
∑

i,j∈{1,2}

d2ij = d212 + d221 = 12 + 12 = 2

L(Cred) =
∑

i,j∈{3,4,5}

d2ij = d234 + d243 + d245 + d254 + d253 + d235 =

= 22 + 22 + 12 + 12 + 32 + 32 = 28

(11.2.2)

(we defined the loss function in a way that we add both distance from i to j and
from j to i, but we can drop one of these). We can conclude that the black cluster
is pretty good (loss is 2) but the red cluster is worse (loss 28). The overal loss,
L(C) = L(Cblack ) + L(Cred), is 30. However, in the “good” case we have

L(Cblack ) =
∑

i,j∈{1,2,3}

d2ij = d212 + d221 + d223 + d223 + d231 + d231 =

= 12 + 12 + 12 + 12 + 22 + 22 = 12

L(Cred) =
∑

i,j∈{4,5}

d2ij = d245 + d254 =

= 12 + 12 = 2.

(11.2.3)

Now the red cluster is pretty good, and the black one is worse. But black cluster
deteriorated less than the red cluster gained, and hence the overall loss improved
from 30 to 14. It paid off to re-assign x3 from the red to the black cluster. The
“good” partition results in smaller overall loss, and is accordingly a better way to
split this data into clusters.

This example, to pick a loss function that computes sum of intra-cluster squared
distances, is just one possible way to define clusters (this is the loss function that the
popular k-means algorithm is based on). But there are very different ways to define
clusters, e.g. based on maximum distance withing the cluster. In the 1-D case we
analyzed, the distance metric does not play a role, but in more complex cases we
always have to decide how to measure distance, and potentially we need experiment
with different metrics to find the one that is best suited for the particular task.

11.2.3 k-Means Clustering
k-means is one of the simplest and most popular clustering algorithms. It is intuitive,
fast, and always provides a solution, although the solution may sometimes be subop-
timal. It is based on intra-cluster distance, similar to the example on Figure 11.2.

Now let’s take N -dimensional data points xi, i ∈ {1, . . . ,N}. Instead of just
summing the squared distances as we did in in the example above, we now compute
average of the squared distance as the loss function for cluster C:

L(C) =
1

||C||
∑

i′,i∈C

d2ij =
1

||C||
∑

i′,i∈C

(xi − xi′)
′(xi − xi′)
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where ||C|| is number of observations in the cluster (see Section 0.1, Sets). Hence the
total loss

min
C1,C2,...Ck

k∑
i=1

1

||Ci||
∑

j′,j∈Ci

(xj − xj′)
′(xj − xj′)

k-means partitions data into pre-speficied k clusters where cluster membership
is mutually exclusive–each data point belongs to one and only one cluster. The
cluster membership is determined based on the distance between the data point and
cluster centers, and the algorithm repeatedly re-assigns the observations to the closest
cluster, and thereafter re-computes the cluster centers. These two steps are computed
repeatedly until it results in a stable partition–each observation belongs to its closest
cluster. It may sound somewhat surprising that such a simple idea works very well,
but in most cases it does.

Next, we explain the algorithm in more detail and provide an example.

The k-means algorithm

1. Select the desired number of clusters, k. This must be decided before the algo-
rithm starts.

2. Next, we need to find a centroid1 for each of the k clusters. We can do this in
various ways, for instance we can pick a random data point as the centroid for
each of the clusters (just pay attention to that each cluster should get a different
data vector as its centroid).

3. Now assign each actual data point to the cluster with the closest centroid. This
immediately causes the cluster partition to clear up as more similar observations
tend to fall into the same cluster. As a result we now know for each observation
which cluster does it belong to.
Note that “closest” assumes we have decided for a distance metric, in case of
k-means we normally use Euclidean distance.

4. Now we compute new cluster centroids by just averaging the data vector com-
ponents for each cluster.

5. And now we just repeat from 3 until the partition converges, i.e. there are no
more changes in the partition {C1, C2, . . . , CK}.

The algorithm works surprisingly well and always produces a result. Figure 11.3
illustrates how the algorithm works in a simple case. However, sometimes the result
may be suboptimal, so it is advisable to run the k-means algorithm several times with
different random starting points.

TBD: k-means gets stuck, perhaps as an exercise
1Centroid is similar to average or mean value, just in case of multi-dimensional objects (like data

vectors) we call the average “centroid”. You can easily visualize it as the “middle point” of a point
cloud.
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a b

c d

e f

Figure 11.3: k-means algorithm at work. a) Data with no cluster information, the random
data points are picked as cluster centers (denoted by color). b) All data points are allocated
to the closest random cluster. Already at this stage, data starts to be separated into different
clusters. c) Updated cluster centers: based on the previous image, the new cluster centers
are centroids of the points that belong to the same cluster (have same color). d) Data point
color updated according to the closest cluster center. Now all datapoints in the middle blob
belong to a single cluster. e) One more update of cluster centers will position the red and
blue cluster center in the middle of the respective clusters. f) Next update of clusters (colors)
does not change anything. The process has converged.
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Figure 11.4: Elbow plot for the same data as used in Figure 11.1. The vertical axis denotes
the relative loss, within-cluster loss as a percentage of total loss. On can see that at k = 5,
the relative loss reaches essentially zero. This is the “elbow” of the plot and the best number
of the clusters.

Determining the number of clusters

k-means expects the user to provide the required number of clusters. This is easy in
case we know enough about the underlying data structure, but sometimes we need
more guidance from the algorithm itself. A popular way to find the “best” number of
clusters is by using elbow plot. The idea of the elbow plot is the following: we allocate
the data points to clusters by minimizing the sum of squared errors (or another loss
function) within the clusters. In case we choose too few clusters, we have many
mis-allocated points and hence the loss is large. But as soon as we pick the correct
number of clusters, the loss should fall substantially. Increasing k even further will
not substantially change the loss. So one expects to see a kink, the “elbow” on the
plot at the correct value of k.

Figure 11.4 displays such a clear kink at k = 5. This is the same data as depicted
on Figure 11.1. That artificial dataset is extremely well suited for cluster analysis.
However, when we move to typical real datasets, the kinks may be much more vague,
or completely missing. Figure 11.5 depicts a similar elbow plot for diamonds data.
As the data (left panel) do not display any clear cluster structure, the relative loss
on the elbow plot (right panel) keeps getting smaller even when we add clusters. The
apparent kink at k = 3 does not correspond to any clearly distinct clusters (figures on
the left panel). The clusters are probably not a useful way to think about this data.
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Figure 11.5: Elbow plot for diamonds data. The left panel depicts the diamonds data, the
data points are colored according to the detected cluster id. The right panel shows the elbow
plot, if anything it suggests k = 3 is the optimal number of clusters. However, as the left
figure indicates, the detected clusters are rather indistinct. This data is not well suited for
clustering.

11.2.4 Hierarchical clustering
k-means was an example of “top-down” clustering, where we started by splitting all
data points into a given number of clusters. Hierarchical clustering contains methods
that work from “bottom-up”, by connecting individual observations into pairs, and
further into larger clusters. Such bottom-up methods are called agglomerative clus-
tering, because they proceed by lumping more and more observations together into
larger and larger clusters. The concept hiearchical, in turn, refers to the fact that
the common agglomerative methods produce cluster hierarchy, smaller clusters inside
larger clusters.

Next, we demonstrate hierarchical clustering using iris data (see Section Section B
Iris, page 466). The left panel of Figure 11.7 shows a small subset of 10 observations.
In order to visualize the results easily, we only use two features: sepal length and
sepal width.

11.2.5 Discriminant analysis
The clustering algorithms we discussed above are based on proximity–some kind of
distance between the data point and the other points in the dataset. Discriminant
analysis takes quite a different point of departure: it builds certain mathematical
models for different clusters, and afterwards checks which cluster does the particular
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Figure 11.6: Sample data of concentric curved clusters.

datapoint resemble. However, in practice the difference may not be large, in any
case the datapoints that are close in the feature space tend to be placed in the same
cluster. Below we discuss a specific method, gaussian mixture models, and how to use
it for discriminant analysis.

Mixture models

Mixture models assume that the groups in data follow certain distributions, e.g. nor-
mal in case of gaussian mixtures.

This uses Howell’s height-weight
data, see
fullrefsec:howell-height-weight.

Figure 11.8, left panel, shows the height histogram for 256 !Kung San adults, 136
females (red) and 120 males (blue). Typical males are noticeably taller than females,
with the corresponding average heights being 160.9 and 150 cm. Individually, both
genders follow roughly a normal distribution, but as the distributions do not overlap
well, we see a resulting distribution (denoted by black bars on the Figure) that looks
much more flat-topped than the normal curve.

The right panel attempts to guess how do male and female distributions look when
separated. The model is based on gaussian mixture, i.e. it is assumed that both sexes
follow a normal distribution. The results are the red and blue normal curves, and the
black overall density curve, the mixture of both male and female curves. The model
estimates that the mean height of males is 158.3 with standard deviation 6.4, and the
corresponding values for females are 147 and 3.7. For comparison, the corresponding
male and female sample values are 160.9 and 6.1 for males, and 150 and 4.9 for
females. As we can see, the two-component mixture identifies values rather well.
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Figure 11.7: Sepal length and width of a sample of 10 iris flowers (left) and the corresponding
dendrogram (right).

This is the idea of the mixture model: the population contains two groups with
differently distributed values, but if we do not know which group a particular indi-
vidual belongs to, we are left of “mixture” of both distributions, the black flat-topped
curve. In case of discriminant analysis, the task is to find the correct group based on
other data, here to tell gender based on height.
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Figure 11.8: Left panel: histogram of height of 136 !Kung San women (red) and 120 men
(blue). The black bars denote the overall density values. We can see that the overall height
distribution is slightly bimodal.
Right panel: the corresponding estimated mixture density, consisting of two Gaussian com-
ponents.
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11.3 Principal Component Analysis
Principal Component Analysis (PCA) is a another popular method to find patterns
in data. It is in some way similar to cluster analysis, but unlike the latter, PCA is
not concerned about points located close in space, but rather about points placed
near hyperplanes in hyperspace. It is used in a wide variety of applications, including
exploring and analyzing correlated features, designing new features, and compressing
data.

11.3.1 Motivation
There are several motivations that lead to more-or less similar concept of PCA. We
list here three problems, the first more a social science problem, and two other more
technical.

1. How to measure vague concepts? If we are interested in measures like income or
age, the measurement is easy. Pretty much everyone knows their age and people have
fairly good understanding what income is (even though they may not know their exact
income, or may be unwilling to tell). But how liberal are you? Or how extrovert are
you? The respondents may have an idea in both cases and may be willing to answer
that they are “rather not liberal” or “fairly extrovert”. But now we are measuring
their idea about their liberalism (called perceived liberalism) and not how liberal they
actually are.

To overcome this problem, the surveys typically ask for a number of questions that
we think are closely related to liberalism, instead of asking about liberalism directly.
For instance, one may ask (with answers on e.g. 5-point Lickert scale):

1. Do you support gun rights?
2. Do you support free abortion?
3. Should the government take more care of the environment?
4. Is cross-border crime the most serious threat nowadays?

As people traditionally understand the concept “liberalism”, we may want to add
the second and third answer with a positive weight, and the first and the fourth
answer with a negative weight. But is this the correct approach? And what should
the weights be? Is “liberalism” even a useful concept in these data, if the answers
to these questions look almost random? Maybe we do not really have liberals and
conservatives in the first place?

2. How do we aggregate similar measures? The second motivation is quite simi-
lar, just originate from the technical world. Imagine you have a number of similar
measure–similar, but not precisely the same. For instance, you are working with
natural disaster data and you want an estimate of the destructiveness of hurricanes.
But FEMA2 does not provide a single number of “destructiveness”. Instead, it lists a
number of different costs:

• Total Individual Assistance (IA) - Applications Approved
• Total Individual and Households Program - Dollars Approved

2The U.S. Federal Emergency Management Agency
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• Total Housing Assistance - Dollars Approved
• Total Other Needs Assistance - Dollars Approved
• Total Public Assistance Grants - Dollars Obligated
• Dollars obligated to emergency work
• Dollars obligated to permanent work

These numbers are clearly related to the destruction–more destruction probably
means all these numbers are larger. But if I need a single number then which one
should I take? Or should I take the average? But does average over number of
applications, dollars approved and dollars obligated even make any sense?

3. How to get rid of a lot of redundant data Finally, there is a data compression
problem. Imagine you are collecting cellphone data over time and geographic districts.
For each district and each time period you record

• Total number of outgoing phone calls
• Total number of incoming phone calls
• Total number of text messages
• Total number of multimedia messages
• Total number of data connections
• Total seconds of outgoing phone calls
• Total GB of data transfer
• …

Obviously, all these numbers are highly correlated. A busy afternoon in a large city
has all these figure up in millions while there is hardly anything in a tiny rural place
in the middle of night. Do we really have to store and analyze all these numbers? Can
we only keep one of these and drop the others? But which one? Or should we take
average again? But does average over counts, seconds and GB-s even make sense?

All of these tasks are different sides of the same problem: we have a lot of correlated
data and we are looking ways to simplify and understand it. While in social sciences
the understanding–part has been traditionally in the focus, in technical fields it is
more often simplification that we are looking for. But in all cases we are looking
for fewer dimensions: in the first example we want to reduce four answers into a
single liberalism measure, in the second example we try to reduce seven different cost
measures to a “destructiveness” measure, and in the final example we may want to
come up with 1-2 numbers that capture the “cellphone activity”.

There are many applications where one may want to collapse a large number of
dimensions into a smaller more manageable numbers:

• Genome data: there is a tremendous numbers of parameters to measure genes
• Document and image classification: the algorithm may come up with hundreds

of different categories, and we are just interested in a handful
• Product recommendation: as above, we may only be interested in a small num-

ber of product categories, not in thousands.
In a similar fashion, there are numerous reasons why we want fewer dimensions:
• To avoid curse of dimensionality: algorithms that work well on a small number

of dimensions may get sluggish or fail completely as dimensionality grows. Even
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models that can cope with high dimensionality may display unfavorable results,
such as large standard errors and low power of statistical tests.

• In predictive modeling, overfitting becomes a more and more important problem
as we include more and more features. Hence we want to keep the number of
features in check and include only the most relevant ones.

• Visualization: it is hard to visualize anything with more than three dimensions.
• The same is true for interpretation–high-dimensional cases are hard to interpret.
• From computational perspective, we may prefer to keep fewer features to lower

the memory and storage needs. It is effectively a way of data compression.

11.3.2 Principal Components: The Idea
The idea behind PCA is describind data as some sort of elongated cloud of points.
The task is to find the axes along which data is elongated, and either interpret those,
or rotate those in a way that they align with the coordinate axes.

The easiest way to get an intuitive understanding of this is to use 2-D highly
correlated data. Figure 11.9 below shows a such synthetic dataset. In these data, x
and y are highly correlated, one can imagine the image as the dots lying on the 30°
line, with a small perturbations that push them little bit off that line (left panel).
The right panel adds the principal components: these are the yellow and the purple
tilted axes.
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Figure 11.9: Highly correlated data that is perfectly suited for PCA. The left panel depicts
only the datapoints, the right panel adds the principal components (PC1 is gold and PC2 is
purple).

Already a quick look at the figure suggests that the red axis is much more impor-
tant than the blue one—after all, the data is elongated along the red axis, the spread
along the blue one is much smaller. This is indeed the case, and it is customary to
order the axes (principal components) accirding to their importance. So further below
we refer to the yellow axis as the first principal component (PC1) and the purple one
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as the second principal componenet (PC2).

Table 11.1: Principal components of 2-D data (Figure 11.9).

PC 1 PC 2

x1 0.861 0.509
x2 0.509 -0.861

In numerical form, PC1 and PC2 are in Table 11.1. This table should be under-
stood as a summary of two linear equations:

PC 1 = −0.840x1 − 0.542x2 PC 2 = −0.542x1 + 0.840x2, (11.3.1)

or, in matrix form, (
PC1

PC 2

)
=

(
−0.840 −0.542
−0.542 0.840

)(
x1
x2

)
. (11.3.2)

These numbers are called factor loadings. Hence PC1 is somewhat more strongly
related to x1 (factor loading −0.840) than to x2 (factor −0.542). The negative signs
of factor loadings for PC1 means that PC1 will be smaller if x1 and x2 are larger.
PC1 “points” down-left on the figure. However, PC2 grows if x1 gets smaller and x2
gets larger, hence it points up-left.

11.3.3 Explained Variance
The “importance” of components is normally defined by how much of variation in
data do they explain. Figure 11.10 demonstrates how to understand variation and
explained variation in data. The left panel shows three datapoints d1, d2 and d3 (light
gray), and their centroid (black). The total variation is just sum of squared distances
between the datapoints and the centroid. Here V = e21+e

2
2+e

2
3 = 4.3012+22+2.9152 =

31 in these data. The right panel decomposes the distance into components that are
parallel to PC 1 (yellow); and those that are parallel to PC 2 (purple). The variation,
explained by PC 1, is just sum of the squared components that are parallel to it
(yellow). In these data it is V1 = 0.70712 + 1.4142 + 2.8282 = 28. Hence PC 1

explains 28/31 ≈ 90% of the total variation. In an analogous fashion, PC 2 explains
3/31 ≈ 10% of the total variation.

As the principal components are orthogonal, so are the purple and yellow distance
projection. Hence, by Pythagorean theorem, the square of the yellow (PC 1-aligned)
component, plus the square of the purple (PC 2-aligned) component equals to the
distance e squared. This means the sum of explained variations by the principal
components equals to the total variation in data. In practice, it is often convenient
to work with explained variance ratio, the variation, explained by individual PC-s, as
a percentage of the total variation.
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Figure 11.10: Explained variance. Left panel: gray circles are three datapoints d1, d2 and d3;
and the dark circle is their centroid. The arrows e1, e2 and e3 are the distance between the
datapoints and the centroid. The right panel shows the same distances, but not decomposed
into the components that are parallel to PC 1 (purple), and those that are parallel to PC 2

(yellow).

Example 11.1: How big are emergencies

“Emergency” is a legal concept that opens doors for various government assis-
tance. This may include additional firefighters or monetary assistance for the
affected household. FEMAa publishes data about different emergencies. How-
ever, emergencies are of very different size, stretching from broken water mains
to major hurricanes. And when we want to know the “scale” of emergency, then
no clear number is published. Instead, the measures are (i) total individual assis-
tance (IA) - applications approved;(ii) total individual and households program -
dollars approved;(iii) total housing assistance - dollars approved;(iv) total other
needs assistance - dollars approved;(v) total public assistance grants - dollars
obligated;(vi) dollars obligated to emergency work;(vii) dollars obligated to per-
manent work. All these numbers describe the scale of the emergency in some
sense, we expect all these numbers to big large for major disaster. Obviously,
these numbers are highly correlated, here are two examples:
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Figure 11.11: Published emergency measures are highly correlated. Dollars approved
versus applications approved (left), and total public assistance versus dollars for per-
manent work (right). The sharp upper bound on the rhs figure shows that no more
dollars are obligated than approved.

One way to find a single measure for “scale” of emergency is to do princi-
pal component analysis—it is quite likely that the first component will describe
something akin a scale of the emergency. When we do this (on normalized data)
then we get the following components (for simplicity we display the first four
components only):

PC1 PC2 PC3 PC4
nApplications 0.329 -0.671 0.327 -0.079
indTotal 0.396 -0.179 -0.181 0.360
housing 0.395 -0.177 -0.203 0.541
other 0.393 -0.186 -0.048 -0.728
pubTotal 0.376 0.407 0.292 0.014
emergency 0.381 0.321 -0.657 -0.192
permanent 0.372 0.427 0.548 0.064

The first component, PC1, appears to contain all seven variables by a roughly
equal amount, all the loadings are between 0.3 and 0.4. Hence the first PC is
just a (weighted) sum of all these numbers. The next component, PC2, includes
the four first components with negative sign and the last three with positive
sign. Note that the last three variables are about “dollars obligated” while the
previous numbers are about “dollars approved” (except the first one, the number
of applications). Hence it captures the difference between approved and obligated
dollars. In an intuitive way, we can write the PC-s as

PC1 = Approved + Obligated PC2 = Obligated−Approved

We do not discuss the further components as those explain virtually no variation
in data (see below).
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Variance, proportion of variance, and the cumulative variance of the four first
componenets are:

Table 11.2: Standard deviation, relative variance, and cumulative relative variance,
explained by the PC-s.

Std.dev Rel.var Cum.var
PC1 2.490 0.886 0.886
PC2 0.840 0.101 0.987
PC3 0.224 0.007 0.994
PC4 0.156 0.003 0.997

The first component has standard deviation 2.490, and it explains 88.6% of total
variation of data. The second component is much less important with standard
deviation of 0.84, and it explains 10.1% of total variation. These first components
together explain 98.7% of total variation in data. We can also display the relative
variance as a barplot for all seven PC-s:
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Figure 11.12: Proportion of variance, explained by PC-s. The figure suggests that in
most applications, only the first two, or maybe even only the first PC is important.

The picture confirms the impression from Table 11.2–the first two PC-s are much
more important than the other PC-s. In most applications we can probably safely
ignore the PC-s 3-7, or even all the PC-s besides the first one.

aThe U.S. Federal Emergency Management Agency

11.3.4 Data Rotation
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## PC1 PC2
## x1 0.8609556 0.5086802
## x2 0.5086802 -0.8609556
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variable PC1 PC2

individual applications approved -0.203 -0.200
approved individual/hosehold total -0.402 -0.414
approved housing assistance -0.397 -0.409
approved other assistance -0.353 -0.365
obligated to public assistance total -0.426 0.427
obligated to emergency work -0.400 0.385
obligated to permanent work -0.413 0.393
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Now

M′M =

(
30 28
28 30

)
(Note: Me = λe) Solve for eigenvalues:

|M′M| = (30− λ)(30− λ)− 282 = 0

The solution:
λ1 = 58 λ2 = 2 (11.3.3)

The corresponding eigenvectors:(
30 28
28 30

)(
x
y

)
= λ

(
x
y

)
(11.3.4)

and we have
e1 =

(
1/
√
2

1/
√
2

)
e2 =

(
−1/
√
2

1/
√
2

)
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The eigenvector matrix
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)
Is a rotation matrix for angle cosϕ = 1/

√
2 or 45◦.

Rotated data:
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• Eigenvalue decomposition rotates data matrix

– Orthonormal eigenvectors are the new base

• The largest eigenvalue corresponds to the most important dimension

11.3.5 Principal Component Regression
One widely used application of PCA is in the regression analysis. One can use the
principal components instead of the original variables. This may give two advantages:

• Sometimes the principal components have clear interpretation, and hence the
resulting coefficients have more meaningful interpretation than when using the
original variables.

• Often the less important principal components add little value to the regression,
so we can ignore those and get a simpler model.

Note that PC regression may not give any gains if the components that describe
little variance in data still describe a lot of variance in the target variable.

Example 11.2: Principal component regression with 2-D data

Here we demonstrate principal component regression using 2-D data. Consider
the data below:
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Figure 11.13: Narrow band of data points where color is associated with the bottom-
left–top-right direction. This does not correspond exactly to any of the features x1 and
x2, but instead to their linear combination (rotated data). The principal components
are depicted as arrows, with PC1 (orange) describing the direction maximum variation,
and PC2 (dark green) the perpendicular direction.

The data contains two numeric features, x1 and x2, and a color label, “black” or
“red”. Our task is to predict the color based on x1 and x2.

It is easy to see that red dots dominate in the top-right corner of the figure.
We can use a simple logistic regression model

Pr(colori = red) = Λ(β0 + β1 x1 + β2 x2). (11.3.5)

The results are

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.1932 0.2289 -0.84 0.3987

x1 0.0747 0.7820 0.10 0.9239
x2 1.0835 0.7532 1.44 0.1503

In a counterintuitive fashion, neither x1 nor x2 show much significance here while
we can clearly see that the red dots are clustered in the top-right corner. Even
more, the point estimate for x2 is negative although these are larger values that
are associated with red color. The problem here is the fact that both features
contain essentially the same information, and hence the design matrix is ill con-
ditioned. The accuracy on training data, 0.71, is acceptable though for such a
noisy image. We can cure the problem with principal component analysis. Doing
PCA on the data matrix gives us
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Table 11.3: Principal components
of data in Figure 11.13

PC1 PC2
x1 -0.71 -0.71
x2 -0.71 0.71

Table 11.4: Proportion of variance ex-
plained by components in Table 11.3

1 2
variance 1.95 0.05

proportion 0.97 0.03
cumulative 0.97 1.00

As is evident from the tables, PC1 loads both x1 and x2 of equal amount and
hence points to North-East, while PC2 contains a positive quantity of x1 and a
negative quantity of x2, and hence points South-East (see Figure 11.13). As PC2
very little information (its contains only 2% of the total variance), we can drop
PC2 and use a simpler model

Pr(colori = red) = Λ(β0 + β1 · PC1). (11.3.6)

The results are as follows:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.0519 0.2251 -0.23 0.8177

PC1 -0.8187 0.1998 -4.10 0.0000

The results show that PC1 is now highly significant and of reasonable size. Ac-
curacy on training data is the same, 0.71. But we got a simpler, model with more
easily interpretable model.

Example 11.3: How are conservative family values and identity related to
willingness to do good for society?

The worldview of people can be described with different dimensions, including
family values (conservative versus liberal), and identity (global versus local), and
many other. But how are these two value sets associated with the willingness to
contribute to the society? Let’s analyze this based on the World Value Survey, a
large world-wide opinion survey.

We estimate a linear regression model in the form

contributei = α+ β
T

· globalist valuesi + γ
T

· gender valuesi + ϵi (11.3.7)

where family values is a vector of family-values related opinion, and democratic
values is a vector of authoritarianism-democracy related viewpoints. The exam-
ples of family values includea

doingGoodImportant It is important to do something for good of society.
trustUN how much confidence do you have in United Nations?
worldCitizen I see myself as a world citizen.
partOfNation I see myself as part of the nation.
maleLeaders men make better political leaders than women
maleExecutives men make better business executives than women
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collegeBoy university education is more important for a boy than for a girl
When we run such a regression, we get the results

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.7280 0.0239 -72.24 0.0000

trustUN 0.0021 0.0048 0.44 0.6569
worldCitizen 0.1433 0.0053 26.81 0.0000

partOfNation 0.2503 0.0073 34.37 0.0000
maleLeaders 0.0772 0.0059 13.06 0.0000

maleExecutives 0.0342 0.0063 5.45 0.0000
collegeBoy -0.0767 0.0057 -13.52 0.0000

The results suggest that those with stronger both global and national identity
feel it more important to be good for society. The same is true for those who
think men make better leaders, but not for those who believe higher education
matters more for boys. The predictive power of the model is low with R2 = 0.041.

Instead of estimating the effect of respones to individual questions, we can-
combine the answers into principal components, and include those in the regres-
sion instead. The principal components are

PC1 PC2 PC3 PC4 PC5 PC6
trustUN 0.06 -0.43 -0.82 0.37 0.04 -0.01

worldCitizen 0.02 -0.67 0.05 -0.70 0.25 0.02
partOfNation -0.06 -0.60 0.53 0.50 -0.32 -0.01
maleLeaders -0.59 -0.01 0.06 0.16 0.50 -0.61

maleExecutives -0.61 -0.00 -0.01 0.08 0.19 0.76
collegeBoy -0.52 0.00 -0.21 -0.31 -0.74 -0.21

The first two components are easy to interpret: PC1 loads strongly with all three
variables that describe the conservative gender roles, hence a large PC1 value
describes liberal gender values (as the loadings are negative). PC2 loads on the
globalist/national feelings and describes someone who does not trust UN and
does not feel any attachment neither to the world nor her nation.

The importance of the components is

1 2 3 4 5 6
variance 2.01 1.29 0.96 0.78 0.58 0.37

proportion 0.34 0.22 0.16 0.13 0.10 0.06
cumulative 0.34 0.55 0.71 0.84 0.94 1.00

Let’s re-run the regression using the two first principal components only. To-
gether these describe over 50% of the variance, and third component is also
much harder to interpret. So we estimate a regression model

contributei = β0 + β1 · PC1i + β2 · PC2i + ϵi. (11.3.8)

The results are
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.4423 0.0046 -531.80 0.0000

PC1 -0.0349 0.0032 -10.79 0.0000
PC2 -0.1854 0.0040 -45.87 0.0000

The results indicate that PC1—individuals who have more liberal viewpoints
about the gender roles—are less likely to thing it is important to do something
good for the society. But the effect of PC2 is much stronger—those who do
not trust UN and do not feel belonging to a group do not think it is important
to do good. The effect of the latter component is much stronget than that
of the former, suggesting that feeling of attachment and identity is much more
important factor in determining someone’s willingness to contribute to the public
good. The model’s explanatory power is weak though, with R2 = 0.031.

aWVS opinion questions usually state the claim in a very conservative fashion and allow the
respondents either to agree or disagree with it. Here the answers are re-coded in a way that
larger positive numbers always denote more support for the claim.

11.4 Comparison of Clustering and PCA
As methods of unsupervised learning, but cluster analysis and PCA share a number of
traits. Both can be used to discover certain patterns in data, and given such patterns,
to simplify, compress, and interpret the data.

But they also differ in a number of ways. In case of clustering, we are primarily
interested in homogeneous subgroups. An example case is in Figure 11.14. The left
panel of the figure contains 5 reasonably distinct group that we can capture using
clustering methods, such as k-means. We can use this group information in several
ways:

• If the clusters correspond to the structural properties of the data, this helps us
to interpret and uderstand the it.

• We can also design different measures to address different groups. For instance,
different patients may require different treatment even with similar diagnosis.

• We can compress the data by replacing individual observations with the cor-
responding cluster center. Note that this does not constitute a dimensionality
reduction: cluster center vectors are still of the same dimension as individual
data vectors.

• Sometimes the group membership itself is of interest: which cases go together?
In case of principal components, our main task is to find a low-dimensional repre-

sentation of data that contains most of the original information. This representation
has a number of applications:

• Sometimes the reduction process itself reveals interesting properties of the data
that can be interpreted.

• We can genuinely reduce the dimensionality of data by removing the (rotated)
dimensions that carry little information. Unlike clustering, this process gen-
uinely shrinks the data dimensionality. But the individual observations still
remain distinct and are not replaced by certain average observations.
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Figure 11.14: How cluster analysis treats data: homogenous subgroups (left panel) can be
replaced by their corresponding cluster centers (right panel). In this way we can reduce the
original 100-observation dataset to 5 different ”types”. These types can be either interpreted,
one can design separate measures for each type, for instance marketing strategies in case of
customer types, and one can also replace each observation with the cluster center in order
to compress the data.

Lower-dimensional data is both easier to analyze and compress.
These methods also work well on different types of data. Cluster analysis is de-

signed for data that contains well-separated relatively homogeneous ”blobs” while
principal component analysis can handle datasets that form an elongated cloud.
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Figure 11.15: How PCA treats data: the dimension of maximum variance is treated as PC1
(red line, left panel) that carries most of the information. The other dimension (blue line)
carries little information and is collapsed, resulting in rotated 1-D data (right panel). We
may be interested in factor loadings, the relationship between the original features x1 and
x2. and the resulting principal components for interpretation and understanding. We may
also prefer to analyze and store the reduced-dimensional data (right panel) instead of the
original one.
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Chapter 12

Applications
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12.1 Recommender Systems
Recommender systems are in many ways similar to ordinary supervised ML methods.
Their aim is to predict users’ “product rating” over different products, and recommend
those with highest rating. The rating can be numeric, like in cases where users literally
rate movies on 1-5 scale, or it may be a binary “rating”, e.g. the indicator if someone
bought or did not buy a product.

However, recommenders also differ from the standard supervised models in several
important aspects:

• In ordinary supervised models we base the estimates on some sort of universal
user characteristics, such as age or education. Recommenders instead rely heav-
ily on other ratings by the same users, so in a way the other ratings the user
has done is the main information we have, often it is even the only information.

• Recommendation data is typically sparse. While we can collect common back-
ground information for most users and possible drop those cases where an im-
portant variable is missing, the users typically only rate a small minority of
products. Hence we cannot rely on traditional methods, at least not without
imputing the missing data.

439
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12.1.1 Collaborative Filtering
The idea of collaborative filtering is the following: when predicting ratings by user i,
we find a set of users who are “most similar” to the user i, and base our decision on
their ratings. The “most similar” here means users who are similar in terms of how
do they rate products, not in terms of the background characteristics like education
and age. This approach is in many ways similar to k-NN or local regression, just that
is adapted to sparse data where many datapoints must be imputed.

We start with a trivial example. Consider three fictional persons, Ji, Chen and Su
rating two equally fictional movies, Under the Bed and The Monk. Movies are rated
on numeric scale with “1” denoting the lowest and “5” the highest grade. Ratings
given by these users are in Table 12.1.

Table 12.1: Two fictional movies rated by three fictional persons. Average is the users’
average rating over all movies they have rated.

Name Movie Rating Average Centered rating
Ji Under the Bed 1 2.5 -1.5
Ji The Monk 4 1.5
Chen Under the Bed 3 2.0 1.0
Chen The Monk 1 -1.0
Su Under the Bed 4 2.5 1.5
Su The Monk 1 -1.5

Rating: Under the Bed
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Figure 12.1: Two movies rated by three users, the same data as in Table 12.1 but now
displayed graphically.

As this data is complete (all users rated all movies), we can easily depict the users
in the 2-D rating space (Figure 12.1). The raters are depicted as vectors pointing from
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the origin (0,0) to the corresponding ratings (Under the Bed rating on the horizontal
axis and The Monk rating on the vertical axis). A quick visual inspection also tells
that Chen and Su are more “similar” than, for instance, Chen and Ji. Based on this
quick picture we may already say that if Su liked a third move very much, Chen may
also like it. But we are less certain what will Ji think about it as his tastes seem to
be different.

Cosine similarity:

c(x,y) = x
T
·y

||x||·||y|| . See
Section 6.2.2 Cosine similarity
and angular distance, page 318.

In practice it is better to use centered cosine similarity, (Figure 12.2), not Eu-
clidean distance (our eyes implicitly measure Euclidean distance). The centered dis-
tance is computed by subtracting the user’s average rating from all of their ratings
(column Centered rating in Table 12.1). The figure shows the angles between Chen
and Ji, and Chen and Su. The angle between Ji and Chen, and between Ji and Su
is 180°, while the angle between Chen and Su is 0. Hence according to this figure,
Chen and Su are very similar, while Ji is their exact opposite. This leads to exactly
the same conclusion in this case as the Euclidean distance—if Su likes a third movie,
Chen may also like that one.
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Figure 12.2: Two movies rated by three users, the same data as in Table 12.1, column
Centered rating. The point for Su is shifted a little bit on the figure for clarity.

The centered data does not look particularly informative in the 2D case as all the
vectors are aligned on the exact same NW-SE line. However, in a 3D or in a higher
dimensional space this is not so any more. But even in the 2-D case we see Chen and
Su ratings pointing in one direction and Ji’s rating pointing to the other direction.
This tells us that Chen and Su are rather similar: both rate “Under the Bed” better
than “The Monk”. But Ji thinks the other way around.

This example assumed all users have rated all movies. But what to do in a more
realistic example where users only have rated a small fraction of products? An obvious
choice is to replace the missing values with the users’ average values. This is where
centered distance plays a very useful role—centered versions of such imputed values
is zero, and 0-length components do not affect cosine similarity. So computed user
similarity is less influenced by our imputations.

After computing the users’ similarity, the rest of the algorithm may proceed as
follows:
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1. Find the most similar users for any given user, for instance 10 most similar
users.

2. Use the ratings of the most similar users to compute prediced rating for the
given user. In case of multiple conflicting ratings for a single item, one may, for
instance, predict average of these. Care must be taken for not to include the
imputed values into the prediction.

3. Finally, the algorithm suggests the highest predicted values from the list com-
puted above. This results in recommendations like “users who like this movie
also liked that movie”.

12.1.2 Problems with recommender systems
While good recommenders are valuable both for customers and businesses, recom-
menders are not without their issues.

“Blind” recommendation algorithms may also suggest items that we consider
harmful. There is a well-known but unconfirmed story about teen pregnancy that
Target learned, based on her buying decisions, before her parents. As another, more
recent example, in 2022 lawmakers accused Amazon for recommending food preserva-
tive that has been used for suicides (Jackson, 2022). From the algorithm’s viewpoint,
it is perfectly valid thing to do–if someone is buying items that are helping to com-
mit suicide, the algorithm happily recommends the related items too. But unlike the
algorithms, we do not think in this way. It is also not immediately obvious how to
address such issues–algorithms are good in picking up all kinds of patterns, including
many patterns we are not aware of, and basing their decisions on all of these. First
later will humans discover that some of the recommendations are dubious at best
from the ethical standpoint.

Social media recommenders may build a network of other individuals, where con-
nections are made of various common links, such as common friends, schools both
persons have attended together, events they have both liked, and so on. As an upside
it helps to find new friends, or re-connect with old acquaintances. But they may also
attempt to reconnect people with their ex-s or abusers, and even worse, remind and
reveal an abuser about your presence.

Some recommenders are easy to game. If recommendations are partly based on
clicks or likes, then items that many users click on are recommended increasingly
more, resulting in even more clicks on these links. This results in “clickbaits”, titles
that look interesting although may not contain anything relevant. More advanced
users can set up hundreds of bots that like each other’s stories and in this way fool
the algorithm to think that this is something the other users want too. This is one
way to spread misinformation over social media.

Recommenders have problems related to shifting human taste, e.g. after listening
10 songs of a certain genre, the recommender learns to suggest even more similar
songs. However, the user gets bored of such music instead and looks for something
different. Such shifts are very hard to model.

Lack of variety in recommendations also make echo chambers possible. If a user
is for some reason interested in a certain type of information, the recommenders will
start suggesting even more sources that offer just this kind of information. It may
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effectively remove all alternative viewpoints from that user’s information sphere, and
re-enforce the feeling that they represent the majority. This is a mechanism behind
political polarization. In extreme cases, it may even breed weird cranky movements,
such as Flat Earth movement.
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12.2 Generating Content: Generative Adversarial Net-
works

Prerequisites: Section 9.2 Convolutional Neural Networks, page 379, Section 10.2
Gradient descent and gradient ascent, page 389

Generative Adversarial Networks (GAN -s, Goodfellow et al. (2014)) are models
that create content according to certain patterns. The idea of GAN-s is the following:
two networks (adversaries) are working together. One of them (discriminator) is
fed actual examples, and its task is to distinguish between the actual examples and
generated examples. The other network (generator) is creating new examples out of
some random data, and its task is to “fool” the discriminator to think these are real
examples. In the process, the networks are teaching each other, and they are getting
better in both distinguishing the real and generated examples, and also in generating
such examples.

The generator network is designed to produce examples based on some kind of
random inputs. For instance, it may take a vector of random numbers as input, and
transform these into an image through a series of dense and convolutional layers.
Through the training process the network learns to adjust the weights and convolu-
tional filters in such a way that the result resembles example images. Discriminator, in
turn is just an image categorization tool, however, it needs to be good in categorizing
the actual and generated details.

12.2.1 Technical details
In order to fix the ideas, let’s assume we are creating images. Each image can be
represented by a vector x ∈ X, where X is a set of all images the network can handle.
For instance, X may be all possible 100 × 100 pixel images with three color layers,
coded as color values in interval [0,1]. So X is a set of 100 × 100 × 3 tensors where
each element xijk ∈ [0,1]. For simplicity, we still refer to x as vectors, a vector of
tensors if you wish.

Denote the discriminator by D. In this context it is a function D : X → [0,1], a
function that takes in an image x and based on the image, it computes a number—the
probability that the input is a real image, not a generated one.

Generator G is also a function G : Rk → X, it takes in a g-dimensional vector of
random numbers z and converts it to an image of type X (e.g. 100× 100 pixels and
three color channels). So G(z) is an image. We need to give generator some inputs
even if these are random numbers, otherwise it will be able to only generate a single
image. The inputs do not have to be just random numbers–a good choice is to include
something like a “prompt”, a description of what image the user may want to get, or
maybe some other kind of context, e.g. the text on the nearby pages if the task is to
illustrate a book.

These two networks are “adversaries” with the opposite tasks: the discriminator
attempts to compute probabilities in a way that probability of the real image being
a real is one, and the probability that the generated image is real is zero:

D(x) = 1 and D(G(z)) = 0. (12.2.1)
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The generator, however, attempts to create such images that fool discriminator to
think that they are real, it wants to achieve

D(G(z)) = 1. (12.2.2)

Training adversarial networks proceeds in a broadly following fashion (Goodfellow
et al., 2014). Below, we assume the training is performed using stochastic gradient
ascent using batch size m.

1. First, train the discriminator:

(a) Sample m random inputs z and use generator G to create m artificial
images based on these input vectors.

(b) Sample another minibatch of m real images x.
(c) Train discriminator by a single step of GA maximizing the objective func-

tion
VD =

m∑
i=1

[
logD(xi) + log(1−D(G(zi))).

]
(12.2.3)

VD obtains its maximum if all D(xi) = 1 and all D(G(zi)) = 0, exactly
what we want the discriminator to do.

2. Next, train the generator:

(a) Sample m new noise vectors z

(b) perform a single step of gradient descent by minimizing the objective func-
tion

VG =

m∑
i=1

log(1−D(G(zi))). (12.2.4)

VG obtains its minimum if D(G(zi)) = 1, exactly as needed by the dis-
criminator.

3. Repeat the two steps above until convergence.
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Chapter 13

Responsible Data Science

As artificial intelligence is used more and more widely in our everyday lives, we
encounter more and more situations that leave the technical/statistical side of AI. In
this chapter we discuss these question with focus on social and ethical issues.
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13.4 Human Versus Algorithmic Decision-Making . . . . . . . . . . . 456

13.1 Explainable AI
A few simple statistical models can be explained fairly easily. For instance regression
models are relatively easy to understand, but example-based k-NN and simpler deci-
sion trees are also not that complicated. However, many more advanced models, in
particular neural networks, are essentially black boxes.

But humans often want explanations. Imagine a situation where the bank turns
down your loan application. Why? Will you be happy with the clerk explaining
that “I just pushed the button and this is what the computer told me...” If at the
same time another, at least superficially similar customer who also happens to be of
a different race got her load approved, then the situation may look quite troublesome
for the bank. An explanation is urgently needed but what even constitutes a suitable
explanation?
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Liao et al. (2020) discuss the types of explanations that users of AI applications
expect and need. They distinguish four broad types:

1. Global: explain the model. Explain the model using a global structure, e.g.
weighting of features, as an approximate decision tree, or other decision rules.

2. Local: explain predictions for a particular instance. Which features of the
particular case made the model predict what it predicts?

3. Counterfactual: how will prediction change when we change features? Which
features should we change to get a certain prediction?

4. Example-based: provide examples of similar cases where the model provided
similar predictions, and slightly different cases where the predictions were dif-
ferent.

Many users ask related questions in order to understand better the limitations of
the model (What is permissible? How can I improve the training?) Another important
application is to manipulate inputs in order to avoid undesirable outcomes. If the
model predicts that the product will not be successful, then we want to know what
should be changed to make it a success.

13.2 Social inequality
As any other tool, statistics and machine learning can be used for good and for evil.
Ethical dilemmas are nothing new to us, but as technology opens new avenues, we
sometimes have to ask the age-old questions in a totally new context. Even if we can
do this, should we do it? And how should we proceed in delicate cases?

13.2.1 Who Are Represented in Big Data?
Statistical models are trained on data and hence reflect the properties of the under-
lying data. When collecting dedicated survey data, such as World Value Survey, the
researchers usually spend quite a bit of effort to ensure that the data is representa-
tive, and carefully document the sampling methods and resulting sampling weights
in case certain populations or geographic regions are over/underrepresented. See
Section 1.2.1 Sampling Process.

Unfortunately, such steps are often left undocumented in case of Big Data. Even
worse, it is often unclear what would the theoretical population and sample frame
even be in many cases. For instance, large NLP models are typically trained with text
downloaded from internet. However, what would be a good representative sample of
text? We know that different people leave behind a different amount of text depending
on their habits and iternet access. But should we strive to an equal representation of
people? Text—language, is after all most cases produced as a part of communication
between several persons. So perhaps it is appropriate that the loud voices are over-
represented in a text corpus? As internet is also extremely complicated, it would be
difficult to compute the sampling weights.
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So it is not surprising at all that complex models that are trained on complex real
data will re-produce various unfavorable traits that we encounter in the real world.
And if we do not want the model to reflect such views, then what kind of views do
we want it to reflect? For instance, should we refer to a certain group of immigrants
as undocumented or illegal? As people have different opinion about the appropriate
language here, addressing this question is necessarily political (Bender et al., 2021).

13.2.2 Big Data, Big Inequality?
Boyd and Crawford (2012) discuss access to Big Data. Big Data is mainly collected
by players in the internet industry, such as social media or online retail companies.
These firms will have both the data and the resources for analysis, and they will
decide who else have access to data. It probably leads to inequality in terms of
research access where those with resources (prestigious universities and rich private
research labs) will have access, and the other cannot easily participate in the relevant
debate. Neither can they evaluate the quality of published big data–based research.
The fact that the private gatekeepers do not follow similar transparency and public
access requirements as the public sector data collectors will hamper analysis of topics
that the data collectors find inconvenient.

13.3 Fairness and discrimination
Fairness is an intuitive but imprecise concept. As automated decision-making has
become more widespread, this has also created more interest for fairness. At the
same time, large-scale data collection has made it easier to assess such decisions. Not
surprisingly, we can see that a vague concept like fairness is not easy to operationalize
and hence we see many decisions that are “unfair” in one or another way.

13.3.1 Fairness versus efficiency
Let’s start with a simple motivating example. Consider a world, populated with two
types of people, reds and greens. The color of a person is immediately obvious to
everyone, in a similar manner like gender or immigrant background, and it is hard to
hide it.1 The people can also be divided into two groups based on their skills: high
skilled and low skilled. For historical reasons, 2/3 of reds are high skilled while only
1/3 of the greens are high-skilled.

Imagine that you are a hiring manager in a big firm, and a job posting brought
in 6 candidates, 3 reds and 3 greens. For this job, the only thing that matters are
skills, the color is irrelevant. But unfortunately, unlike the color, skills are hard to
observe and require costly tests and interviews to assess. You only have funds to
interview 3 candidates. Which of these candidates will you test? Obviously, it would
be most efficient to interview the red candidates only–we expect 2 of them to be

1One may argue that neither of these characteristics are, in fact, immediately obvious. This is
correct. But simple and easily available information about people, such as their name, skin color, or
accent is enough to estimate these characteristics fairly well. Even more, what matters below is not
how the individuals identify themselves, but how the evaluators identify them.
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high-skilled, while it is likely that only 1 green candidate is high-skilled. Even more,
there is 30% chance that non of the greens is high-skilled! If you take this approach,
you are discriminating the candidates based of an irrelevant trait, color. But if you
decide to give everyone a chance and also interview greens, you are less likely to find
a suitable candidate. What should you do? Is it acceptable to only focus on economic
efficiency2 or should you ensure that you treat candidates of both color in a similar
manner?

This is an example of a trade-off between economic efficiency (at least in short
term) and fairness. Fairness may come at cost. Your decision will probably be affected
by your beliefs, the corporate policy, and legislation. In everyday lives we need to do
similar decisions quite frequently, decisions that may hurt certain other people.

Exercise 13.1: Probability to find no suitable candidates

You are an HR manager. You have 6 applicants (3 red and 3 green) but you can
only afford to interview 3 of them. Compute the probability that no high-skilled
candidate is interviewed, as a function of number of greens you interview (you
can only interview 0, 1, 2 or 3 greens).

Solution on page 503.

Below, we discuss a few selected aspects of fairness, and show that there is not
just a trade-off between efficiency and fairness, but also between different concepts of
fairness.

13.3.2 Individual fairness and group fairness
Unfortunately, we cannot just be “fair”. In everyday language, the word fairness is
typically used in a rather vague way. Depending on the context, it can be under-
stood as equal treatment, appropriate treatment, morally justified treatment, and in
a myriad of other ways. But even these, more specific moral principles, are hard to
define in a precise manner. Below, we focus on fairness in the equal treatment sense.

One of the central concepts in fairness discussion is individual fairness. It captures
the idea that individuals who are similar from a particular task’s perspective should
be treated similarly. For instance, two candidates on a job interview who are equally
qualified for the respective job, should be treated in the same way. In particular, they
should not receive different treatment because the job-irrelevant attributes, such as
ethnic background.

Another related equal treatment–related concept is group fairness. It is concep-
tually somewhat similar, and requires that the relevant groups should be treated in a
similar manner, at least in the statistical sense. In case of the job interview example
above, we expect to see that a similar percentage of candidates from both groups will
be hired, given they are equally qualified.

Although both individual and group fairness seem largely similar, they are not
compatible–one cannot achieve both, unless in very specific circumstances (Kleinberg
et al., 2016), see also Section 13.3.3 Fairness: Different Measures are Incompatible,

2Situation where you choose to focus solely on economic efficiency and only interview reds is called
statistical discrimination.
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page 451. We need to choose between these two (and potentially more) incompatible
fairness definitions.

This is not the only problem when applying fairness. For instance, a central
requirement of individual fairness–similar people are treated in a similar manner–
requires us to decide which people are similar. In particular, why are certain traits,
such as gender or race, treated as irrelevant while others, such as immigrant status
are not? Such decisions rely on our common understanding on relevant traits and
permissible discrimination, and hence it cannot be an absolute measure. Another
problem is related to assessing the general equilibrium effect in the presence of multiple
equilibria. Fleisher (2021) provides an example how affirmative action can, over time,
result in the less qualified minority group to become similar to the majority group.
But in sort-term, the example includes affirmative action and hence the groups are
not treated in a similar manner. What is considered fair treatment depends on the
time horizon and the equilibrium type we focus on–even if treated differently in the
short run, the policy is similar in the long run.

13.3.3 Fairness: Different Measures are Incompatible
Prerequisites: Conditional probability: Section 1.4.3 Bayes theorem, page 49

One of the problems with “unfair” treatment and “algorithmic bias” that attracted
wide attention in recent years is related to algorithms that are used in the U.S. crim-
inal justice system. Angwin et al. (2016) analyze Correctional Offender Management
Profiling for Alternative Sanctions (COMPAS) algorithm, a profiling algorithm that
is widely used to predict whether the defendant is likely to commit another crime if
released. Their analysis turned up “significant racial disparities”. In particular, whites
who were labeled as “high risk” by the algorithm did not re-offend in 23.5% of cases,
while African-Americans who were labeled “high-risk” did-not re-offend in 44.9% of
cases. To put it differently, substantially more African-Americans who did not re-
offend were mis-categorized into high-risk category, compared to the corresponding
whites. Unfortunately, this label is not only of academic interest–the perceived risk-
iness of recidivism influences sentences, right to bail, probation and other measures
that affect real lives. The proponents of the COMPAS score have countered the criti-
cism by demonstrating that at given score,3 both whites and African-Americans have
similar probability to re-offend, and hence it is a fair measure.

The problem boils down to different concepts of fairness. Angwin et al. (2016)
criticism centers on group fairness, i.e. requirement that similar groups of people, here
defined by race, should be treated similarly (Jacobs and Wallach, 2021). So whites
who do not re-offend should have the same mis-classification rate as blacks who do not
re-offend. This is clearly violated with COMPAS score. However, its advocates rely on
individual fairness, requirement that similar individuals to be treated equally: given
they receive equal COMPAS score, the decision should be the same, independent of
race and other personal characteristics. Unfortunately, these two concepts of fairness
are not compatible (Kleinberg et al., 2016). Except in very specific cases, such as

3COMPAS assigns each individual a risk score between 1 and 10, with 1 meaning “very unlikely
to re-offend” and 10 meaining “very likely to re-offend”.
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when we can perfectly predict re-offenses, it is only possible to be fair either in one
way or the other way, but not in both ways at the same time. Next, we provide a
numerical example and explain the problem more in-depth.

Consider a world where there are people of two colors C, Greens and Reds. For
every person, we are interested in their re-offending behavior R: they may either
re-offend (R = 1) or not re-offend (R = 0). Importantly, for whatever reason, there
are more recidivists among Greens than among Reds, so Pr(R = 1|Green) > Pr(R =
1|Red). We do not observe who is going to re-offend, but we can assess their recidivism
probability using a test T . It has only two possible values: either T = 0 or T = 1.

Figure 13.1, left panel, displays a numeric example of such a world. It contains 48
Reds and 48 Greens, where only 12 Reds will re-offend, hence Pr(R = 1|Red) = 1/4.
But among Greens, 36 will re-offend, so Pr(R = 1|Red) = 3/4.

Pr(R = 1|T1) denotes two
conditional probabilities:
Pr(R = 1|T1 = 0) (here 1/6) and
Pr(R = 1|T1 = 1) (here 5/6).

The figure also displays one such test T1. The test is color-blind in the sense that

Pr(R = 1|T1) = Pr(R = 1|T1,Green) = Pr(R = 1|T1,Red), (13.3.1)

i.e. it predicts the recidivism probability equally well for Reds and Greens. Assume
that T = 1 suggests that the individual is likely to re-offend, and T = 0 suggests the
opposite: Pr(R = 1|T = 1) > 0.5 > Pr(R = 1|T = 0). For instance, T can be the
number of previous crimes the defendants have committed, with T = 0 meaning no
previous offenses and T = 1 means a previous criminal record.

The policymakers’ (judges’) task is to predict recidivism based on the test score
T1 by computing probability Pr(R = 1|T ). In the example, Pr(R = 1|T = 0) = 1/6
and hence if you pass the test, you will be considered unlikely to re-offend. However,
those who fail the test will re-offend with probability Pr(R = 1|T = 1) = 5/6, so they
are considered likely recidivists. Importantly, these figures do not depend on color,
so the judges can use just the test result and have no reason to consider the color.

Figure 13.1: Left panel: the test is color blind: Pr(R = 1|T ) does not depend on color.
However, now greens’ FPR is almost three times that of reds.
Right panel: a test that ensures the FPR-s are equal. However, now color is an important
predictor of Pr(R = 1|T ).

While the judges are tasked to evaluate recidivism probability given the test score,
this is not the problem the defendants face. The defendants’ problem is to pass
the test, given their recidivism probability and color. They are concerned about
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Pr(T = 0|R,C).

FPR = FP
N

, FNR = FN
P

. See
more in Section 4.2.1 Confusion
matrix, page 228.

The defendants’ problem is equivalent with FPR: the probability
that a non-recidivist is categorized as a recidivist by mistake. And here T1 clearly
fails in terms of color-blindnes: out of 36 non-recidivist Reds, one will fail the test
and 35 will pass, while out of 12 non-recidivist Greens, only 5 will pass and 7 will fail!
FPR for Reds is 3% while this for Greens is 58%!

The right panel of the figure shows another test, T2. This one ensures color-
blindness from the defendants’ point of view: Pr(T = 0|R,Red) = Pr(T = 0|R,Green).
For instance, 12 out of 36 non-recidivist Reds will fail the test, giving FPR = 1/3 and
4 out of 12 non-recidivist Greens will fail it, resulting in exactly the same FPR. Un-
fortunately, now the model is not color-blind from the judges’ perspective any more.
As you can see, out of the Reds who pass the test, 24 out of 28 are non-recidivists
(Pr(R = 1|T = 0,Red) = 1/7) while only 8 out of 20 Greens will not re-offend
(Pr(R = 1|T = 0,Green) = 3/5). Hence the judges are inclined to predict that a Red
who passed the test is not a recidivist while a Green who passed it is a recidivist. The
numbers in the example are chosen in such a way that the test is useless–no matter
the test score, Greens are predicted to be recidivists and Reds are not. So in this
sense the test is biased.

So we have two tests–the one is fair from the judges’ perspective and the other from
the defendants’ perspective. We can use Bayes’ theorem to express the defendants’
problem Pr(T |R,C) through the judges problem Pr(R|T,C):

Pr(T |R,C) = Pr(R|T,C) · Pr(T |C)
Pr(R|C)

(13.3.2)

It is obvious that even if Pr(R|T,C) is color-blind, the value that matters for indi-
viduals, Pr(T |R,C) is not–unless Pr(T |C) and Pr(R|C) exactly cancel out. This is
because Pr(R|C) is different for Reds and Greens (1/4 and 3/4 in the numeric ex-
ample above). Hence a color-blind model that estimate the re-offending probability
cannot provide similar FPR for both groups as long as the groups are not equal!
Hence low-risk greens will always have larger chances to be mis-classified as recidi-
vists. The reason for this is fairly intuitive–in case of Greens, the pool of those who
pass the test (T2 = 0) is “spoiled” by a large number of recidivists who accidentally
get the test right. This makes the fact that someone passed T2 only a weak signal of
non-recidivism. The only solution is to use a test, such as T1, that Greens find much
harder to pass.

Exercise 13.2: Perfect test
Assume we have access to test T3 that can exactly tell who is recidivist and who
is not, whatever their color. Show that the unfairness problem will now fall way
using a) the numeric example; and b) the Bayes’ theorem.

The test T1 corresponds broadly to COMPAS model. The model uses a set of
individual background variables T to compute the re-offending probability, and finds
that given the background, the probability does not depend on race. However, the
FPR differs by race.

Obviously, in a real application we may find that our model is fair neither in one
nor the other way but will give results somewhere in-between. It all depends on what
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kind of information we have access to, and how it is correlated with recidivism.

There are three separate issues that give us this unfortunate result. The first
problem is pure technical–the test is imperfect, in particular Pr(R = 1|T = 0) > 0–
we are unable to perfectly tell who is low-risk. Unfortunately, there is no reason to
believe that we are ever able to design perfect tests.

The second problem is that the percentage of high-risk individuals depends on
color. Why is it like this? Is it because of some sort of historical discrimination?
Because of unequal access to education or other resources? Something else? It is
unlikely that we are able to eliminate such inequalities in the future, but measures to
improve the matters are definitely possible.

The final problem here is the fact that these two fairness concepts—individual
fairness and group fairness—are incompatible. We use the same word, “fairness”, to
denote somewhat different concepts, and intuitively we feel that both are important.
But that does not make these two concepts compatible.

Part of the problem is that the group fairness concept is based on group labels
that are irrelevant as predictors, even more, that are supposed to be irrelevant as
predictors. If we believe that group labels should not be used for prediction, and
they do not carry any information (as in the first example), then why do we want the
fairness to be based on the “irrelevant” group labels? There are no good answers. It
just feels “fair”.

But whatever is the fundamental problem, the policymakers are facing an incon-
venient choice.

13.3.4 Models discriminating minorities
Prerequisites: Section 2.1.8 Interactions effects, page 160

Consider a world with a wealthier majority group, Reds, and a poorer minority
group Greens. Both groups are equally skilled, but unfortunately, the skills are hard to
measure. However, there is various other characteristics of the job candidates that are
easily accessible. One of these characteristics is the zip code, or more specifically–the
average wealth in the zip code.

Why might the neighborhood wealth be a good measure of candidates’ skills?
There may be multiple reasons. To name just a few–wealthier neighborhoods tend
to have better schools; wealthier parents can afford more relevant extra-curricular
activities; people in wealthier neighborhoods are less exposed to drugs and street
crime. However, for some reason the correlation between skills and productivity is
stronger for Reds than for Greens. Again, there may be various reasons. Reds may be
an established ethnic group that has historically well sorted by wealth while Greens
are recent immigrants who are living in neighborhoods where affordable homes were
available. Or maybe greens are members of historically discriminated groups where
redlining made it impossible to move to better neighborhoods. Or maybe they just
value different amenities–proximity to community of other Greens, ethnic shops and
restaurants, or certain jobs.

An HR consultancy firm has built a model, based on the previous skill data and
various features it was able to access, in particular wealth (Figure 13.2, left). The



13.3. FAIRNESS AND DISCRIMINATION 455

0

30

60

90

25 50 75 100
Neighborhood wealth

S
ki

ll 
le

ve
l Color

G

R

0

30

60

90

25 50 75 100
Neighborhood wealth

S
ki

ll 
le

ve
l Color

G

R

Figure 13.2: Relationship between skills and wealth. Greens (circles) have a much higher
productivity given their neighborhood wealth than reds (triangles), but because there are
only few greens, the model fails to take it into account.

model they use is just a linear regression:

skillsi = β0 + β1 · wealthi + ϵi, (13.3.3)

its predictions are denoted by the upward sloping black line (left panel). The line
broadly matches the pattern for the reds and shows that indeed, people from wealthier
neighborhoods tend to be more skilled. But it clearly misses the greens–most of the
greens tend to do much better than what the black line predicts.

The main problem here is that the model assumes that the relationship between
productivity and wealth is identical for both groups. If this were the case, we were
just favoring the wealthy candidates, but candidates of both colors would have equal
chances. But because the correlation differs for reds and greens, the “favoring-
wealthy” approach is not color-blind any more. As the Figure shows, there are very
productive green candidates but none of them lives even in a neighborhood of average
wealth.

A separate problem is that the Greens are a minority. There are just fewer of
them, and hence such mistakes are harder to identify. The presence of greens still
changes the model by pulling the left end of the black line up. But the effect is small.
Even more, even if we are able to identify the problem, we may be unable to correct
it because the estimates are noisy.

The right panel displays what happens if we use a more flexible model that allows
for different slope for different groups through an interaction effect (see Section 2.1.8
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Interactions effects, page 160) in the form:

productivityi = β0 + β1 · wealthi + β2 · wealthi · colori + ϵi. (13.3.4)

The updated model predicts two separate averages, one for Reds and one for Greens.
The average for Reds is fairly similar for the black line in the previous model, but the
line for greens is now high above the red line. In similar neighborhoods, the greens
are much more skilled than reds. We can also see that the error corridors for the
green line are much larger.

This is an extremely simple model where it is easy to see the problem. But related
issues also occur in much more complex cases, such as facial recognition or voice-to-
text conversion. Unlike here, we cannot easily tell what are the relevant features in
those cases, and if it turns out that the facial recognition model does not recognize
women, then we cannot easily point to the underlying problem.

But be aware of that it is not just statistical models that can show different biases.
Human decision-makers do can also be easily fooled by characteristics like wealth, by
the first impression, or by certain other behavioral traits that different groups may
use differently.

13.4 Human Versus Algorithmic Decision-Making
Algorithms are often criticized as “obscure”, in particular when the inner workings of
those are not published. Sometimes it is claimed that we should not use algorithms
at all as algorithms are no less biased than humans. However, such claims miss a
few important points. While complex algorithms are always obscure, human mind is
no more transparent. While we can publish the inner details of algorithms (although
not necessarily understand these), this is not possible in case of human brains. We
can also analyze the data, and access possible problems there, but again, this is not
possible to do with humans.

Instead of discussing the “obscurity” and “biasedness”, we should ask if algorithms
can do better decisions that the relevant humans. For instance, can judges make better
decisions if they have access to an algorithmic result? (Kleinberg et al., 2018) show
that this is indeed the case in case of NYC judges. The judges have to decide whether
to jail or release arrested criminals, and the authors show that judges’ decision is
much affected by seemingly random factors. They tend to keep too many low-risk
defendants in jail while releasing too many high-risk defendants. Algorithm would
achieve a similar crime reduction with 20-40% smaller jail rate, or alternatively, at a
similar jail rate it had achieved 25-15% smaller crime rate.



Appendix A

Mathematics

These notes assume you are reasonably familiar with basic calculus and a few other
mathematical concepts, such as logarithm. Below is a list of the most important rules
with little explanations.
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A.1 High-School Mathematics
A.1.1 Logarithm
Definition: a is logarithm of x if ea = x where e = 2.71828 . . . , and we write a = log x.
For instance, log 7.389 ≈ 2 as e2 ≈ 7.389.

Note: e-based logarithms as defined above are also called natural logarithms, and
sometimes denoted by ln instead of log. Often the notation log is reserved for decimal
logarithms, defined as log10 x = a if 10a = x. Sometimes (in information theory for
instance) we also use binary logarithms where log2 x = a if 2a = x. Notation differs in
different fields and between different authors. In these notes, logarithm always means
natural logarithm and is denoted by log. If needed, other logarithms are denoted by
log10 or log2 by explicitly writing their base.

Properties

log xα = α log x and log(x y) = log x+ log y (A.1.1)

Logarithms of different base can easily be converted as

logb x =
log x

log b
(A.1.2)
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Limits involving logarithm

TBD: limx→1 log x = x− 1 etc
TBD: limϵ→0(1 + ϵ)α = 1 + αϵ

lim
x→0

x · log x = 0 (A.1.3)

Proof 3
Write x log x = (log x)/(1/x) and use L’Hospital’s rule.

A.1.2 Differentiation
Definition

Derivative in case of univariate function is defined as

f ′(x) ≡ df(x)

dx
= lim

∆x→0

f(x+∆x)− f(x)
∆x

. (A.1.4)

The definition in case of multivariate calculus is defined in an analogous way. If we
only change one variable at a time, we treat the others as contants, and essentially
we are back at the univariate case. Just the result is called partial derivative now,
and denoted with ∂ symbol:

∂f(x, y, z, . . . )

∂x
= lim

∆x→0

f(x+∆x, y, z, . . . )− f(x, y, z, . . . )
∆x

. (A.1.5)

List of common differentiation rules

Here is a (non-exhaustive) list of the common rules for calculating the derivative of
simple functions, and combinations of functions.

d

dx
xα = αxα−1 (A.1.6)

d

dx
log x =

1

x
(A.1.7)

d

dx
logb x =

1

log b

1

x
(A.1.8)

A few general rules for differentiation:

d

dx
[λf(x) + µg(x)] = λf ′(x) + µg′(x) differentiation is a linear operator

(A.1.9)
d

dx
f(g(x)) = f ′(g(x)) · g′(x) chain rule (A.1.10)

d

dx
f(λx) = Λf ′(x) application of chain rule (A.1.11)
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A.1.3 Combinatorics
Binomial-coefficients

Binomial coefficients tell how many different possibilities are there to choose n objects
out of S in total. For instance, out of S coins you want to choose n that show heads,
how many different ways can you do it? This number is called binomial coefficient
and denoted by (

S

n

)
=

S!

n!(S − n)!
(A.1.12)

For instance, if you want to pick three people out of a group of 10, then you can do
it in (

10

3

)
=

10!

3! · 7!
=

3628800

6 · 5040
= 120

different ways.
Here a brief explanation of the formula. There is S! ways to order the objects.

If you pick n out of these, the order in which you pick those does not matter. For
instance, (1, 4, 7), (4, 7, 1) and (7, 4, 1) are equivalent, all these samples contain the
exact same elements. Also the order of the S − n leftover elements does not matter,
and you can put them in (S − n)! way. Putting this all together–out of S! possible
orders, n! · (S − n)! are equivalent, and hence we get the formula (A.1.12).

A.2 Matrix calculus
As linear algebra is the language of statistics, we may often want to do optimization
in matrix form too. This requires matrix calculus. It is essentialy ordinary calculus,
supplemented with a set of rules how to collect back into matrices all the resulting
objects that arise when differentiating the individual matrix components.

Start simple. If we have a matrix, we can define it’s derivative with respect to
a scalar just as a similar matrix where we have differentiated each component with
respect to that scalar:

∂

∂λ


x11 x12 . . . x1K

x21 x22 . . . x2K

...
... . . . ...

xN1 xN2 . . . xNK

 =



∂λ
∂x11

∂λ
∂x12

. . . ∂λ
∂x1K

∂λ
∂x21

∂λ
∂x22

. . . ∂λ
∂x2K

...
... . . . ...

∂λ
∂xN1

∂λ
∂xN2

. . . ∂λ
∂xNK

 . (A.2.1)

Essentially we take derivatives of each element of a collection (a collection we call
matrix) and put these back into a similar collection. So little changes if we differentiate
matrices with respect to a scalar.

Differentiation with respect to a vector requires additional rules, however. Let’s
take the simplest case: differentiate a scalar function f : RK → R with respect to a
column vector: ∂

∂xf(x). Note that as f(x) is a function of the vector x, it can instead
be written as f(x1, x2, . . . , xK) if x has K components. It is also a scalar function,
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i.e. it associates a single number with the input vector x. We define the derivative
with respect to the column vector x as:

∂

∂x
f(x) =


∂

∂x1
f(x)

∂
∂x2

f(x)

. . .
∂

∂xK
f(x)

 (A.2.2)

and w.r.t. the row vector as
∂

∂x′ f(x) =
[

∂
∂x1

f(x) ∂
∂x2

f(x) . . . ∂
∂xK

f(x)
]
. (A.2.3)

So we simply take the partial derivatives of the function with respect to all individual
components of the vector, and stack the results in a vector of the same shape. So
derivative of a scalar function with respect to a vector is a vector of similar shape.
It’s not too bad so far.

This rule has a nice application. In case of both x and β are K×1 column vectors,
x

T

β = β
T

x = β1x1 + β2x2 + . . .+ βKxK is a scalar. Hence

∂

∂x
x

T

β =
∂

∂x
β

T

x =



∂
∂x1

(β1x1 + β2x2 + . . .+ βKxK)

∂
∂x2

(β1x1 + β2x2 + . . .+ βKxK)

...
∂

∂xK
(β1x1 + β2x2 + . . .+ βKxK)

 = β. (A.2.4)

This is very similar to the ordinary calculus where ∂
∂xx · β = β.

Things get more complex if we want to differentiate a vector function w.r.t a vector.
Let’s stay with the cases that are easier to represent: derivative of a column vector
function w.r.t a row vector, and the way around. A vector function is a function that
associates a vector with each argument value. Let’s look at a function f : RK → RN ,
i.e. it associates a N -dimensional vector with each K-dimensional argument. The
concept of vector function is simply a shorthand of writing

f(x) =


f1(x)

f2(x)

. . .
fN (x)

 (A.2.5)

i.e. it is a suitably stacked collection of N scalar functions of a vector arguments,
which in turn, can be written with no vector notation at all as

f(x) =


f1(x1, x2, . . . xK)

f2(x1, x2, . . . xK)

. . .
fN (x1, x2, . . . xK)

 . (A.2.6)
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Now we have to take a derivative of this stack of functions w.r.t the row vector x
T .

We just take each individual (vertical) component, differentiate it as in (A.2.3), and
stack the resulting row vectors vertically. This gives us a matrix:

∂

∂xT f(x)



∂
∂x1

f1(x)
∂

∂x2
f1(x) . . . ∂

∂xK
f1(x)

∂
∂x1

f2(x)
∂

∂x2
f2(x) . . . ∂

∂xK
f2(x)

...
... . . . ...

∂
∂x1

fN (x) ∂
∂x2

fN (x) . . . ∂
∂xK

fN (x)

 . (A.2.7)

So the derivative of N -dimensional column vector w.r.t K dimensional row vector is
a N ×K matrix. This is a nice result that can be used in several applications. If A
is a N ×K matrix

∂Ax

∂x′ = A and ∂x′A

∂x
= A. (A.2.8)

(You simply have to write down the definition of Ax, and use (A.2.3) to get the
result).

Additional useful results without proofs:

∂

∂x
x

T

=



∂x1

∂x1

∂x1

∂x2
. . . ∂x1

∂xK

∂x2

∂x1

∂x2

∂x2
. . . ∂x2

∂xK

...
... . . . ...

∂xK

∂x1

∂xK

∂x2
. . . ∂xK

∂xK

 = I
∂

∂xT x = I (A.2.9)

∂Ax

∂xT = A
∂x

T

A

∂x
= A (A.2.10)

∂x
T

x

∂x
= Ix+ xI = 2x

∂x
T

Ax

∂x
= (A+ A

T

)x. (A.2.11)

All these results can be proven by using the definition of matrix multiplication, and
the differentiation wrt vector (A.2.2) and (A.2.3).

TBD: chain rule
TBD: f(x)T · f(x)
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Appendix B

Datasets

Datasets used in this book originate from various sources. Some are copied from
R packages, others are scraped by me. R packages are typically used as-is (e.g.
SmokeBan from AER package), but others are provided as CSV files in the book’s
repo. This appendix gives a brief overview of these.

Boston housing This is a popular dataset for machine learning, available from var-
ious sources. Version here, boston.csv.bz2 is copied from R’s MASS package, but it
is identical to other versions. It has 506 rows, 14 numeric variables and no missings.
Each row contains data for one neighborhood (town/tract). The central variable is
to be analyzed is typically medv, median value of single-family homes in that neigh-
borhood. Variables:
crim per capita crime rate by town.
zn proportion of residential land zoned for lots over 25,000 sq.ft.
indus proportion of non-retail business acres per town.
chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
nox nitrogen oxides concentration (parts per 10 million).
rm average number of rooms per dwelling.
age proportion of owner-occupied units built prior to 1940.
dis weighted mean of distances to five Boston employment centres.
rad index of accessibility to radial highways.
tax full-value property-tax rate per $10,000.
ptratio pupil-teacher ratio by town.
black 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town.
lstat lower status population (percent)
medv median value of owner-occupied homes in $1000s.

Global shark attack file In repo as gsaf5-2020.csv. Global Shark Attack File version
5 (GSAF) is accessible through Shark Research Institute as a google sheet (as of
September, 2023). The version here does include columns href, href formula, Injury,
Name and pdf, but columns without names are names as using “V” and the column
number. The version here contains 6462 observations and 19 columns.
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https://faculty.washington.edu/otoomet/machineLearning.pdf
https://faculty.washington.edu/otoomet/machineLearning.pdf
https://bitbucket.org/otoomet/lecturenotes/raw/master/data/boston.csv.bz2
https://bitbucket.org/otoomet/lecturenotes/raw/master/data/gsaf5-2020.csv.bz2
https://www.sharks.org/global-shark-attack-file
https://docs.google.com/spreadsheets/d/1rH3O8JQ1v6tt7swPNbE5B5-AtVr9OtjhhmwpEuBQFbc/edit#gid=1632639634
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The dataset is not documented and we are not sure how is it collected. The
variables are listed below, but as there is no documentation, everyone may guess
what they are.
Case Number
Date
Year
Type
Country
Area
Location
V10
Fatal (Y/N)
Species
Case Number
original order
V24
Activity
Age
Time
Investigator or Source
Case Number
V23

GSAF must not be confused with International Shark Attack File (ISAF), com-
piled by Florida Museum. That file is available for research purposes only.

Growth-unemployment World Bank data about GDP growth and unemployment
across countries. 266 entries. In repo as growth-unemployment-2016.csv.bz2

Columns:
country 3-letter acronym
growth GDP growth, pct
unemployment unemployment rate (pct)

Harden NBA basketball player James Harden 2021-2022 results. Harden is an NBA
player, 196 cm tall and weighting 99 kg, born 1989. 2021-2022 season data from
Basketball-reference.com. In repo as harden-21-22.csv.bz2

Columns:
Rk rank (game id)
G season game for Harden
Date yyyy-mm-dd
Age years-days
Tm team
Opp opponent
GS games started (=1 as each row is one game)
MP minutes played
FG field goals
FGA field goal attempts

https://www.floridamuseum.ufl.edu/shark-attacks/
https://bitbucket.org/otoomet/lecturenotes/raw/master/data/growth-unemployment-2016.csv.bz2
https://www.basketball-reference.com/players/h/hardeja01/gamelog/2022
https://bitbucket.org/otoomet/lecturenotes/raw/master/data/harden-21-22.csv.bz2
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FG% field goal percentage scored
3P 3-point field goals
3PA 3-point attempts
3P%
FT free throw scores
FTA free throw attempts
FT%
ORB offensive rebounds
DRB defensive rebounds
TRB total rebounds
AST assists
STL steals
BLK blocks
TOV turnovers
PF personal fouls
PTS points
GmSc game score
+/-

Heights The dataset is included in R package modelr. It is an extract from NLSY
(National Logitudinal Survey of Youth) 2012 wave. It has 7006 observations and
contains variables
income Yearly income. Uses top coding: the top two percent of values are averaged

and that average is used for all values in the top range.
height Height, in inches
weight Weight, in pounds
age Age, in years, between 47 and 56
marital Marital status
sex Sex
education Years of education
afqt Percentile score on Armed Forces Qualification Test

Housing The dataset is included in R package Ecdat. It lists 546 house sale prices
in Windsor, Ontario from 1987.

Variables:
price sale price of a house
lotsize the lot size of a property in square feet
bedrooms number of bedrooms
bathrms number of full bathrooms
stories number of stories excluding basement
driveway does the house has a driveway ?
recroom does the house has a recreational room ?
fullbase does the house has a full finished basement ?
gashw does the house uses gas for hot water heating ?
airco does the house has central air conditioning ?
garagepl number of garage places

https://cloud.r-project.org/web/packages/modelr/modelr.pdf
https://cran.r-project.org/web/packages/Ecdat/index.html
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prefarea is the house located in the preferred neighbourhood of the city ?

Howell’s height-weight data In repo as howell-height-weight.csv.bz2. If contains
age, sex, height and weight of 846 !Kung Sans. Downloaded from from rethinking R
package, but originates from University of Toronto datasets collection. The original
data is collected by Nancy Howell in 1960s. It contains a number of different samples,
e.g. adults only, adult men only, kids only, some snowball sampling... So it is not a
representative dataset.

Variables:
age.at.death
age
alive 1/0
male 1/0
height cm
weight kg

Iris In repo as iris.csv.bz2. It is also an
R built-in dataset, the version in repo is
copied from there.

It is collected by Ronal Fisher 1936
(see Wikipedia). It contains sepal and
petal measures of 150 iris flowers of
species setosa, versicolor and virginica
(50 of each).

The variables are

Sepal.Length : sepal length, in cm
Sepal.Width
Petal.Length
Petal.Width
Species : setosa, versicolor, virginica

Figure B.1: Petals and sepals of iris mis-
souriensis. In many flowers, petals are large,
bright and colorful, while sepals smaller,
green sepals’ primary function is to protect
the bud. In case of iris, sepals are even larger
and more colorful than petals.

Males males.csv.bz2 originates from R package Ecdat. It is a subset of NSLY panel
that contains 4360 observations for 545 young men in the U.S. from 1980 to 1987.
The variables are:
nr identifier
year year
school years of schooling
exper years of experience (=age-6-school)
union wage set by collective bargaining ?

https://bitbucket.org/otoomet/lecturenotes/raw/master/data/howell-height-weight.csv.bz2
https://github.com/rmcelreath/rethinking/blob/master/data/Howell2.csv
https://github.com/rmcelreath/rethinking/blob/master/data/Howell2.csv
https://tspace.library.utoronto.ca/handle/1807/10395
https://bitbucket.org/otoomet/lecturenotes/raw/master/data/iris.csv.bz2
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://bitbucket.org/otoomet/lecturenotes/raw/master/data/males.csv.bz2
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ethn a factor with levels (black, hisp, other)
maried married ?
health health problem ?
wage log of hourly wage
industry a factor with 12 levels
occupation a factor with 9 levels
residence a factor with levels (rural area, north east, northern central, south)

Marathon Marathon half-time and finishing time. A sample of 1000 cases, down-
loaded from GitHub. In repo as marathon.csv.bz2

Columns:
age years
gender M/F
split split time (hh:mm:ss)
final finishing time (hh:mm:ss)

NC births Dataset about births in North Caroline. Can be downloaded from Open-
intro webpage

A random sample of 1000 cases from a 2004 pulicly release dataset about births
(mothers and childern) in North Carolina.

Variables:
fage Father’s age in years.
mage Mother’s age in years.
mature Maturity status of mother.
weeks Length of pregnancy in weeks.
premie Whether the birth was classified as premature (premie) or full-term.
visits Number of hospital visits during pregnancy.
gained Weight gained by mother during pregnancy in pounds.
weight Weight of the baby at birth in pounds.
lowbirthweight Whether baby was classified as low birthweight (low) or not (not

low).
gender Gender of the baby, ‘female’ or ‘male’.
habit Status of the mother as a ‘nonsmoker’ or a ‘smoker’.
marital Whether mother is ‘married’ or ‘not married’ at birth.
whitemom Whether mom is ‘white’ or ‘not white’.

Data example:

fage mage mature weeks premie visits marital gained weight
28 27 younger mom 40 full term 16 married 28 8.00
40 34 younger mom 37 full term 5 married 25 7.75
20 16 younger mom 37 full term 13 not married 52 6.94

Obama approval Approval rate of the U.S. president Barack Obama from mid-
January till mid-May 2016. Data from RealClearPolitics. In repo as obama-approval.csv

Columns:

https://raw.githubusercontent.com/jakevdp/marathon-data/master/marathon-data.csv
https://bitbucket.org/otoomet/lecturenotes/raw/master/data/marathon.csv.bz2
https://www.openintro.org/data/index.php?data=ncbirths
https://www.openintro.org/data/index.php?data=ncbirths
https://www.realclearpolitics.com/
https://bitbucket.org/otoomet/lecturenotes/raw/master/data/obama-approval.csv
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poll poll name
date poll date range
sample sample size
approve approval rate, pct
disapprove disapproval rate, pct
spread approval - disapproval

Smoke ban Included in AER R package. A dataset of 10000 observations and 7
variables. It is a subset of 1991 National Health Survey.
smoker factor. Is the individual a current smoker?
ban factor. Is there a work area smoking ban?
age age in years.
education factor indicating highest education level attained: high school (hs) drop

out, high school graduate, some college, college graduate, master’s degree (or
higher).

afam factor. Is the individual African-American?
hispanic factor. Is the individual Hispanic?
gender factor indicating gender.

Data example:

smoker ban age education afam hispanic gender
no no 53 hs no no female
yes yes 29 hs no yes male
no yes 42 some college no no female

Titanic In repo as titanic.csv.bz2. List of RMS Titanic passengers, their name, age
and some more data, and whether they survived the shipwreck. It was collected by
the investigation committee, and contains most of the passengers on the boat. The
dataset is available in various sources, e.g. at kaggle. The variables are
pclass Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)
survived Survival (0 = No; 1 = Yes)
name Name
sex Sex
age Age
sibsp Number of Siblings/Spouses Aboard
parch Number of Parents/Children Aboard
ticket Ticket Number
fare Passenger Fare
cabin Cabin
embarked Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southamp-

ton)
boat Lifeboat (if survived)
body Body number (if did not survive and body was recovered)
home.dest The home/final destination of passenger

https://bitbucket.org/otoomet/lecturenotes/raw/master/data/titanic.csv.bz2
https://www.kaggle.com/datasets/vinicius150987/titanic3
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Treatment treatment.csv included from R package Ecdat. A U.S. dataset from 1974,
used for evaluating treatment effect of training on earnings.
treat treated (TRUE/FALSE)
age age
educ education in years
ethn three categories: “other”, “black”, “hispanic”
married married (TRUE/FALSE)
re74 real annual earnings in 1974 (pre-treatment)
re75 real annual earnings in 1975 (pre-treatment)
re78 real annual earnings in 1978 (post-treatment)
u74 unemployed in 1974 (TRUE/FALSE)
u75 unemployed in 1975 (TRUE/FALSE)

https://bitbucket.org/otoomet/lecturenotes/raw/master/data/treatment.csv.bz2
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C.1 Introduction to Statistics
Solution (1.3). We have data x = (1, 2, 3, 3, 3, 5, 5, 10).

1. Mean is
x̄ = (1 + 2 + 3 + 3 + 3 + 5 + 5 + 10)/8 = 32/8 = 4

2. Median is 3 as the “middle” of the data is between two “3”-s (there are three
numbers smaller than 3 and three numbers larger than 3).
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3. mode is 3 as this is the most frequent number.

If one data point is missing, we cannot compute mean. For median, we can tell that
it must be between 3 and 5: if the missing data point is smaller than 3, the median is
still 3. If it is larger than 5, there are 3 numbers no larger than 3 and 3 numbers no
smaller than 5 in the data, and hence median is between 3 and 5 (potentially equal
to either 3 or 5). So we have bounds on the median. The mode will be either 3 (if
the missing value is not 5), or it is a bimodal dataset with modes both 3 and 5 (if the
missing value is 5).

Solution (1.1). • Talent show result: this is clearly ordinal measure: we can say
that first place is better than second, or 7th place is better than 8th; but the
difference between 1st and 2nd, and 7th and 8th is undetermined. We can order
the results, but their difference does not mean anything.

• Height in cm: this is ratio. Height differences are well defined and height has a
well-defined zero.

• Height in feet, inches. This is ratio as well. It is measured in a different way
than in case of cm, but it is height nevertheless with the same properties.

• Colors by name: this is a nominal measure. Colors do not have any inherent
order, humans have invented many different orderings and all of those are equally
valid.

• Temperature in C: this is an interval measure: temperature difference makes
much sense (“today is 10 degrees warmer...”) but the zero is fairly arbitrary
(“today is twice as warm” does not tell much).

• IMDB movie ratings: movie ratings are ordered measures. The order is well
defined, but the difference does not carry much real meaning: the movies rated 7
and 7.5, and movies rates 9 and 9.5 may not differ by equal amount (whatever
it means).

Solution (1.2). Average length is marked
with the thick red line on top of the figure.
As there are 15 lines, the combined length
is 15 times longer than the average.

People almost always find the it very
easy to estimate the average, the total
length is much harder to evaluate. We
are just built to be good with averages.

Solution (1.3). 1. The sequence contains eight values. Mean, the average, is

x̄ =
1

8
(1 + 2 + 3 + 3 + 3 + 5 + 5 + 10) =

32

8
= 4.

2. Median is the middle value. 8 elements do not have a middle value, but when
put into an increasing order, both the 4th and 5th elements are “3”. Hence the
median is 3.
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3. Mode is the most common value, here the value “3” is present three times. Hence
“3” is also the mode.

When the first element is missing, then we cannot compute the mean. It can be
any number, if the missing element is chosen accordingly. However, we can still put
some limits on the mean, if we limit the feasible values of the first missing element
somehow.

In order to compute the bounds on the median, we can compute it for two cases:
first, if the missing element is small (smaller than any other in the sequence); and
second, if it is large (larger than any other element). In the first case, it is positioned
as the first element in the sequence (as it is displayed in an increasing order) and
hence the median is “3”. In the latter case, it will be the last element in the sequence,
that now looks as (2, 3, 3, 3, 5, 5, 10,NA). The true median value must be between these
two extreme cases, and hence we can say that the median is between 3 and 5.

In case of mode, there are really only two possibilities: first, if the missing number
is “5”, then we have a bi-modal sequence where both “3” and “5” are modes. In any
other case, the sequence is unimodal with mode “3”.

Solution (1.4). It is easier to use the shortcut formula (1.3.3).
1. For x1 we have the mean x̄1 = 1 and x̄21 = 4. Hence variance is 4− 12 = 3.
2. In an analogous fashion, for x2 we have x̄1 = 10 and x̄21 = 400. Hence variance

is 400− 102 = 300.
3. In this case, the mean is x̄3 = λ and x̄23 = 4λ2. Hence the variance is 4λ2−λ2 =

3λ.
4. We know that

s2y = ȳ2 − (ȳ)2.

Hence
s2λy = (λy)2 − (λy)2 = λ2ȳ2 − λ2(ȳ)2 = λ2s2y.

So if we multiply the sequence by a number, the variance will be multiplied by
the number squared.

Solution (1.5). The ordered data looks like (1,1,1,2,2,3). The figure, analogous to
Figure 1.6, is

Ordered datapoints

Quantiles

1

0

1

0.2

1

0.4

2

0.6

2

0.8

3

1

0.50.333

Figure C.1: Sample quantiles, defined by data points.

1. We have 6 data points. The min and max values define quantiles 0 and 1, and
the other four points split the [0,1] interval into five sub-intervals. Hence the
data defines: q0, q0.2, q0.4, q0.6, q0.8 and q1 (see the Figure above).

2. The figure shows that median must be between 1 and 2; the upper quintile q0.8 = 2
as that is determined by a data point. The lower tertile, q1/3 must be between 1
and 1, hence q1/3 = 1.
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Solution (1.6). For x = (1, 1, 2, 1, 2, 1) we have x̄ = 8/6 ≈ 1.333, median q0.5 = 1 and
q0.9 = 2.

For x̃ = (1, 1, 2, 1, 21) we have x̄ = 5.2, median q0.5 = 1 and q0.9 ∈ [2, 21].
The typo left median unchanged, but affected mean quite a lot. For q0.9, the effect

is large too–in the correct dataset it is 2, but the type made it not to be point-identified
any more. We just know it belongs to the interval [2,21].

In general, median is much more robust (less affected by outlier and typos) than
mean, the extreme quantiles like q0.9 may be quite sensitive though.

Solution (1.7). The sample space of the problem in simple events is

Die 2
1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

Die 1 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

where we have marked the simple events of interest that correspond to the compound
event in blue. All these events are equally likely (1/36) as the dies are independent
and fair.

So the compound event of interest is made of 11 simple events, all of equal prob-
ability of 1/36, and hence its probability is 11/36.

Solution (1.8). 1. The conditioning event is traveling in the 1st class. From the
table, we see that there were 200 + 123 = 323 1st class passengers, out of whom
200 survived. Hence Pr(survived|traveled in 1st class) = 200/323 = 0.619.

2. Now the conditioning event is survival. We have 200+119+181 = 500 survivors,
out of whom 200 traveled in the 1st class. Hence Pr(traveled in 1st class|survived) =
200/500 = 0.4.

Solution (1.9). From the definition of conditional probability

Pr(female|survived) = Pr(female, survived)
Pr(survived) =

339/1309

500/1309
= 67.8%.

It may be slightly confusing to understand what is “female given survived” as that does
not align with the intuitive causal interpretation of the opposite question (survived
given female). Survival will not make a given passenger more or less female.

But this is perfectly valid conditional probability, it describes the chances that a
random survivor you pick is female.

Solution (1.10). We can denote the simple events regarding the gender as (g1, g2)
where g1 means the gender of the first child and g2 the gender of the second child.
The sample space contains 4 simple events: (G,G), (G,B), (B,G), (B,B) where G
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and B denote that the corresponding child is a girl/boy. All these simple events are
equally likely, and have probability 1/4.

The event of interest, the other one is also a girl, corresponds to the event (G,G).
The conditioning event one of them is a girl removes the last option, (B,B) from
considerations. Hence we are left with one event of interest out of 3 possible events,
all of which have probability 1/4. The conditional probability (from (1.4.7)) is

p =
1/4

3/4
=

1

3
.

Alternatively, we can think about 100 families with two children. 25 of them are
(G,G), 25 are (G,B), 25 are (B,G) and 25 are of “type” (B,B). Here 75 families fit
the description of having a daughter, and 25/75 = 1/3 of them have two daughters.

This is a problem where clear understanding of the concepts of events and sample
space is extremely helpful.

Solution (1.11). First, note that conditional probability is not related to causality. The
fact that someone survived did not make her more or less likely to have been in first
class. We can imagine this is an answer to a question: “Take all Titanic survivors.
Pick a random survivor. What is the probability she was in first class”?

This is a simple task employing Bayes theorem, where we have denoted Pr(S =
1|C = 1) = 0.619, Pr(C = 1) = 0.247, and Pr(S = 1) = 0.382. Hence the probability
of interest

Pr(C = 1|S = 1) =
Pr(S = 1|C = 1) · Pr(C = 1)

Pr(S = 1)
=

0.619 · 0.247
Pr(0.382)

= 0.400.

So 40% of survivors were first class passengers.
If one has access to the actual numbers, it is easy to check: there were 200 first

class passengers among 500 survivors.

Solution (1.12). We have Pr(A) = 0.5 because two types of bags are equally likely. We
also know that Pr(Red |A) = 2/3 and Pr(Red |B) = 1/3.

1. From Bayes theorem

Pr(A|Red) = Pr(Red |A) · Pr(A)
Pr(Red).

We can compute

Pr(Red) = Pr(Red |A) ·Pr(A)+Pr(Red |B) ·Pr(B) = 2/3 · 1/2+1/3 · 1/2 = 1/2.

Plugging this into the expression above, we have

Pr(A|Red) = 2/3 · 1/2
1/2

= 2/3.

So pulling a red candy out of the bag makes it more likely it is an A-bag, but it
is by no means certain.
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2. Now she pulls out two red candies. The solution is similar as above, just the
event of interest is not Red, but Red, Red; and we have to adjust the probabilities
accordingly. From Bayes’ theorem, we have

Pr(B|Red ,Red) = Pr(Red ,Red |B) · Pr(B)

Pr(Red ,Red).

Now we need to compute

Pr(Red ,Red) = Pr(Red |A) · Pr(A) + Pr(Red ,Red |B) · Pr(B) =

= (2/3)2 · 1/2 + (1/3)2 · 1/2 = 5/18.

The probabilities of the compound event Red, Red, (2/3)2 for the bag A and
(1/3)2 for the bag B, assume that the events are independent. Here it means
that removing one candy does not alter the probabilities of the remaining candies
in the bag. This is (approximately) true if the bags are large.
Plugging this into the expression above, we have

Pr(A|Red ,Red) = (1/3)2 · 1/2
5/18

= 1/5

So when she pulls out two red M&M-s, it is not that likely that it is an A-bag.
But 20% is still probability we should not ignore.

Solution (1.13). We can use Bayes theorem to find

Pr(lion|steps) = Pr(steps|lion) · Pr(lion)
Pr(steps). (C.1.1)

Before we can do this, we need to compute Pr(steps). As Pr(neighbor) = 0.9, we have
that Pr(lion) = 0.1, and now

Pr(steps) = Pr(steps|lion) · Pr(lion) + Pr(steps|neighbor) · Pr(neighbor) =
= 0.6 · 0.1 + 0.2 · 0.9 = 0.24. (C.1.2)

Before we apply the Bayes’ theorem, it is instructive to think what does this number
mean. You can imagine we have “1000 nights”, 100 of which are “lion nights”, nights
where the hungry lion hunts. The rest, 900 nights, are “no-lion nights” where the
neighbor may be walking around. Out of the 100 “lion-nights”, we hear steps 60
times, but in 900 “non-lion nights”, the steps are there in 180 nights. So all-in-all,
we hear steps 240 times through these 1000 nights.

Plugging this into (C.1.1) above we get

Pr(lion|steps) = 0.6 · 0.1
0.24

= 0.25.

So the probability that the noise is made by lion is 25%. But should you smile or
should you fight? I would probably grab a burning stick and be ready to fight–if it turns
out my neighbor, it is embarrassing. But if I sit and smile, and a lion suddenly jumps
out of the shadows, then it was my last smile.
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Solution (1.14). Let 0 correspond to the case where there were no 6-s on the dice, and
1 if there were at least on 6. We can write the RV as

X =


1 if X ∈ {(1,6), (2,6), (3,6), (4,6), (5,6), (6,6),

(6,5), (6,4), (6,3), (6,2), (6,1)}
0 otherwise

(C.1.3)

Solution (1.15). Here is the 6×6 table of all possible outcomes with sum 6 highlighted
in blue:

Sum of two dies
Die 2

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9

Die 1 4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

There are clearly 5 ways to get sum 6, hence the corresponding probability Pr(Z =
6) = 5/36.

Solution (1.16). If the die is fair, all sides have probability 1/6. Hence the expected
value

ED =
1

6
· 1 + 1

6
· 2 + · · ·+ 1

6
· 6+ =

1

6
(1 + 2 + · · ·+ 6) = 3.5

Solution (1.17). 1. The easiest way to prove the probabilities is to present the sam-
ple space as a 6× 6 table where we list the number of sixes:

Die 2
1 2 3 4 5 6

1 0 0 0 0 0 1
2 0 0 0 0 0 1

Die 1 3 0 0 0 0 0 1
4 0 0 0 0 0 1
5 0 0 0 0 0 1
6 1 1 1 1 1 2

One can easily see that out of the 36 cases, in 25 we have no sixes, in 10 cases
we have a single six, and in one case we have two sixes.

2. Using the definition (1.4.17) we have

EX = 25/36 · 0 + 10/36 · 1 + 1/36 · 2 = 12/36 = 1/3.
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Solution (1.19). a) First we have to find the expected value: EX = 0.25 · (−1) + 0.5 ·
0+ 0.25 · 1 = 0. It is also immediately obvious as the values are symmetric around 0.
Next, let us do a table, similar to Table 1.6:

x Pr(X = x) X −EX (X −EX)2

-1 0.25 -1 1
0 0.50 0 0
1 0.25 1 1

Note that as EX = 0, the columns 1 and 3 are the same. Variance, the expected value
of the last column is VarX = E(X −EX)2 = 0.25 · 1 + 0.25 · 1 = 0.5.

b) We already know EX, so we have to find EX2: EX2 = 0.25 · (−1)2 + 0.5 ·
02 + 0.25 · 12 = 0.5. The variance is VarX = EX2 − (EX)2 = 0.5− 0 = 0.5.

As the example demonstrates, in case of EX = 0, the variance is equal to just
EX2.

Solution (1.20). First let’s use the variance definition (1.4.21). Write a similar ex-
tended table as Table 1.4 on page 21:

1 2 3 4
x Pr(X = x) x−EX (x−EX)2 x2

0 1 - p −p p2

1 p 1− p (1− p)2

From the first two columns we can immediately see that the expected value is

EX = (1− p) · 0 + p · 1 = p.

Now we can compute the deviations −p and 1− p in the 3rd column; and deviations-
squared p2 and (1− p)2 in the 4th column. Variance is the expected value of the last
column:

VarX = (1− p) · p2 + p · (1− p)2 = p(1− p).

When using the shortcut formula (1.4.22), we first need to compute EX2. As the
possible values are just 0 and 1, the squares of the values are the same, and hence
EX2 = p, the same number as EX. Now we have

VarX = EX2 − (EX)2 = p− p2 = p(1− p).

Solution (1.21). Independence assumption is used to compute the probabilities for Z
realizations. For instance, in the first line in Table 1.8 we have Pr(X1 = 0) = 0.5 and
Pr(X2 = 0) = 0.5. In column 6 we conclude that Pr(X1 = 0, X2 = 0) = 0.25. This is
correct only if X1 and X2 are independent.

Solution (1.22). 1. The definition of expected value is (1.4.17) EX =
∑

i pixi. By
multiplying all values by λ we have

Eλ X = EX =
∑
i

piλ xi = λ
∑
i

pi xi = λEX.
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2. The definition of variance (1.4.21) is VarX = E(X − EX)2. We need to use
the definition of the expected value and Theorem 2:

VarλX = E(λX −EλX)2 =
∑
i

pi(λxi − λ EX)2 =

=
∑
i

pi (λ(xi −EX))
2
=
∑
i

piλ
2(xi −EX)2 =

= λ2VarX.

So if you multiply a RV by λ, it variance will be multiplied by λ2.

Solution (1.24). x is possible value: this is a table over possible values and the cor-
responding probabilities. As realizations are random, we would have different tables
each time we conduct the experiment.

Solution (1.25). X must be ordinal for the comparison in (1.5.3) to have a meaning.

Solution (1.26). 1. Who survived: events are “survived” and “died”, can describe
by Bernoulli

2. Admitted: events are “admitted”, “rejected”, can use Bernoulli. But note that
if we add a third option “waitlisted”, then it is either a multinomial process with
three outcomes, or we need to look at events “admitted”, “not admitted”.

3. Majors: events are different majors, if there are more than two, then we cannot
use Bernoulli

4. How many years: events is duration in years, this is a continuous variable.
Cannot use Bernoulli.

5. “Did they drop out”: we can use Bernoulli with events “dropped out”, “did not
drop out”.

6. Engineering students more likely…This is a question that cannot be answered
for each student individually–there is a single answer for a sample, it requires
comparing two types of students (engineering and non-engineering students). So
it is not about just Bernoulli, it is about comparing two different Bernoullis.

Solution (1.27). Denote the sameple size S = 5 and probability to receive an order
p = 0.5. This is a Binom(5, 0.5) distribution:

• Expected value is S p = 5 ∗ 0.5 = 2.5.

• Pr(X = 0) =
(
5
0

)
p0(1− p)5 = 0.55 = 0.03125. So roughly one week out of 30.

• Pr(X = 5) =
(
5
5

)
p5(1 − p)0 = 0.55 = 0.03125. The same outcome, because

p = 0.5.

• A likely reason is that shopping is seasonal–in some weeks (before certain holi-
days) people are shopping much more than in other times. Hence, even if p = 0.5
when averaged over a year, different weeks have actually different probabilities.
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Solution (1.28). Standard uniform as specified in (1.5.15) has density 1 in the interval
[0,1]. So all values between 0 and 1 are equally likely, and values outside of this
interval are impossible. Hence the lower 2.5% quantile is the lowest 2.5% end of
this interval, q0.025 = 0.025 and upper 2.5% quantile is the top 2.5% of this interval,
q0.975 = 0.975.

Solution (1.29). The distribution of rooms in Boston data is centered at ∼ 6.2 and
has standard deviation 0.7. Here is R code that plots the curve, the normal p.d.f. is
directly coded:

sigma <- 0.7
mu <- 6.2
curve(

1/sqrt(2*pi)/sigma*
exp(-1/2*(x - mu)^2/sigma^2),
3, 9, ylab = "Density")
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You can achieve this with the built-in function for normal density,

dnorm():

curve(dnorm(x, mu, sigma), 3, 9,
ylab = "Density")
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The economic growth is centered around 2 with standard deviation approximately
4. Here is the relevant python code using the pre-defined scipy.stats.norm():

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

mu = 2
sigma = 4
x = np.linspace(-15, 25, 100)
y = norm.pdf(x, loc = mu,

scale = sigma)
plt.plot(x, y)
plt.show()

sec:datasets-boston
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Solution (1.30). If x0 = 1, the Pareto p.d.f. is (from (1.5.21)):
f(x) = αx−α−1, x > 1.

From the definition of expected value (1.5.12),

EX =

∫ ∞

1

αx−α−1x dx = α

∫ ∞

1

x−α dx =

= α
x−α+1

−α+ 1

∣∣∣∣∞
1

=
α

α− 1
x−α+1

∣∣1
∞ =

=
α

α− 1
[1− 0] =

α

α− 1
.

The second row flips the sign of the denominator −α + 1 to α − 1 and at the same
time swaps the limits of the integral.

The last row uses the fact that ∞−α+1 = 0, if and only if α > 1. This is where
the condition for existence of the expected value originates–if α ≤ 1, then this it not
true, and the integral diverges.
Solution (1.31). The histogram of realizations S = 1 resembles a cup; S = 2 has a
triangular distribution, but already from S = 3 onward the result looks fairly close to
normal (R = 1000)
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Solution (1.33). 1. No, it means that the average of the sample tubes had hydration
level 66%. You do not know what is it in the other tubes–the overall value may
still be 60% or even less. However, it is not very likely that it differs much from
66.

2. A suitable hypothesis here is just that the run corresponds to the specification:
H0 : h = 60%, where h is the hydration level. If we can reject H0, then the run
does not correspond to the specification.

3. The critical z values are z0.05cr = 1.96 and z0.01cr = 2.58. The actual value 2.01 is
larger than z0.05cr , hence can reject it at 5% level. But it is smaller than z0.01cr ,
hence cannot reject at 1% level.

4. Rejecting H0 means it is not compatible with data. Or more precisely–if H0 :
h = 0.6 is correct then it is unlikely that you will see the hydration value 0.66
in the sample. Rejecting it at significance 5% level means that 5% is considered
“unlikely”. Not rejecting it at 1% level means that 1% is considered “likely
enough”.

Solution (1.34). Type-I error (false positive) is to reject H0 even if correct. In this
example it would mean that while consuming three eggs is not enough, we falsely reject
it and conclude that three eggs a day is adequate. Type-II error is the opposite–not
rejecting H0 even if it is not correct. Here it would mean that we do not reject that
three eggs is not adequate, even if it, in fact, is adequate.

The problem with false positives in this case is that we falsely conclude that a
certain diet is adequate while in fact it is not, potentially leading to malnourishment.

Solution (1.35). Here are the results: lower and upper 2.5% percentiles, µ, s, and the
theoretical CI boundaries, computed using (1.6.1):

Quantiles Theoretical

Dataset Lower Upper µ s Lower Upper
Boston 4.97 7.97 6.28 0.70 4.91 7.66
Setosa 1.12 1.85 1.46 0.17 1.12 1.80

As you can see, the quantiles and theoretical value match fairly well, the largest
discrepancy seems to be the upper 97.5 percentile for the house size. This is probably
related to the fact that the house size has somewhat fatter right tail.

Solution (1.36). Section 1.6.3 General sample average, page 100 explains that 95% CI
are [

µ− 1.96
s√
S
, µ+ 1.96

s√
S

]
,

a version of (1.6.1). The value “1.96” is the 5% critical z value. In order to compute
99% CI, we need to replace 1.96 by the corresponding 1% critical value, 2.576 (from
Table 1.12). So the CI boundaries are

0.9− 2.576 · 0.03 = 0.823 and 0.9 + 2.576 · 0.03 = 0.977.
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Data, 0.82, is outside even these boundaries (although just barely), hence we can
conclude that even at 1% significance level, the department is not performing as
expected.

Solution (1.37). The relevant counts are:

Event Probability TD event Count
b) H̄,H 1

4 (1− pH)pH G,G 9
d) H,H̄ 1

4pH G,G 10
f ) H,B 1

4pH G,B 10
h) B,H 1

4pH B,G 10

Explanations:

• b) H̄,H 9 families
– There are 200 families with the first child being a girl.
– Out of those, 180 will not call that child Hina
– Out of those, 90 will have the second child a girl
– Out of those, 9 will call the second child Hina

• d) H, H̄ 10 families

– There are 200 families with the first child being a girl.
– Out of those, 20 will call that child Hina
– Out of those, 10 will have the second child a girl (and never called Hina)

• f) H,B 10 families

– There are 200 families with the first child being a girl.
– Out of those, 20 will call that child Hina
– Out of those, 10 will have the second child a boy

• h) is analogous

So in the town there will be 9 + 10 + 10 + 10 = 39 such families with a child called
Hina; 9 + 10 of which have two girls. So the probability is 19/39 ≈ 0.487.

Solution (1.38). The naive answer would be to place armor at the most damaged parts
of the airplanes. However, note that we face a missing data problem here: we can
only observe the planes that manage to return to the base. We don’t know where were
those planes hit that did not return.

However, we can still guess: as anti-aircraft fire is very imprecise, there is no
reason to believe that engines and cockpits were spared. The fact that we do not see
much damage in those parts hints that those are the weakest points. If engines or
cockpit are hit, the plane won’t return. Hence you should recommend to armor those
areas that are not damaged!
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Solution (1.39). According to media, the net worth of Bill Gates is $105 billion, almost
three times the total wealth of Iceland. Hence an option would be to grant Bill Gates
Iceland citizenship and in this way to make him an “Icelander”. This will make the
average wealth of Icelanders to grow from $95,000 to $370,000 per person.

The problem is the meaning of the expression “all Icelanders”. People understand it
intuitively that it applies to everyone (everyone individually), but here it is (most likely
deliberately) used in a different sense, something like “everyone combined together”.

C.2 Regression models
C.2.1 Linear regression
Solution (2.1). From (2.1.3) we find easily that

ϵi = yi −
5

6
− 1

2
xi.

Hence

ϵ1 = 1− 5

6
− 1

2
0 =

1

6

ϵ2 = 1− 5

6
− 1

2
1 = −1

3

ϵ3 = 2− 5

6
− 1

2
2 =

1

6
.

Solution (2.2).

(2.1.10): ŷ(x) = β0 + β1 · x.

Using (2.1.10) we get

ŷ1 =
5

6
+

1

2
· 0 =

5

6

ŷ2 =
5

6
+

1

2
· 1 = 1

1

3

ŷ3 =
5

6
+

1

2
· 2 = 1

5

6
.

Solution (2.3). Intercept β0: if education is 0 years, income is $1000 (in average).
This number is not interesting in developed economies, as almost no-one has no
education at all. We are extrapolating to where there are no data.

Slope β1: those with one year more of schooling earn $5000 more. This is a very
meaningful number.

Note that if data shows 0 years of education, it may also be related to data problems,
e.g. missings may be coded as 0-s. Se we may see a lots of zeros, even if everyone
has at least a few years of schooling. If this is the case, then the β0 is no more
interesting–it is just an average income for those with no data, assuming the linear
relationship holds.

Solution (2.4). Intercept β0: if height is 0 cm, weight is −75 kg (in average). This
number is meaningless, as there are no zero-height humans.

Slope β1: someone who is 1 cm taller, weights 0.7 kg more. This is a very mean-
ingful number.
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Solution (2.5). The interpretation of intercept β0: son’s of 0-height fathers are 86.1 cm
tall (in average). Interpretation of β1: sons of fathers who are 1 cm taller are 0.51 cm
taller themselves.

The β0 interpretation clearly does not make sense as there are no sons who are
0 cm tall. The second effect is a manifestation of regression to mean—sons of taller
fathers are taller, but not as much as fathers themselves.

Solution (2.6). 1. t = coefficient/std .error = 4/1.6 = 2.5.
2. 5% critical z-value is 1.96 (see Table 1.12.) It is significant as 2.5 > 1.96.
3. No, it is not, as 2.5 < 2.576, the 1% critical z-value.
4. It means that H0 : β = 0 is unlikely (less likely than 5% or another chosen

significance level), so we reject it. This means the true coefficient is likely not
zero, so these two variables are related.
Note: all software presents the t (or z) and p values assuming your H0 is β = 0.
This is usually what you want, but sometimes you may need other tests, e.g.
H0 : β = 1.

Solution (2.7). We have x = (0,0,2,2) and y = (1,−1, 3, 1), and the regression coeffi-
cients β0 = 0 and β1 = 1. Hence we can compute the predicted values ŷ = 0+1·x = x,
so ŷ = (0,0,2,2).

Now the residuals are e = y − ŷ = (1,−1, 1,−1). Hence SSE =
∑

i e
2
i = 4. The

average y value is ȳ = 1, and hence the deviations from mean are (0, 2, 2, 0) and hence
TSS = 8. Accordintly, R2 = 1− SSE/TSS = 0.5.

Such calculations are often useful to do as a table:

i xi yi ŷi ei e2i (yi − ȳ) (yi − ȳ)2

1 0 1 0 1 1 0 0
2 0 -1 0 -1 1 2 4
3 2 3 2 1 1 2 4
4 2 1 2 -1 1 0 0

SSE = 4 TSS = 8

where ei = yi − ŷi and ȳ = 1.

Solution (2.8). 1. β0: income for 0-year olds with 0 experience. Not describing
anything relevant. βage : among two persons with equal work experience, those
who are 1 year older earn $1000 less. βexperience : among two persons of the
same age, those who have one year more work experience earn $10,000 more.

2. The claim in the question is somewhat misleading. Income does not necessarily
fall in age, it falls in age if experience is kept constant, i.e. you grow older but
do not work. So it means that of two persons of similar work experience, the
one who is younger earns more.

3. Predicted income:

̂income = β0+βage · 25+βexperience · 5 = −1000− 1000 · 25+10,000 · 5 = 24,000
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Solution (2.9). Before answering these questions we should refresh the interpretation
of the coefficients (see Section 2.1.3).

1. Intercept corresponds to the predicted value where u = 0. Hence the average log
wage for non-union members is 1.605.

2. For union members (u = 1) we have to add Intercept 1.605 and u estimate
0.179, the result is 0.178.

3. Finally, the difference is the estimate for u, 0.179. This can also be understood
from the interpretation of β-s, it is the expected difference between the cases
where u = 1 and u = 0.

Solution (2.10). 1. “Fair” is missing, hence that is the reference category
2. β measures the effect with respect to the reference, hence good diamonds are

$1000 more expensive than fair diamonds in average, given they are otherwise
similar.

3. This is their difference, so “perfect” is $1500 more expensive than “good” in
average, given they are otherwise similar.

Solution (2.11). 1. Reference category is the category that does not have a dummy
variable displayed in the results table. In this case it is rural area.

2. Predicted value for North Central is the sum of intercept and north central
estimate: 1.584 + 0.047 = 1.631.

3. As rural areas is the reference category, the predicted log salary there is equal to
the intercept 1.584.

4. This difference is captured by the south dummy. It is 0.032.
5. There is no variable that captures the difference between two categories where

none of these is a reference category. But we can just compute the predictions
in North East and South. Now when doing this you notice that both of those
contain intercept that just cancels out. Hence what is left is the difference
between the two dummies: log wages in North East are larger than those in
south by 0.164− 0.032 = 0.132.

Solution (2.12). This is because in the original data ethn only allows a single category
(black, hispanic and other). It is definitely possible to describe multi-racial identity
using dummies but in that case the multi-race cases must be included in the original
categorical data somehow. For instance, one can introduce two categories: ethn1

and ethn2. Now we can have both eb = 1 and eh = 1 for someone who responds
ethn1 = black and ethn2 = hispanic.

Solution (2.13). 1. As β1 is small, we can use the approximation: experiments
where CO2 concentration is larger by one unit give 0.7% higher yield in average
(given temperature and water are the same).

2. No: your experiment tells that yields improve given temperature and water
remain the same. Global warming will increase temperature, it is doubtful that
the amount of water will remain the same either.
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C.2.2 Logistic regression
Solution (2.14). 1. Shipwreck: logistic, as this has binary outcome (survived/did

not survive)

2. Cancer patients: this is also survival, but not binary any more. Now we ask
how long time, i.e. a number. So linear regression is more appropriate.

3. GPA: linear, as the outcome can have any value (between 0 and 5 or so).

4. Admission to school: logistic, as binary outcome (admitted/not admitted)

5. Retweeting: logistic as binary outcome (retweeted/not retweeted)

6. How many people read tweets: linear, as it can be any number (well, a count—
non-negative number). Note: dedicated count data models may offer a better
solution here. See more in Section 1.1.2 Counts, page 6.

Solution (2.15). The table reveals that the 5% critical z value is 1.96. Hence Education
is statistically significant, but the other two variables are not. More precisely, they
are statistically significantly different from zero at 5% significance level.

Remember: z-values, like t-values measure distance between the H0 value and what
we find in data. A large z value means that data and H0 are rather different.

See Section 1.6.1 and Example 1.27.

Solution (2.16). 1. Logit coefficients cannot be easily interpreted. We need more
information (and computations).
We can though say that as βedu and βpart are positive, then both marginal effects
are positive two. Hence more educated individuals, and those who participate,
are more likely to get a job. But we cannot tell by how much.

2. Those with one year more of education are 7 pct pts more likely to get a job (in
average), if they both participate/do not participate in a similar fashion.
Those who participate are 8 pct points more likely to get a job (in average), if
they have similar education.

3. No. We find a positive association—participants tend to get jobs more likely
than non-participants—but that does not tell us why they get jobs. Maybe just
people who have certain personal characteristics do both training and get a job.
For instance, those who are able to meet up at the training site 8 a.m. are also
able to find a job. There are myriad of other possible explanations.

4. Correct. Better education and job are positively correlated, i.e. better educated
people tend to have jobs, less educated tend not to have jobs. This is equivalent
if phrased the other way around: those with jobs tend to be better educated,
those without jobs tend to be less well educated. Saying it in both ways implies
positive correlation.
Note that these causality/correlation claims apply in pretty much the same way
for linear regression and many other models too. See Section 3.3.
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Solution (2.17). Use the definition of odds:

r =
p

1− p
(C.2.1)

where p is the relevant probability
1. If p = 0.5, we have r = 1.
2. if p = 5/6, the formula above will give us 5/6

1/6 = 5. Often stated as “5-to-1”.
3. We need to express p from (C.2.1):

p =
r

1 + r
(C.2.2)

Hence p = 0.5/1.5 = 1/3.
Solution (2.18). The solution is just standard algebra. From (2.2.3) we have

1 + e−β
T
·x =

1

Pr(Y = 1|x)

e−β
T
·x =

1

Pr(Y = 1|x)
− 1 =

1− Pr(Y = 1|x)
Pr(Y = 1|x)

or
eβ

T
·x =

Pr(Y = 1|x)
1− Pr(Y = 1|x)

.

C.3 Causality
Solution (3.1). For a downward bias, we need a situation for those who have flu are
more likely to get a flu shot. One may think along these lines: those who do not feel
well get anxious about falling ill, and quickly get the shot. However, as they get it too
late (they have already contracted flu), it does not help them. We see that flu shot is
more often associated with flu, but this is not because flu shot causes flu, but because
falling ill “causes” flu shot.
Solution (3.2). The above example explained how concern about health can make people
to both get flu shot and be less likely to contract flu. Here we need some kind of opposite
process. One possibility is that people know something about how likely they are to get
flu, and act upon it. For instance, those with fragile health or weak immune system
may get the shot, while healthy people do not bother. So even if the shot is effective,
we may not even see it in data, if the first group is still more likely to contract flu.
But in any case, the observed effect size will be smaller.

This process seems more plausible, but both of these can be assessed through be-
havioral studies. But in any case, there are probably many other mechanisms that
determine health behavior and morbidity.

C.4 Linear Algebra
Solution (5.1). Dimension is just the number of components in the vector. Hence vi

is of dimension 8. The table of data itself does not reveal how long are xi-s, but as
the data is about “50 U.S. States”, its dimension must be 50.
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Solution (5.2). We can compute individual components as e(Berlin)1−e(Germany)1+
e(France)1 = −0.562−0.194+0.605 = −0.151, e(Berlin)2−e(Germany)2+e(France)2 =
0.630− 0.507− 0.678 = −0.555, and for the following 3 components we have −1.176,
−0.450, and −0.016. So the vector

e(Berlin)− e(Germany) + e(France) = (−0.151,−0.555,−1.176,−0.450,−0.016)

while
e(Paris) = (−0.074,−0.855,−0.689,−0.057,−0.139)

As one can see, the result is not exact, but broadly agrees in terms of size and sign of
the components, unlike any other word listed here.

Solution (5.3). As in case of Example 5.3, we can express1
2
3

 = 2 ·

4
5
6

−
7
8
9

 , (C.4.1)

or 1
2
3

− 2 ·

4
5
6

+

7
8
9

 =

0
0
0

 . (C.4.2)

Hence these vectors are not linearly independent.

Solution (5.4). 1. The Euclidean norm of the vector is
√
12 + 12 =

√
2. Hence the

normalized vector is

(1,1)√
2

=

(
1√
2
,
1√
2

)
=

1√
2
(1, 1)

2. Manhattan norm of the vector is 2, hence the normalized version is (0.5, 0.5).
3. Chessboard norm of the vector is 1, hence it is already normalized.
4. The Euclidean norm of the vector is

√
12 + 22 + 22 = 3. Hence the normalized

vector is (1/3, 2/3, 2/3).
5. The Euclidean norm of the vector is

√
32 + 22 + 02 + 22 + 02 + 22 + 02 + 22 = 5.

Hence the normalized vector is (3/5, 2/5, 0, 2/5, 0, 2/5, 0, 2/5).

Solution (5.5). Here is the solution of a) in more detail. We can write(
1 2
2 1

)
·
(
6 3
3 6

)
=

(
c11 c12
c21 c22

)
.

From the visual rule, we find that

c11 = 1 · 6 + 2 · 3 = 12

c12 = 1 · 3 + 2 · 6 = 15

c21 = 2 · 6 + 1 · 3 = 12

c22 = 2 · 3 + 1 · 6 = 12,
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and hence (
1 2
2 1

)
·
(
6 3
3 6

)
=

(
12 15
15 12

)
.

For the other questions, here are just the final answers:

b)

(
14 −2
38 0.5

)
c)

(
0 0
0 0

)
d)

(
2 1
2 1

)
b) is multiplication by the unit matrix, and c) shows that product of non-zero matrices
can be a zero matrix.

Solution (5.6).

a)

(
2 1 2
2 −1 2

)
b)

(
−1
−1

)
d)

(
−1
1

)
Note that b) and d) involve transposed matrices. c) cannot be computed because
dimensions do not match: the first factor has a single column but the second one has
two rows.

Solution. 5.7 Remember the multiplication rule: lines from the first matrix, columns
from the second matrix; the first one must have as many columns as the second one
has rows.

• A has 796 columns and B has 796 rows. Hence we can multily these.
• The result is of dimension 227×7—number of rows in the first matrix × number

of columns in the second matrix.

Solution. 5.8 The number of columns of the first matrix must match number of rows
in the second matrix. A has 796 columns and B

T has 796 rows; B has 796 columns
and A

T has 796 rows. Hence A · BT and B · AT are possible.
The dimension of A · BT will be 227× 7, of B · AT will be 7× 227.

Solution (5.9). The first product:(1 2 3
1 2 3

)
·

−1 1
1 −1
−1 1

 · (0 1 0
1 0 1

)
=

(
−2 2
−2 2

)
·
(
0 1 0
1 0 1

)
=

=

(
2 −2 2
2 −2 2

)
. (C.4.3)

The second product:

(
1 2 3
1 2 3

)
·

−1 1
1 −1
−1 1

 · (0 1 0
1 0 1

) =

(
1 2 3
1 2 3

)
·

 1 −1 1
−1 1 −1
1 −1 1

 =

=

(
2 −2 2
2 −2 2

)
. (C.4.4)

These are indeed equal.
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Solution (5.10). 1.

(
1 −1

)
·
(
1 0
0 1

)
·
(

1
−1

)
=
(
1 −1

)
·
(

1
−1

)
= 2

2. (
1 −1

)
·
(

1 −2
−2 4

)
·
(

1
−1

)
=
(
3 −6

)
·
(

1
−1

)
= 9

3. (
x1 x2

)
·
(

1 −2
−2 4

)
·
(
x1
x2

)
=
(
x1 − 2x2 −2x1 + 4x2

)
·
(
x1
x2

)
= x21−4x1x2+4x22

4.

(
x1 x2

)
·
(
a11 a12
a21 a22

)
·
(
x1
x2

)
=
(
a11x1 + a21x2 a12x1 + a22x2

)
·
(
x1
x2

)
=

+ a11x
2
1 + (a12 + a21)x1x2 + a22x

2
2

Solution (5.12). Euclidean norm of a vector v is
√
v21 + v22 + v23 + . . .. From the

definition of inner product (5.3.31), we can write it as
√
vT · v. Hence the solutions

are

||(3, 4)|| =

√
(3, 4) ·

(
3
4

)
=
√

32 + 42 = 5

and

||(1, 1, 1, 3, 2)|| =

√√√√√√√√√(1, 1, 1, 3, 2) ·


1
1
1
3
2

 =
√

12 + 12 + 12 + 32 + 22 = 4.

And advantage of this approach is that this can be easily coded in computer languages
that support vectors and vector operations: you can convert

√
vT · v directly into

computer code.

Solution (5.13). Using the definition of matrix inverse we have to show that(
1 2
3 4

)−1

·
(
−2 1
1.5 −0.5

)
=

(
1 0
0 1

)
Using the matrix multiplication rules we have(

1 2
3 4

)−1

·
(
−2 1
1.5 −0.5

)
=

(
1 · (−2) + 2 · 1.5 1 · 1 + 2 · (−0.5)
3 · (−2) + 4 · 1.5 3 · 1 + 4 · (−0.5)

)
=

(
1 0
0 1

)
.

This is a unit matrix, and hence these two matrices are each other inverse.
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Solution (5.14). As we are in 2-D space, we can write (5.2.5) using components as(
c1
c2

)
= α

(
a1
a2

)
+ β

(
b1
b2.

)
(C.4.5)

Note that this expression is equivalent to(
c1
c2

)
=

(
a1 b1
a2 b2.

)
·
(
α
β.

)
(C.4.6)

Hence
(
α
β

)
can be isolated using the inverse

(
α
β

)
=

(
a1 b1
a2 b2

)−1

·
(
c1
c2

)
(C.4.7)

Solution (5.15). By the properties of trigonometric functions we have

R(−α) =
(

cosα sinα
− sinα cosα

)
and hence

R(α) · R(−α) =
(
cosα − sinα
sinα cosα

)
·
(

cosα sinα
− sinα cosα

)
=

=

(
cos2 α+ sin2 α cosα sinα− sinα cosα

sinα cosα− cosα sinα sin2 α+ cos2 α

)
=

(
1 0
0 1

)

C.5 Predictive Modeling
Solution (4.1). The data looks like:

case: 1 2 3 4 5 6 7 8 9 10
Actual 1 0 0 1 1 0 0 0 1 0
Expert 0 0 0 1 0 0 1 0 1 1

Consider “0” to be negative and “1” to be positive. We have TN = 4 (cases 2, 3, 6,
8) as both the actual value is “0” and the expert predicted “0”. TP = 2 (cases 4, 9)
as the actual value is “1” and the expert predicted “1”. FP = 2 (cases 7, 10) as the
expert predicted “1” but the actual value was “0”. Finally, FN = 2 (cases 1, 5) where
the expert predicted “0” while the actual value was “0”. Hence the confusion matrix is

Actual
Predicted 0 1 Total

0 TN = 4 FN = 2 6
1 FP = 2 TP = 2 4

Total 6 4 10
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Note that the predicted values do not have to be related to any particular model.
In terms of constructing the confusion matrix, expert opinion or even a random guess
is perfectly valid.

Solution (4.2). Let’s take participants as positives. The actual data contains 2490
non-participants (the majority) and 185 participants. Hence the model predicts that
everyone is a non-participant.

The confusion matrix will be:

Actual
Predicted Non-Participants Participants Total

Non-Participants 2490 185 2675
Participants 0 0 185

Total 2490 185 2675

As everyone is predicted to be a non-participant, the predicted participants’ column
only contains zeros. We have TN = N = 2490, FP = 0, FN = P = 185 and TP = 0.

Solution (4.3). Simple computations tell that F = 0.5, 0.42, 0.32, 0.18 and 0. In
the latter you cannot, strictly speaking, compute F -score, but it is easy to see that
limP→0 F = 0: 1/0→∞ and

2
1
P + 1

R

→ 2

∞+ 1
= 0 as P → 0 (C.5.1)

Solution (4.4). We have

TN = 10,TP = 60,FP = 20,FN = 10 (C.5.2)

and T = 100. Hence

A =
TN + TP

T
=

70

100
= 0.7

P =
TP

TP + FP
=

60

80
= 0.75

R =
TP

TP + FN
=

60

70
≈ 0.86

F =
2

1

P
+

1

R

= 0.8

(C.5.3)

Solution (4.5). a) If participants are positives, the confusion matrix is the same as in
Example 4.1:

Predicted
Actual Non-Participants Participants Total

Non-Participants 2452 38 2490
Participants 89 96 185

Total 2541 134 2675
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The model goodness measures are: Accuracy = (2452+96)/2675 = 95.3%, Precision =
96/134 = 71.6% and Recall = 96/185 = 51.9%.

b) If participants are negatives, the confusion matrix’s rows and columns are
swapped around:

Predicted
Actual Participants Non-Participants Total

Participants 96 89 185
Non-Participants 38 2452 2490

Total 134 2541 2675

Now Accuracy = (2452 + 96)/2675 = 95.3% is the same, Precision = 2452/2541 =
96.5% and Recall = 2452/2490 = 98.5%.

c) Accuracy does not depend on the choice of positives/negatives, it is only con-
cerned about correct predictions, so here the choice does not matter. But in one case
we get moderate precision and recall scores, in the other case those figures are very
high. The moderate scores are appropriate if we are mainly interested in spotting the
participants. The model is not very good at that. The high scores are good if we are
mainly concerned in non-participants–that group is easy to find.

Solution (4.6). Specificity is the same as recall for negative outcomes, and sensitivity
is the same as recall. Specificity 100% means we do not have any false positives, and
sensitivity 63.5% means we capture 63.5% of the positive cases. We can, for instance,
take 1000 actual negative cases and 1000 actual positive cases. Now all 1000 actual
negatives will be predicted as negative (specificity = 100%), but only 635 of 1000
positives will be categorized as positive (sensitivity = 63.5%), see the left panel of the
table below.

All cases Asymptotic cases
Predicted Predicted

Negative Positive Negative Positive

Actual Negative 1000 0 1000 0
Positive 365 635 650 350

For asymptotic cases we still have 1000 true negatives and 0 false positives (speci-
ficity is still 100%) but now only 350 out of 1000 actual positives are categorized
correctly (sensitivity is 35%).

The test seems to be of dubious quality if roughly 1/3 of all cases, and 2/3 of
asymptotic cases slip through.

Solution (5.16). Let’s multiply X and β in (5.5.2) using the ordinary matrix multipli-
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cation rules:
1 x11 x12 . . . x1K

1 x21 x22 . . . x2K
...

...
... . . . ...

1 xN1 xN2 . . . xNK

 ·

β0
β1
β2
...
βK

 =


β0 β1x

1
1 β2x

1
2 . . . βKx

1
K

β0 β1x
2
1 β2x

2
2 . . . βKx

2
K

...
...

... . . . ...
β0 β1x

N
1 β2x

N
2 . . . βKx

N
K

 (C.5.4)

and hence we can write (5.5.2) as
y1
y2
...
yN

 =


β0 β1x

1
1 β2x

1
2 . . . βKx

1
K

β0 β1x
2
1 β2x

2
2 . . . βKx

2
K

...
...

... . . . ...
β0 β1x

N
1 β2x

N
2 . . . βKx

N
K

+


ϵ1
ϵ2
...
ϵN

 . (C.5.5)

Each line of this equation is equivalent to (5.5.1) after performing the matrix multi-
plication there, and there are N lines. Hence (5.5.2) is equivalent to (5.5.1) for each
i = 1 . . . N .

C.6 Machine Learning Models
C.6.1 Trees and tree-based methods
Solution (6.1). Decision boundaries (DB). The fact that the features are continous
matters in a sense that the DB splits the features space into regions, otherwise it might
carve out just the individual data points. The fact that target only has two categories
matters only for the logistic regression–now it is a plane (in general hyperplane). In
case of more than two categories, it consists of segments.

1. Trees: the boundary consists of vertical/horizontal planes, that carves out some-
thing like a “stacked boxes”-kind of decision boundary.

2. k-NN: it is a complex surface that separates regions where different categories
dominate. It is made of pieces of flat surface (in case of 1-NN these are Voronoi
surfaces), but there are many of those, so the surface will be quite complex.

3. The decision boundary in case of logistic regression is a plane (or hyperplane in
more dimensions)–unless you also use feature engineering.

Solution (6.2). Bernoulli distribution has two states: the event happens with probability
p and does not happen with probability 1 − p. Inserting this into the definition of
entropy (6.1.3), we get

H(X) = −p log2 p− (1− p) log2(1− p). (C.6.1)

The entropy as a function of p will look like
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The entropy is 0 at both ends of the curve: we are (almost) certain the event either
does not happen (p = 0) or happens (p = 1), and hence there is no uncertainty. The
largest uncertainty is in the middle where both outcomes are equally likely, and we
can gain 1 bit of information.

Solution (6.3). The right split in Figure 6.7 contains two branches: the larger Branch
1 one contains one circle and 5 crosses, the smaller Branch 2 one contains a single
cross and 3 circles. The best approach is to make a table for calculations:

Branch 1 Branch 2
Size 6 4

x y x y

Count 5 1 1 3
Pr 0.833 0.167 0.25 0.75
log2 Pr -0.263 -2.585 -2 -0.415
Pr · log2 Pr -0.219 -0.431 -0.5 -0.311
Branch entropy 0.65 0.811
Total entropy 0.715

As the original entropy was 0.971, the entropy gain is 0.256. This is much more than
what we found for the left split of Figure 6.7.
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C.6.2 Metric distance: A revisit
Solution (6.4). We have x1 = (1.000, 2.000, 3.000), x2 = (3.000, 2.000, 1.000) and
x3 = (1.000, 1.000, 1.000). The norms are

||x1|| =
√
x1

T

x1 =
√
12 + 22 + 32 = 3.742

||x2|| =
√
x2

T

x2 =
√
32 + 22 + 12 = 3.742

||x3|| =
√
x3

T

x3 =
√
12 + 12 + 12 = 1.732.

(C.6.2)

Hence the normed versions are

xn1 =
x1

||x1||
=

(1.000, 2.000, 3.000)

3.742
= (0.267, 0.535, 0.802)

xn2 =
x2

||x2||
=

(3.000, 2.000, 1.000)

3.742
= (0.802, 0.535, 0.267)

xn3 =
x3

||x3||
=

(1.000, 1.000, 1.000)

1.732
= (0.577, 0.577, 0.577).

(C.6.3)

Finally, the cosine similarity is just the inner product of the normed vectors:

c(x1,x2) = xn1
T

· xn2 = (0.267, 0.535, 0.802)
T

· (0.802, 0.535, 0.267) = 0.714

c(x1,x3) = xn1T · xn3 = (0.267, 0.535, 0.802)
T

· (0.577, 0.577, 0.577) = 0.926

(C.6.4)

So x1 is more similar to x3 than to x2.

Solution (6.5). Section 5.2.2 lists three properties of distance metric. The first one is

d(x,y) = 0 ⇔ x = y.

This property is not satisfied for cosine-related distances: dcos(x,y) = 0 means cosine
is 1 (or angle is 0), but this is true for all vectors that point to the same direction,
not just for equal vectors.

Another issue arises from the fact that these distances are not defined for null
vector, hence distance between null-vector and any other vector is undefined.

C.7 Text as data
C.7.1 Naive Bayes
Solution (8.1). 1. According to the standard conditional probability notation, it

means that probability email is not spam (S = 0) given it contains the word
(W = 1).
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2. You can compute it directly: select all emails that contain the word, and among
those find the percentage of those that are not spam. For instance, if there are
10 emails that contain the word and 3 of those are not spam, them Pr(S =
0|W = 1) = 0.3. You can also use Bayes theorem but it is not necessary if we
just look at a single word.

Solution (8.2). Re-write the Bayesian expression for the case of no-viagra-no-spam:

Pr(S = 0|V = 0) =
Pr(V = 0|S = 0) · Pr(S = 0)

Pr(V = 0)
(C.7.1)

Based on the table in Example 8.3, we can compute the necessary probabilities:

• Pr(V = 0|S = 0), probability of no “viagra” in no-spam emails. From the table
we can see that it is 500/600 = 5/6 ≈ 0.833.

• The prior, Pr(S = 0), the proportion of legitimate emails. It is 600/1000 =
3/5 = 0.6.

• The normalizer, Pr(V = 0), the probability not to see “viagra” in emails,
650/1000 = 13/20 = 0.65.

Inserting the values in (C.7.1), we get

Pr(S = 0|V = 0) =
Pr(V = 0|S = 0) · Pr(S = 0)

Pr(V = 0)
=

=
5
6 ·

3
5

13
20

=
60

78
=

10

13
≈ 0.769. (C.7.2)

Based on the information that the email contains no word “viagra”, we update the
prior 0.6 to 0.769, ≈ 28%.

Solution (8.3). First, it is instructive to create the DTM using these two words. Here
it is attached to the dataset:

DTM
Text Spam “free” “$”

First month free! 1 1 0
Free trial coupong, worth $25 1 1 1
$100 off! 1 0 1
Application deadline 0 0 0
Campus free food 0 1 0
Off-trail running 0 0 0

We are interested in

Pr(S = 1|free = 1) and Pr(S = 1|$ = 1)
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From the Bayes theorem, we can write the first probability as

Pr(S = 1|free = 1) =
Pr(free = 1|S = 1) · Pr(S = 1)

Pr(off = 1)
. (C.7.3)

We can compute the 3 required probabilities directly from the DTM and the spam
indicator:

Pr(free = 1|S = 1) = 2/3 Pr(S = 1) = 1/2 Pr(free = 1) = 1/2

(can also do a table of counts as in Example 8.3). Plugging these numbers into (C.7.3),
we get Pr(S = 1|free = 1) = 2/3.

For the dollar-sign we have

Pr($ = 1|S = 1) = 2/3 Pr(S = 1) = 1/2 Pr($ = 1) = 1/2

and accordingly Pr(S = 1|$ = 1) = 1.
Both of these results can be easily checked through directly computing the prob-

abilities: as two emails of of three that contain “free” are spam, the corresponding
probability must be 2/3. We’ll categorize it as spam. All emails, containing the
dollar-sign are spam, hence that probability must be 1, hence it is also categorized as
spem.

As the first new email contains “free” and the next one “$”, both will be categorized
as spam.

Solution (8.4). We use the same training data as in Example 8.5 Naive Bayes Classifier,
page 356 and hence all the probabilities are the same. The bow for the new email,
“life is life”, is

good in is life viagra
x4 0 0 1 1 0

The log-likelihood for spam is:

ℓ(S = 1|x4) =

= log Pr(S = 1) + log Pr(is = 1|S = 1) + log Pr(life = 1|S = 1) =

= −1.099 + 0 + 0 = −1.099 (C.7.4)

and log-likelihood for non-spam is

ℓ(S = 0|x4) =

= log Pr(S = 0) + log Pr(is = 1|S = 0) + log Pr(life = 1|S = 0) =

= −0.405− 0.6930 = −1.099. (C.7.5)

As both log-likelihoods are the same, we have a tie as in Example 8.5. This is because
the data here is essentially the same as in the example, we have swapped “viagra”
for “is”, but “is” has exactly the same probabilities as “viagra” for both spam and
non-spam.
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Solution (8.5). xij refers to word j in the context of word i. So it represents the the
embedding of the word i. According the standard matrix notations, we have rows first,
columns second, hence the embeddings are in rows.

Solution (8.6). For a reminder: the quotes are

Knowing others is wisdom, knowing yourself is Enlightenment
Mastering others is strength. Mastering yourself is true power

Here are the embeddings (without the code):

en
lig

ht
en

m
en

t

is kn
ow

in
g

m
as

te
ri

ng

ot
he

rs

po
we

r

st
re

ng
th

tr
ue

wi
sd

om

yo
ur

se
lf

enlightenment 0.000 0.894 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.447
is 0.000 0.000 0.316 0.316 0.632 0.000 0.000 0.000 0.000 0.632

knowing 0.000 0.447 0.000 0.000 0.000 0.000 0.000 0.000 0.894 0.000
mastering 0.000 0.447 0.000 0.000 0.000 0.000 0.894 0.000 0.000 0.000

others 0.000 0.000 0.707 0.707 0.000 0.000 0.000 0.000 0.000 0.000
power 0.000 0.447 0.000 0.000 0.000 0.000 0.000 0.894 0.000 0.000

strength 0.000 0.894 0.000 0.000 0.447 0.000 0.000 0.000 0.000 0.000
true 0.000 0.894 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.447

wisdom 0.000 0.894 0.000 0.000 0.447 0.000 0.000 0.000 0.000 0.000
yourself 0.000 0.000 0.632 0.632 0.000 0.000 0.316 0.000 0.316 0.000

A few comments:

• The context of “enlightenment” contains two words: “is” and “yourself”. This
is because there is only a single phrase, “…yourself is enlightenment”, where the
word is used. Hence only these words appear in the embedding vector, with “is”
being at distance one, and hence having twice the weight of “yourself”.

• “is” context contains four words: “knowing” and “mastering” (with small weight)
and “others” and “yourself” (with large weight). This is because the latter words
immediately precede “is” while the former ones are at distance two.

• “enlightenment” and “power” do not appear in the context of any word as these
are only used in the last position of the quotes. This also applies to “knowing”
and to several other words.

• The less-then-intuitive component values ensure that the norm of all embedding
vectors is “1”.

C.8 Neural networks
C.8.1 Feed-forward networks
Solution (9.1). An easy solution is w1 = w2 = 1, z̄ = 0.5.
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Solution (9.2). From the Table 9.2 we have weights

wh1 =

(
1
1

)
wh2 =

(
1
1

)
wy =

(
−1
1

)
(C.8.1)

and biases
bh1 = 1.5 bh2 = 0.5 by = 0.5. (C.8.2)

We can compute the h1 node values:

χ1 = x
T

·wh1 =
(
0 1

)
·
(
1
1

)
= 1 and h1 = 1(χ1 > bh1) = 1(1 > 1.5) = 0.

(C.8.3)
Analogously, for the second hidden node h2 we have

χ2 = x
T

·wh2 =
(
0 1

)
·
(
1
1

)
= 1 and h1 = 1(χ1 > bh1) = 1(1 > 0.5) = 1.

(C.8.4)
So we have h = (h1, h2)

T

= (0, 1)
T . Now we can perform a similar operation with the

output layer:

z = h
T

·wh2 =
(
0 1

)
·
(
−1
1

)
= 1 and y = 1(z > by) = 1(1 > 0.5) = 1. (C.8.5)

So we have 0XOR 1 = 1.

Solution (9.3). a) Remember the softmax definition (9.1.12):

Λ(x)i =
exi∑
j e

xj
.

Let’s do the solution in a table:

1 2 3 1 2 3

inputs xi 1.00 2.00 3.00 4.00 5.00 6.00
exponents exi 2.72 7.39 20.09 54.60 148.41 403.43
Sums

∑
i e

xi 30.19 606.44
probabilities exi∑

i e
xi

0.09 0.24 0.67 0.09 0.24 0.67

As visible here, both probabilities are exactly the same.

b) From the definition, it is clear that

Λ(λ+ x)i =
eλ+xi∑
j e

λ+xj
=

eλexi∑
j e

λexj
=

exi∑
j e

xj
(C.8.6)

as eλ cancels out.
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C.8.2 Convolutional networks
Solution (9.4). At the first filter position, top-left of M, we have 0 · (−1)+0 · (−1)+0 ·
(−1)+1 ·3 = 3. For the second position, we have 0 ·(−1)+1 ·(−1)+1 ·(−1)+1 ·3 = 1,

and so on. The final result is
3 1 0

-1 1 -3
0 -1 -1

We see the largest value (3) at the top-left corner, and the smallest value (-3) at
the middle-right position. The top-left position of the image reflect the filter: positive
value at bottom-right and zeros around it. This is the shape that the filter is most
sensitive for. Right-middle is a negative of the same pattern: zero at bottom-right
and ones around it. This makes the filter to respond with the same value, just with a
flipped sign.

C.9 Machine learning techniques
C.9.1 Gradient descent
Solution (10.1). 1. The only part of the function that is written using vector nota-

tion is x · xT . As here x
T

= (x1, x2), then x =

(
x1
x2

)
and hence

x · x
T

=

(
x1
x2

)
· (x1, x2) = x21 + x22.

So you can write the function as f(x1, x2) = e−(x2
1+x2

2).

2. Gradient is a vector of partial derivatives:

∂f(x1, x2)

∂x1
= −2x1e−(x2

1+x2
2) = −2x1f(x1, x2)

∂f(x1, x2)

∂x2
= −2x2e−(x2

1+x2
2) = −2x2f(x1, x2).

The third term simplifies the expression of the derivative using the function
definition. Gradient is just a vector of these two partial derivatives:

∇f(x1, x2) =

(
−2x1e−(x2

1+x2
2)

−2x2e−(x2
1+x2

2)

)
=

(
−2x1f(x1, x2)
−2x2f(x1, x2)

)
.

In the vector notation, this can be written as ∇f(x) = −2xf(x). It is a function
of x.
Compare this with the one-dimensional case: ∂

∂xe
−x2

= −2xe−x2 .

3. Here the solution in vector notation. Vector notation is typically better for
coding as it may tremendously simplify the code. For manual computation you
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may prefer notation with separate x1 and x2.

∇f((0,1)
T

) = −2(0,1)
T

e−(0,1)
T
·(0,1) = −2

(
0
1

)
e
−

0
1

(0,1)

=

= −2
(
0
1

)
e−1 =

(
0

−2e−1

)
≈
(

0
−0.736

)
Analogously,

∇f((0,1)
T

) =

(
−2e−1

0

)
≈
(
−0.736

0

)
and

∇f((1,1)
T

) = −2(1,1)
T

e−(1,1)
T
·(1,1) = −2

(
1
1

)
e
−

1
1

(1,1)

=

= −2
(
1
1

)
e−1 =

(
−2e−2

−2e−2

)
≈
(
−0.271
−0.271

)
.

4. The sketch might look something like this:

Figure C.2: Gradient vectors at (0,1), (1,0) and (1,1). All gradient vectors (think red
arrows) point toward the origin, marked here with a blue cross (0, 0).

C.10 Responsible data science
Solution (13.1). The probability that a red candidate is of low skill is 1/3, the proba-
bility that a green candidate is of low skill is 2/3. Assuming the applicants’ skills are
independent, the probability that all G interviewed green candidates are of low skill
is (2/3)G; the probability that all 3 − G interviewed red candidates are of low skill
is (1/3)3−G. Hence the probability of not finding any high-skilled candidates when
interviewing G greens is (

2

3

)G(
1

3

)3−G

. (C.10.1)

The numeric results are
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G Probability
0 0.04
1 0.07
2 0.15
3 0.30

This indicates that the managers have a strong motivation to interview only reds, or
primarily reds.
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