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a b s t r a c t

We demonstrate that clinical trials using response adaptive randomized treatment
assignment rules are subject to substantial bias if there are time trends in unknown
prognostic factors and standard methods of analysis are used. We develop a general
class of randomization tests based on generating the null distribution of a general test
statistic by repeating the adaptive randomized treatment assignment rule holding fixed the
sequence of outcomevalues and covariate vectors actually observed in the trial.Wedevelop
broad conditions on the adaptive randomization method and the stochastic mechanism
by which outcomes and covariate vectors are sampled that ensure that the type I error is
controlled at the level of the randomization test. These conditions ensure that the use of the
randomization test protects the type I error against time trends that are independent of the
treatment assignments. Under some conditions in which the prognosis of future patients
is determined by knowledge of the current randomization weights, the type I error is not
strictly protected.We show that response adaptive randomization can result in substantial
reduction in statistical power when the type I error is preserved. Our results also ensure
that type I error is controlled at the level of the randomization test for adaptive stratification
designs used for balancing covariates.

Published by Elsevier B.V.

1. Introduction

There is considerable interest in medicine today in the use of adaptive methods in clinical trials. Adaptive methods can
be used in several ways, including adapting randomization weights based on response data. Traditionally a randomized
clinical trial assigns the treatments being studied to patients using a fixed weighting scheme. Most commonly with two
treatments, the treatments are assigned with equal probability throughout the course of the study. There has long been
interest in adjusting the weights as information accumulates about the relative effectiveness of the treatments (Armitage,
1985;Hoel et al., 1975; Rosenberger and Lachin, 1993; Simon, 1977; Zelen, 1969). Suchmethods have beenused infrequently
in phase 3 clinical trials, however, because of concern that changing the randomizationweights in a data determinedmanner
would impair the validity of the analysis of the results. Of particular concern is the possibility that the false positive error rate
might exceed the apparent significance level of the statistical test. Today, there is such interest in the general use of adaptive
methods in clinical trials that the US Food and Drug Administration has issued a draft guidance on adaptive methods (FDA,
2010). Our purpose here is to introduce a statistical significance test that preserves the claimed type I error for a very general
class of adaptive randomization methods.
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Table 1
Type I error for Mann–Whitney test.

No time trend Time trend

Simple randomization 0.046 0.050
Adaptive randomization 0.049 0.205

2. Response and covariate adaptive randomization

Assume that the clinical trial consists of two treatments and n patients. We will first assume that n is pre-specified at
the start of the trial and will later indicate how this restriction can be removed. Patients are registered for the trial one at a
time. For the ith patient registered let yi denote the outcome, ci be a 0 1 indicator of the treatment assigned (0 for control, 1
for new treatment) and xi be a vector of covariates measured before treatment assignment.

Let Hi denote the data available when the ith patient registers for the study and is ready for treatment assignment. This
data consists of the measured covariates x1, . . . , xi for the current patient and all previously registered patients and the
treatment assignments c1, . . . , ci−1 for all previously registered patients. Hi also consists of the outcomes for some if not all
of the previously registered patients y1, . . . , yi−1. Since outcome takes time to observe, Hi may include outcomes for only
some of the previous patients. For simplicity of notation here, wewill assume that there are no delays in observing response
but our results below do not depend on this assumption.

We assume that the ith patient is assigned treatment 1 with probability g(Hi) where g is a pre-specified function that
defines the adaptive assignment mechanism. For equal non-adaptive randomization, g(Hi) = 0.5 for all i = 1, . . . , n.
For ‘‘adaptive stratification’’ methods such as that developed by Pocock and Simon (1975), g(Hi) depends on the covariate
vectors x1, x2, . . . , xi and the treatment assignments c1, c2, . . . , ci−1 but not on the outcomes y1, y2, . . . , yi−1. For response
adaptive methods, the randomization weights vary based on the measured covariates for the current patient and all
previously registered patients, the treatment assignments for previously measured patients, and the outcomes for all
previously registered patients which are available at the time of entry of the ith patient. The requirement that the g function
be specified in advance is consistent with current regulatory guidelines.

At the time of analysis we assume that we have data D consisting of outcomes, measured covariates, and treatment
assignments for all n patients. We denote this by D(y, x, c). From this data we can compute a test statistic T (D). For
example, thismay be a standardized difference in average outcome between the two groups, perhaps adjusted formeasured
covariates. For survival data, T (D)might be aWald statistic from a proportional hazards model incorporating treatment and
covariates.

Table 1 shows the result of a simple simulation of two arm clinical trials with data for n = 50 patients. The test used
for comparing the groups is based on the Mann–Whitney statistic. The observed difference was considered statistically
significant if the large sample normal approximation was significant at a one-sided 5% level. For the first row, treatment
assignment was based on simple equally weighted non-adaptive randomization. For the first column of the table, the
outcomes y1, y2, . . . , yn are independent and normally distributed with mean zero and variance 1; there are no measured
covariates and no treatment effect. In this case, the type I error, estimated from 10,000 replicated trials, approximates the
nominal 5% significance level used for the tests. The last column shows results when there is an unknown time trend. That
is, yi was normally distributed with mean 10i/n and variance 1. Again there were no measured covariates and no treatment
effect. With or without time trend, using equally weighted non-adaptive randomization, the proportion of the 10,000
simulation replications in which the null hypothesis was rejected is approximately 0.05, and the small discrepancy is within
the limitations of the number of replications and the accuracy of the large sample approximation to the Mann–Whitney
statistic for clinical trials of only 50 patients.

The second row of Table 1 shows results for similar trials using a response adaptive randomization method. We
assume that there is no delay in observing responses so Hi consists of outcomes and treatment assignments for patients
1, 2, . . . , i − 1. The first 10 patients are assigned treatment using simple equally weighted randomization. For subsequent
patients the randomization weight g(Hi) is the standardized Mann–Whitney statistic for comparing outcomes for the two
treatments using data for patients 1, 2, . . . , i − 1. This standardized statistic equals the sum of the ranks for outcomes on
treatment c = 1 minus n1(n1 + 1) divided by n1n0 where n1 and n0 denote the number of the first i − 1 patients who
received treatments 1 and 0 respectively. This standardized statistic takes values in the range 0–1.

The inflation in the type I error shown in Table 1 for adaptive randomizationwith time trend results from the fact that the
null hypothesis tested by the Mann–Whitney test is in fact false in that case. The null hypothesis is that the n1 observations
in treatment arm 1 and the n2 observations in treatment arm 0 can be regarded as the selection of a partition of the data into
sets of size n1 and n2 in which all such partitions are equally likely. This is not true for adaptive randomization. The inflation
of the type I error can be understood intuitively from the following thought experiment involving a more extreme form of
adaptive randomization. Suppose that the outcomes for the first 10 patients are sampled independently from N(0, 1) and
that these patients are randomly partitioned into 5 patientswho receive treatment 1 and 5who receive treatment 0. Let all of
the remaining 40 patients be assigned to receive the treatmentwith the larger sumof ranks in the initial 10 patients. Suppose
also that the outcomes for the 40 remaining patients are independent N(λ, 1) observations. If λ is large enough, then the
outcomes for all 40 additional patients will exceed the greatest outcome for the initial 10 patients. Suppose for example that
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Table 2
Type I error for adaptive randomization test.

No time trend Time trend

Adaptive randomization 0.049 0.050

treatment group 1 has the smaller rank sum r1 and that treatment 0 is thus assigned to the remaining 40 patients. Under
the null hypothesis that the 5 observations in treatment group 1 are randomly selected from the 50 total observations, the

probability that the rank sum for that group is no greater than r1 isM(r1; 5, 10)


50
5


where the numerator represents the

number of combinations inwhich 5 observations can be randomly selected from the first 10 to result in a rank sumno greater

than r1. The numerator is strictly less than

10
5


and hence the probability is less than


10
5

 
50
5


which is approximately

0.00012. Hence, the two-sided type I error will approach 1.0 for large values of λ. In order to avoid this inflation in type I
error, an alternative analysis is needed that takes account of the adaptive randomization utilized in the clinical trials.

3. A significance test based on the randomization distribution

Let dFc|z denote the distribution of the sequence of treatment assignments c = (c1, . . . , cn) conditional on z =

((x1, y1), . . . , (xn, yn)), the sequence of covariate vectors x = (x1, . . . , xn) and outcomes y = (y1, . . . , yn). One can sample
from dFc|z under the null hypothesis by holding fixed the sequence of covariate vectors and outcomes for the patients in the
clinical trial and re-randomizing all of the patients using the probabilistic treatment assignment mechanism determined by
the adaptive algorithm. The sequence of treatment assignments sampledwill in general depend on the sequence of covariate
vectors and outcomes and these are kept fixed.

Let dFT (z) denote the distribution of the test statistic T induced when the vector of treatment assignments is drawn from
dFc|z . This induced distribution can be used as a null distribution for the test statistic computed from the data using the
treatment assignments actually used in the clinical trial. For a one-sided significance test of level α of the null hypothesis
against the alternative that treatment 1 is superior, we use as critical value for the test statistic the 100(1− α)th percentile
of dFT (z), i.e. F−1

T (z)(1 − α).
Table 2 shows the results of a simulation of the type I error obtained using this randomization test based on the adaptive

assignment rule and test statistic described for Table 1. These results are based on 5000 clinical trials simulated under the
two conditions described for Table 1. For each clinical trial, the null distribution of the test statistic was approximated based
on repeating the adaptive treatment assignment 500 times. As can be seen, the adaptive randomization test has the correct
type I error, even when there are time trends in the outcomes.

The following theoremprovides conditions on the stochastic process generating the sequence z = ((x1, y1), . . . , (xn, yn))
that ensures that the type I error is controlled at level α in hypothetical replications of the clinical trial with different
covariate and outcome vectors. The controlled size of the rejection region for the randomization test conditional on z does
not automatically ensure control of the type I error under all conditions. If a test conditional on the full vector of outcomes
z has size ≤ α, then the type I error (i.e. expected size with regard to distribution of z) will be ≤ α. The subtlety here comes
from the fact that under arbitrary dependence structures, the randomization mechanism used for determining the critical
value for the randomization test does not necessarily correspond to the conditional distribution of c|z. If zj is dependent on
ci for j > i, then this induces a dependence in the other direction and information about zj gives us information about ci. The
adaptive randomization test, however, determines ci using no information about zj for any j > i. Consequently, in order for
the randomization distribution to match the true conditional distribution, we need (conditional) independence between ci
and zj for j > i.

Theorem 1. Let z = ((x1, y1), . . . , (xn, yn)) be a sequence of pairs of covariate vectors and outcomes and let dFz,c denote the
joint distribution of z and the vector of treatment assignments c. Let T (z, c) denote the value of the test statistic computed on the
data and FT (z) denote the distribution function of the null distribution of the test statistic T induced by the randomization process
conditional on z. For each i ∈ {1, . . . , n}, we assume that conditional on ((x1, y1), . . . , (xi−1, yi−1)), (xi,yi) is independent of
(c1, . . . , ci−1). Then under the null hypothesis,

Prz,c

T (z, c) ≤ F−1

T (z)(1 − α)


≥ 1 − α. (1)

Proof.

Prz,c

T (z, c) ≤ F−1

T (z)(1 − α)


=

∫
z,c

I

T (z, c) ≤ F−1

T (z)(1 − α)

dFz,c (2)
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where I{} denotes the indicator function. The joint distribution can be written

dFz,c = dFz1,c1dFz2,c2|z1,c1dFz3,c3|z1,z2,c1,c2 . . . dFzn,cn|z1,...,zn−1,c1,...,cn−1

= dFz1dFc1|z1dFz2|z1,c1dFc2|z1,z2,c1 . . . dFzn|z1,...,zn−1,c1,...,cn−1dFcn|z1,...,zn,c1,...,cn−1 .

Conditional on z1, . . . , zi−1, the random vector zi is assumed statistically independent of the treatment assignments
c1, . . . , ci−1. Consequently,

dFz,c = dFz1dFc1|z1dFz2|z1dFc2|z1,z2,c1 . . . dFzn|z1,...,zn−1dFcn|z1,...,zn,c1,...,cn−1

= dFzdFc1|z1dFc2|z1,z2,c1 . . . dFcn|z1,...,zn,c1,...,cn−1 .

The null hypothesis is dFyi|Hi,ci = dFyi|Hi for each i where Hi is as previously defined. This implies that dFci|Hi,yi = dFci|Hi .
Consequently,

dFz,c = dFzdFc1|x1dFc2|z1,x2,c1 . . . dFcn|z1,...,zn−1,xn,c1,...,cn−1

= dFz
n∏

i=1

dFci|Hi . (3)

Using (3) in (2), we obtain

Prz,c

T (z, c) ≤ F−1

T (z)(1 − α)


=

∫
z
dFz

∫
c
I

T (z, c) ≤ F−1

T (z)(1 − α)
 n∏

i=1

dFci|Hi . (4)

By construction of the randomization test, however,∫
c
I

T (z, c) ≤ F−1

T (z)(1 − α)
 n∏

i=1

dFci|Hi ≥ 1 − α

and hence

Prz,c

T (z, c) ≤ F−1

T (z)(1 − α)


≥

∫
z
(1 − α)dFz = (1 − α).

Consequently, the type I error is controlled at level α where α is the significance level used to define the one-sided
rejection region for the conditional randomization tests. �

The conditions of the theorem are quite general. This generality pertains to the type of adaptive assignment, the
test statistic and to the stochastic mechanism for generating the sequence of covariate vectors and outcomes. The
mechanisms include time trends of arbitrary shapes. The assumption that conditional on ((x1, y1), . . . , (xi−1, yi−1)), (xi, yi)
is independent of (c1, . . . , ci−1) is not completely innocuous but will often be satisfied. Treatment assignments are not
publicized even in un-blinded clinical trials. We performed a simulation to evaluate the extent of bias obtained with using
the randomization analysis when this assumption is violated. The outcome yi was simulated as pi +ε where ε is N(0, 1) and
pi is the probability of assigning treatment 1 to the ith patient. This is a clear case of statistical dependence in violation of the
assumption of the theorem, yet in 1000 simulations using the randomization test, the type I error was 0.064. This suggests
that although the type I error is not bounded in this situation by the level of the randomization test, the magnitude of bias
is not large.

4. Statistical power

We performed simulations to evaluate the statistical power of the randomization test. Outcome for the ith patient was
normalwithmean δci+β (i/n) and variance 1. ci is the binary treatment indicator, δ is the treatment effect andβ is the slope
of the time trend in prognosis among patients. Results are shown for total sample sizes of 50 and 100 patients. Treatment
effect δ was selected to have power 0.90 for non-adaptive randomization using a Mann–Whitney test with one-sided level
of 0.05. The δ values used depended on n and β . Power values shown in Table 3 are for adaptive randomization using the
randomization test for analysis. The initial 20% of patients were randomized with equal probability to each treatment.
Subsequently, the adaptive randomization was based on the standardized Mann–Whitney statistic previously described,
but with a maximum (minimum) probability of assignment to treatment group 1 of ‘‘cap’’ (1-cap).

Table 3 indicates that the statistical power associated with using adaptive treatment assignment is lower than that with
non-adaptive randomization (0.90). Without time trends, the 14% point reduction in power for the very small sample size of
50 total patients is greater than the 5% point reduction for a clinical trial of 100 patients. For n = 50, the reduction in power
was reduced by capping the degree of adaptiveness of the randomization. For n = 100, such capping was less necessary
and had less effect. Similar effects were seen with time trends in the prognosis of patients. The results for power shown
in Table 3 are based on a particular method for adaptively modifying randomization weights and a particular test statistic.
Other choices of weights and other test statistics might perform very differently.
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Table 3
Power for adaptive randomization.

Total sample size (n) Time trend (β) Power cap = 1 Power cap = 0.67

50 0 0.76 0.82
50 1 0.73 0.80

100 0 0.85 0.85
100 1 0.83 0.84

5. Discussion

The randomization test we have described can be used with categorical, right-censored or continuous outcome data
and with any test statistic. It can also be used with a wide variety of adaptive assignment mechanisms. The randomized
play the winner rule developed byWei and Durham (1978) was used in the controversial ECMO (extracorporeal membrane
oxygenation) clinical trial for newborns with respiratory failure (Ware and Epstein, 1985). Wei and Durham developed a
randomization test for that particular design with binary endpoint and it was discussed by Begg (1990).

To the best of our knowledge, this paper provides the first proof of the finite sample conditions under which the type I
error is preserved for response adaptive treatment assignmentmechanisms. Jennison and Turnbull (1999) and Karrison et al.
(2003) described group sequential adaptive treatment designs inwhich randomizationweights are constant for sequentially
accrued blocks of patients. They demonstrated the preservation of type I error asymptotically for their treatment assignment
rules, but that demonstration requires that the sample size of each block approaches infinity because the arguments are
conditional on the weights used for the blocks.

In our derivation we assumed that the total sample size n was fixed in advance. Using the spending function approach
of Lan and DeMets (1983) however, one can define a sequence of nominal significance thresholds α1, . . . , αK for use at
K analysis times with pre-specified sample sizes n1, n2, . . . , nK . Using the randomization distribution of dFc|z one can
define critical values T ∗

k (z1, . . . , znk) for size αk rejection regions at these analysis times. In performing the kth analysis
of a particular clinical trial, only the data {ci, zi, i = 1, . . . , nk) is needed in order to perform the randomization test
and determine whether the test statistic exceeds the critical value T ∗

k (z1, . . . , znk) and the proof of the theorem can be
generalized to accommodate the new rejection region. With right-censored data, further modification to the derivation
would be necessary.

For the calculations of our examples, we have approximated the significance levels of the randomization tests by
randomly selecting 500 re-randomizations of treatment assignments. Efficient exact network algorithms and large sample
approximations for some designs with binary outcomes have been studied by Mehta et al. (1988).

The randomization test approach can also be used for the analysis of clinical trials in which probabilistic adaptive
stratification methods have been used for treatment assignment. Although no randomization test is possible for
deterministic assignment methods like ‘‘minimization’’ (Taves, 1974), the Pocock–Simon adaptive stratification method
(Pocock and Simon, 1975) is based on a biased coin randomization to balance the treatment groups marginally with regard
to a large number of covariates. Although the method has been widely used, controversies occasionally arise regarding how
the trials should be analyzed and what the effect of adaptive stratification is on type I error. The proof provided here may
help to put such concerns to rest.

In this paperwe have shown that if one ignores the adaptive assignmentmechanisms in the analysis of response adaptive
clinical trials, the type I error can be enormously increased by simple time trends in unmeasured characteristics of the
patients. Adjustment formeasured covariatesmay reduce this bias somewhat. Analyzing the data using a randomization test
generated by the adaptive assignment mechanism enables the type I error to be controlled at the level of the randomization
test under the conditions defined in Theorem 1. These conditions include the existence of complex time trends in the data
but the conditions are not completely general. Although this provides an improved statistical underpinning for the use of
response adaptive treatment assignment, there are many other aspects that need to be considered in deciding whether to
use such an approach such as effect on statistical power or on the number of patients treated with the inferior treatment in
cases where the null hypothesis is false. We have provided some simulation results that indicate that the effect of response
adaptive assignment and time trends on power can be substantial, particularly for very small clinical trials. Effect on power
depends, however, on the nature of the outcome endpoint, the test statistic and how the randomizationweights aremodified
by outcomes. Future evaluations of outcome adaptive randomization should, however, be based on the use of appropriate
randomization tests that ensure that the target type I error is controlled at the desired level.
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