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abstract | Recent advances in nanotechnology have offered new hope for cancer detection, prevention, and 
treatment. While the enhanced permeability and retention effect has served as a key rationale for using 
nanoparticles to treat solid tumors, it does not enable uniform delivery of these particles to all regions of tumors 
in sufficient quantities. This heterogeneous distribution of therapeutics is a result of physiological barriers 
presented by the abnormal tumor vasculature and interstitial matrix. These barriers are likely to be responsible 
for the modest survival benefit offered by many FDA-approved nanotherapeutics and must be overcome for the 
promise of nanomedicine in patients to be realized. Here, we review these barriers to the delivery of cancer 
therapeutics and summarize strategies that have been developed to overcome these barriers. Finally, we 
discuss design considerations for optimizing the delivery of nanoparticles to tumors.
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Introduction
rapid advances in nanotechnology have permitted 
the incorporation of multiple therapeutic, sensing and 
target ing agents into nanoparticles (for example, lipo-
somes, viruses and quantum dots), with a size range 
of 1–1,000 nm. these agents have offered new hope 
for detection, prevention, and treatment in oncology. 
nanomedicine for cancer therapy is advantageous over 
conventional medicine because it has the potential to 
enable the preferential delivery of drugs to tumors owing 
to the enhanced permeability and retention (ePr) effect, 
and the deli very of more than one therapeutic agent for 
combination therapy. other advantages of nanomedicine 
include specific binding of drugs to targets in cancer cells 
or the tumor micro environment, simultaneous visual-
ization of tumors using innovative imaging techniques, 
enhanced drug-circulation times, controlled drug-release 
kinetics, and superior dose scheduling for improved 
patient compliance.1–6 Furthermore, many widely used 
conventional chemotherapeutics, such as taxanes, include 
synthetic solvents (for example, castor oil and poly-
sorbate 80) that directly contribute to adverse effects.7–9 
Finally, many tumor types are inherently resistant to avail-
able chemotherapeutics. nanomedicine has the potential 
to overcome these problems.10,11

over 20 nanoparticle therapeutics have been approved 
by the FDa for clinical use.12,13 nanoparticle formula-
tions for the treatment of solid tumors (table 1) include 
liposomes (such as pegylated liposomal doxorubicin and 
liposomal daunorubicin), albumin-bound paclitaxel, poly-
meric particles (such as methoxy-PeG-poly[d,l-lactide] 
taxol) and many more formulations that are in preclinical 

and/or clinical trials.12 although less toxic than conven-
tional therapies, these agents are still associated with 
adverse effects, such as stomatitis and palmar–plantar 
erythrodysesthesia for pegylated liposomal doxorubicin14 

and sensory neuropathy and nausea for albumin-bound 
paclitaxel.7 moreover, these agents are expensive, and 
the increase in overall survival is modest in many cases 
(table 1). therefore, a better understanding of the bar-
riers that prevent efficacy and uniform delivery of nano-
particles into tumors is needed to develop strategies to 
improve treatment.

transport of a therapeutic agent from the systemic 
circulation to cancer cells is a three-step process. First, 
nanoparticles flow to different regions of tumors via blood 
vessels. they must then cross the vessel wall, and finally, 
penetrate through the interstitial space to reach the target 
cells. Delivery of diagnostic and therapeutic agents differs 
dramatically between tumor and normal tissues because 
of differences in their structure. the abnormal organiza-
tion and structure of the tumor vasculature leads to tortu-
ous and leaky vessels and heterogeneous blood flow.15,16 
in addition, the lack of functional lymphatic vessels and 
the vascular hyper permeability inside tumors results in 
interstitial hypertension.17 this uniformly elevated inter-
stitial fluid pressure (iFP) reduces convective transport, 
while the dense extracellular matrix hinders diffusion.18 
in this review, we discuss the barriers to nanomedicine 
delivery and present strategies to overcome them. Finally, 
we propose design considerations to optimize delivery of 
nanotherapeutics to solid tumors.

Abnormal blood and lymphatic networks
Blood-flow rate and vascular morphology (that is, the 
geometric arrangement, diameter, length and number 
of blood vessels) affect the movement of compounds 
through the vasculature.19–22 Blood vessels in tumors 
are highly irregular in their architecture compared with 
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those in normal tissues (Figure 1a). unlike normal vessels, 
tumor vessels lack an orderly branching hier archy from 
large vessels into successively smaller vessels that feed a 
regularly spaced capillary bed. instead, tumor vessels are 
heterogeneous in their spatial distribution, dilated and 
tortuous, leaving avascular spaces of various sizes.22,23 
in addition, in tumors, vessel-wall structure is abnormal 
with wide interendothelial junctions, an abnormally thick 
or thin basement membrane, large numbers of fenestrae 
and transendothelial channels formed by vesicles,24,25 and 

Key points

Enhanced permeability and retention is the primary rationale for using  ■
nanoparticles in oncology; however, only a few nanotherapeutics have been 
approved for the treatment of solid tumors and the overall survival benefit from 
these is modest in many cases

The abnormal structure of tumor vessels results in heterogeneous tumor  ■
perfusion and extravasation, and a hostile tumor microenvironment that fuels 
drug resistance and tumor progression

in highly fibrotic or desmoplastic tumors, the extracellular matrix consisting  ■
of an interconnected network of collagen fibers blocks penetration of large 
nanoparticles leaving them concentrated in perivascular regions

Normalization of the vascular network with antiangiogenic therapy and  ■
normalization of the extracellular matrix using matrix-modifying agents has the 
potential to improve the delivery and efficacy of nanomedicine

Targeting nanoparticles to cancer cells or tumor-associated endothelial cells  ■
is another promising strategy but may be limited by spatial and temporal 
heterogeneity in the expression of the targets

Development of nanoparticles that release therapeutic agents in response  ■
to the tumor microenvironment or an external stimulus (for example, light, 
ultrasound, heat, electric or magnetic fields) may also improve the delivery of 
nanomedicine

maximum pore diameters as large as several hundred 
nanometers (Figure 1b).26,27 owing to their irregular struc-
ture, vessel walls are leaky and hyperpermeable in some 
places while not in others. Finally, proliferating tumor cells 
and/or stromal cells exert solid stress and compress blood 
vessels, which might cause vessel collapse.28–30

as shown in Box 1, the elevated viscous and geo metrical 
resistance offered by the vasculature can compromise 
tumor blood flow.22 therefore, the average velocity of red 
blood cells (rBCs) in tumor vessels can be an order of mag-
nitude lower than in normal vessels and the overall per-
fusion rates (blood flow rate per unit volume) in tumors are 
reduced compared with many normal tissues (Figure 1c). 
Furthermore, unlike normal tissue, blood velocity in 
tumors is independent of vessel diameter and unevenly 
distributed, leaving poorly perfused or even unperfused 
regions.31–34 the presence of un perfused regions leads to a 
hostile tumor micro environment (for example, low partial 
oxygen pressure, low pH and necrotic tissue), which fuels 
drug resistance and tumor progression.

the normal lymphatic network drains excess fluid from 
tissue in order to maintain tissue interstitial fluid balance. 
in tumor tissue, the proliferating cancer cells compress 
lymphatic vessels, particularly at the center of the tumor, 
causing their collapse.28 therefore, functional lymphatic 
vessels exist only in the tumor periphery.35,36 these peri-
tumor lymphatics carry fluid, growth factors and cancer 
cells, and mediate tumor metastases via the lymphatic 
network (Figure 2a).37,38 the inefficient drainage of fluid 
from the tumor center coupled with fluid leakage from 
tumor vessels contributes to interstitial hypertension.

interstitial hypertension and impaired blood supply 
reduces the efficacy and delivery of therapeutic agents in 
solid tumors.16 the subsequent hypoxia in tumor cells not 
only induces resistance to radiotherapy, but also causes 
resistance to several cytotoxic drugs. independent of these 
effects, the genetic instability induced by hypoxia selects 
for cells with an increased potential for meta statasis. the 
cytotoxic functions of immune cells that infiltrate a tumor 
are also compromised by both hypoxia and low pH. the 
fragile tumor vasculature may also facilitate the shedding 
of cancer cells into the circulation, which is a pre requisite 
for metastasis. unfortunately, this abnormal tumor 
microenvironment does not impair tumor-cell survival.

in conclusion, the spatial and temporal heterogeneities 
in blood supply and vessel permeability along with poor 
lymphatic drainage help to create an abnormal micro-
environment that impairs uniform delivery and efficacy 
of therapeutic agents in tumors.

Abnormal vascular barrier
there are at least five pathways for transport across the 
vascular endothelium: pathway one is diffusion through 
endothelial cells, two is lateral membrane diffusion, three 
is transport through intercellular junctions, four is trans-
port through intracellular fenestrations (~40–60 nm), and, 
finally, five is vesicular transport (~100 nm).24 water and 
lipophilic solutes use pathways one, three and four for 
transport, and lipophilic solutes also cross the vascular 
endothelilum by pathway two. Hydrophylic solutes and 

Table 1 | Nanoparticle formulations for the treatment of solid tumors*

generic 
name

Trade 
name(s)

indication Benefit

Pegylated 
liposomal 
doxorubicin

Doxil® and 
Caelyx®

Hiv-related 
Kaposi’s 
sarcoma

Metastatic 
ovarian 
cancer

Metastatic 
breast 
cancer

No statistically significant change in 
overall survival (23 weeks) vs doxorubicin, 
bleomycin and vincristine treatment 
(22.3 weeks) for Hiv-related Kaposi’s 
sarcoma144

Statistically significant overall survival 
improvement (108 weeks, P = 0.008) 
vs topotecan treatment (71.1 weeks) for 
platinum-sensitive patients with ovarian 
cancer14

No statistically significant overall survival 
change (84 weeks) vs conventional 
doxorubicin (88 weeks) for breast cancer 
patients receiving first-line therapy145

Liposomal 
daunorubicin

DaunoXome® Hiv-related 
Kaposi’s 
sarcoma

No statistically significant overall survival 
change (52.7 weeks) vs doxorubicin, 
bleomycin and vincristine treatment 
(48.9 weeks)146

Albumin-
bound 
paclitaxel

Abraxane® Metastatic 
breast 
cancer

Statistically significant overall survival 
change (56.4 weeks, P = 0.024) vs 
polyethylated castor oil-based paclitaxel 
treatment (46.7 weeks) for patients 
receiving second-line treatment7

*The polymeric platform methoxy-PEG-poly(d,l-lactide) taxol with the trade name Genexol-PM (Samyang Co., 
Seoul, Korea) has been approved in Korea for the treatment of metastatic breast cancer.147,148
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macromolecules use pathways three and four, but macro-
molecules may also follow pathway five. nanoparticles 
that are larger than albumin (~4 nm) are most likely to 
follow pathway three because interendothelial junctions in 
some tumors can be as large as a few micrometers.26,27 the 
parameters that affect the extravasation of nano particles 
from the blood vessels are presented in Box 2.

since tumor blood vessels have larger pores, the vascular 
permeability and hydraulic conductivity are signifi cantly 
higher in tumor than in normal tissues;26,32,39–41 this is the 
basis for the ePr effect.40,42 nanoparticles extravasate 
in tumor tissue from these large pores in tumor vessels. 
vascular permeability decreases with the increase in the 
size of the transported particle.43,44 Furthermore, cat-
ionic nanoparticles preferentially target tumor vessels 
and exhibit higher permeability compared with their 
anionic or neutral counterparts.45–49 vascular permeabil-
ity depends not only on the properties of the particle, but 
also on the physiological characteristics of the vasculature. 
while using the ePr effect as a rationale for nanoparticles, 
it is often overlooked that not all tumor vessels are leaky, 
which causes a heterogeneous distribution of pore sizes 
and thus, heterogeneous extravasation and delivery.43,44,50 
in addition, the permeability in tumor models depends 
on the transplantation site and varies with time and in 
response to treatment.50–52

another important barrier to transvascular transport 
is the elevated iFP that reduces pressure gradients across 
the vessel wall. in normal tissues, iFP is approximately 
0 mmHg whereas tumors exhibit interstitial hyper-
tension,15,38 which is caused by the high permeability of 
tumor vessels in combination with the lack of functional 
lymphatic vessels in the tumor interstitial space.15,35 as 
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Figure 1 | vascular structure and function in tumors. a | Longitudinal fluorescence imaging of normal (top) and tumor 
(bottom) colon tissue in a floxed Apc mouse. Permission obtained from Nature Publishing Group © Kim, P. et al. Nat. 
Methods 7, 303–305 (2010). b | Tumor vessels are leaky and have large pore sizes, which for some tumor types can be as 
large as a few micrometers in size. Permission obtained from the National Academy of Sciences, USA © Hobbs, S. K. et al. 
Proc. Natl Acad. Sci. USA 95, 4607–4612 (1998). c | Blood velocity in normal pial vessels (left) and tumors (right) as a 
function of vessel diameter. Unlike normal tissue, in tumors blood velocity does not depend on vessel diameter. Permission 
obtained from the American Association of Cancer Research © Yuan, F. et al. Cancer Res. 54, 4564–4568 (1994). 
Abbreviation: RBC, red blood cell.

Box 1 | Determinants of blood flow

Tumor blood flow, Q, is equal to the pressure difference 
between arterial and venous ends, ΔP, divided by the flow 
resistance (FR). This is defined in the following equation:22

Q = ΔP/FR

FR = ηZ, where η is the apparent viscosity (viscous 
resistance), and Z is the geometrical resistance. 
Abnormalities in tumor vasculature increase both the 
geometric and viscous resistance to blood flow.22,149–151 
Geometric resistance is elevated because of the peculiar 
branching patterns of tumor vessels,152–154 and their 
deformation due to compression by cancer cells.28,30 
viscous resistance is elevated because tumors lose 
5–10% of plasma as the blood flows from the arterial to 
venous side. This results in the increase of red blood cell 
concentration (hemoconcentration) that in turn increases 
the apparent viscosity.151,154,155
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a result, the iFP is uniformly elevated inside the tumor 
and becomes almost equal to the microvascular pressure 
(Figure 2b).17,53–57 However, close to the tumor margin the 
iFP drops rapidly to normal values causing a steep pres-
sure gradient (Figure 2c).53,58,59 a direct consequence of the 
elevated iFP levels is that the main mechanism of mass 
transport across the vessel wall is diffusion, a process that 
is much slower than convection, particu larly for large par-
ticles. it is also possible the iFP inside the tumor could tran-
siently exceed the micro vascular fluid pressure and, thus, 
cause intravasation of materials back to the blood supply.55 
moreover, transmural coupling between microvascular 
pressure and iFP can abolish the pressure gradient along 
the length of a tumor vessel causing blood stasis in the 
absence of physical occlusions.60,61 Finally, because of the 
steep drop in iFP, interstitial fluid escapes from the tumor 
periphery into the surrounding healthy tissue, carrying 
not only therapeutic nanoparticles but also growth factors 
(for example, veGF-a, veGF-C, platelet-derived growth 
factor [PDGF]-a and PDGF-C) and cells (for example, 
metastatic cancer cells) that fuel tumor progression.38,62

it is worth noting that the ePr effect (that is, increased 
vessel leakiness and impaired lymphatic function) is 
observed even during the early stages of carcinogenesis 
(for example, dysplasia and hyperplasia).63 thus, nano-
particles could be used to detect very small lesions for sur-
gical removal.64,65 However, the impairment of blood and 
lymphatic vessels could also pose a challenge for uniform 
delivery of nanoparticles throughout these lesions. thus, 
the large size of nanoparticles along with the uniformly 
elevated iFP in tumors hinder transport across the vessel 
walls and compromise the benefits of the ePr effect.

Abnormal interstitial barrier
the parameters that govern the interstitial transport 
of nanoparticles in tumors are described in Box 3. the 
uniformly elevated iFP eliminates pressure gradients 
not only across the tumor vessel walls, but also inside 
the tumor. therefore, the main mechanism of transport 
within tumors is diffusion. the tumor interstitial matrix 
consists of a highly interconnected network of collagen 
fibers that interact with other molecules, such as proteo-
glycans and glycosaminoglycans.66,67 the movement of 
a diffusing nanoparticle depends on its size, charge and 
configuration as well as the physicochemical properties 
of the interstitial matrix.18 small therapeutic agents, such 
as chemo therapeutics, whose size is usually up to a few 
nanometers, diffuse fairly rapidly in the tumor inter stitial 
matrix. However, the diffusion coefficient of nano particles, 
such as liposomes and viruses, whose size can be up to 
hundreds of nanometers in diameter, is considerably hin-
dered by interactions with the interstitial matrix. indeed, 
the extravascular space available for large therapeutic 
agents decreases with the size of the agents.68 in addition, 
in many tumors, particles larger than 60 nm in diameter 
are not able to effectively diffuse through the collagen 
matrix.69–72 these particles extravasate from blood vessels, 
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Figure 2 | Elevated iFP in tumors. a | The iFP is uniformly elevated in tumors except 
at the margin. The steep drop of iFP at the margin causes fluid, growth factors and 
cells to leak out of the tumor into the peritumoral tissue, which in turn might facilitate 
angiogenesis and metastasis, and inhibit drug delivery. Permission obtained from 
American Association of Cancer Research © Jain, R. K. et al. Cancer Res. 67,  
2729–2735 (2007). b | The iFP and MvP for different tumor types. Permission 
obtained from the American Association of Cancer Research © Boucher, Y. & Jain, 
R. K. Cancer Res. 52, 5110–5114 (1992) and © Boucher, Y. et al. Cancer Res. 56, 
4264–4266 (1996). c | iFP profile as a function of the distance from the tumor 
surface. Permission obtained from the American Association of Cancer Research © 
Boucher, Y. et al. Cancer Res. 50, 4478–4484 (1990). Abbreviations: iFP, interstitial 
fluid pressure; iFv, interstitial fluid velocity; MvP, microvascular pressure.

Box 2 | Determinants of transvascular transport

Extravasation of materials from the blood vessels can 
occur by diffusion and convection and is described by the 
following equation:24 

J = PS(Cp – Ci) + LpS(1 – σ)[(pv – pi) – σ(πv – πi)]Cp

J is the flux (mass per unit volume) of materials crossing 
the vessel wall, P is the vascular permeability, S is the  
vessels’ surface area, Cp–Ci is the concentration 
difference of the material between the plasma and  
the interstitial space, Lp is the hydraulic conductivity of the 
vessel wall, pv–pi is the difference between microvascular 
and interstitial fluid pressure, σ is the osmotic reflection 
coefficient, and πv–πi is the osmotic pressure difference 
across the wall. The vascular permeability depends on the 
properties of the particle (size, charge and configuration) 
and the vessel wall (pore size, charge and arrangement). 
it decreases as the particle size increases and becomes 
zero when the particle size is larger than the pore cut-
off size. The hydraulic conductivity is a property of the 
morphology of the wall and depends on the fraction of 
the wall surface occupied by pores. More comprehensive 
models for transvascular models exist but they are beyond 
the scope of this Review.
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but because they cannot penetrate the tumor interstitial 
space, are concentrated around the vessels heterogeneously 
and cause only local effects (Figure 3a,b).43,73 Charged par-
ticles develop electrostatic attraction or repulsion with 
charged components of the interstitial space that further 
hinders their diffusion, while macromolecules with linear, 
semi-flexible configu ration diffuse more efficiently than 
do rigid spherical particles of comparable size.70,74

the collagen content is the major determinant of inter-
stitial transport (Figure 3c).75–77 tumors rich in collagen 
hinder diffusion to a greater extent than tumors with a 
low collagen content. also, the site of tumor growth plays 
a crucial role in the transport properties of the tumor.69 
as shown in Figure 3d, the same tumor type implanted 
in two different locations in mice (dorsal skin versus 
cranium) exhibits different diffusion co efficients, presum-
ably because of different collagen levels.69 Furthermore, 
collagen fibers carry a slightly positive charge at neutral 
pH, and thus may interact with negatively charged  
nanoparticles to form aggregates.78

another determinant of interstitial transport is the sul-
fated glycosaminoglycan content. these thin and elon-
gated fibers not only significantly increase the viscosity 
of the interstitial fluid, but they also carry a highly nega-
tive charge that—even in small quantities—can inhibit 
the transport of materials by forming aggregates.75,79–82 
For example, electrostatic binding between the diffus-
ing nanoparticle and heparan sulfate can decrease the 
diffusion coefficient of the particle by three orders of 
magnitude.80,81 However, this binding is reversible and 
enzymatic digestion of the heparan sulfate chains can 
rescue the mobility of the particle.

Finally, the heterogeneous distribution of the com-
ponents of the interstitial matrix in the tumor separates 
the matrix in two phases—the viscous and the aqueous. 
the viscous phase is considered to be in regions of high 
collagen-fiber concentration and significantly hinders 
the particle mobility. the aqueous phase is found in 
low fiber-concentration regions where the diffusivity 
of the particle is similar to that in water. the two-phase 
nature of transport in the tumor matrix results in a two-
 component diffusion.72,83 the fast component is associ-
ated with the aqueous phase, while the slow component 
is associated with the viscous phase. Consequently, 
the distributions of these phases greatly affect particle  
distribution in the tumor.

in conclusion, the dense and heterogeneous structure 
of the extracellular matrix in desmoplastic tumors blocks 
large nanotherapeutics and results in the heterogeneous 
distribution of these agents.

Strategies to improve delivery
From the above evidence, we conclude that inefficient 
transport of diagnostic and therapeutic nanoparticles in 
tumors is a result of the abnormal structure and function 
of tumor vessels and the dense matrix associated with the 
desmoplastic response. therefore, therapeutic strategies 
to enhance drug delivery have focused on normalizing 
the tumor vasculature to increase the efficiency of the 
vascular network, and normalizing the tumor interstitial 

matrix so that nanoparticles penetrate faster and deeper 
inside the tumor.

normalization of tumor vasculature
new vessel formation in tumors is initiated by an imbal-
ance of proangiogenic and antiangiogenic factors.16,84,85 in 
normal tissues, the balance between these factors main-
tains the normal architecture of the vascular network in 
order to ensure optimal function. in tumors, however, 
proangiogenic molecules, (for example, veGF, basic fibro-
blast growth factor and PDGF) are usually over expressed, 
which tips the balance towards the pro angiogenic side and 
causes the formation of chaotic blood vessels (Figure 4a). 
therefore, judicious application of anti angiogenic agents 
can restore the balance and revert the vasculature to a 
more ‘normal’ phenotype.16,86

of all the established proangiogenic molecules, veGF 
seems to be the most critical and has been the focus 
of many studies. Blockade of veGF causes pruning of 
immature vessels, decrease in vessel density and dia meter, 
and remodeling of the vasculature to more closely resem-
ble the structure of normal vessels.87,88 more importantly, 
from the transport point of view, tumor vessels appear less 
tortuous and better perfused after treatment, and the iFP 
is significantly reduced, which restores pressure gradients 
across the vessel wall and leads to a deeper penetration 
of molecules into tumors and to improved oxygenation 
(Figure 4b–d).87,89,90

agents with indirect antiangiogenic effects can also 
lead to vascular normalization. For example, trastuzumab 
significantly reduced the diameter, volume and per-
meability of tumor blood vessels, producing more normal 
networks by mimicking an antiangiogenic cocktail.91 in 
another example, haplodeficiency of the oxygen-sensing 
prolyl hydroxylase domain protein PHD2 normalized the 
endothelial lining resulting in reduced vessel leakiness 
and increased tumor perfusion and oxygenation.92,93

tumor vascular normalization has been documented 
in rectal cancer patients receiving bevacizumab57 and 
recurrent glioblastoma patients receiving cediranib.94 
iFP decreased by 70% 12 days after a single infusion of 
bevacizumab and vascular density decreased by 50%, 
causing a normalization of the tumor micro environment 
and more efficient delivery of fluorodeoxyglucose (FDG). 
Patients with recurrent glioblastoma showed a rapid 

Box 3 | Determinants of interstitial transport

Transport of nanoparticles through the interstitial matrix 
is governed by diffusion and convection:18 

(∂Ci/∂t) + v

∆

C = D

∆2Ci + R

Ci is the nanoparticle concentration, v the interstitial fluid 
velocity, D the diffusion coefficient of the nanoparticles 
and R a term that accounts for binding or degradation of 
the nanoparticles. The fluid velocity depends on changes 
in the interstitial fluid pressure and because the latter is 
uniform in the center of the tumor, it is negligible except 
at the tumor margin. The diffusion coefficient depends 
on the properties of the nanoparticles (size, charge and 
configuration) and the structure of the interstitial matrix.
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normalization of the tumor microenvironment charac-
terized by significant reduction in vascular permeability 
and vessel size.94

vessel normalization might, however, compromise 
the transvascular transport of very large nanoparticles 
due to the decrease in the pore size of the vessel walls. 
the decrease of the pore size decreases the vascular 
per meability, P, and hydraulic conductivity, Lp, while 
it increases the reflection coefficient, σ (Box 2). the 
changes in these parameters decrease the particle flux 
across the vessel wall (Box 2) and might overwhelm the 
benefit gained by increasing perfusion and restoring 
the trans mural pressure difference (Chauhan, v. P. et al. 
unpublished data). as an additional consideration, vessel 
normalization is transient, and thus, anticancer agents 
should be given during the window of normalization.16,88 
in addition to normalizing the structure and function of 
abnormal vessels, compressed vessels in tumors can be 
opened up and perfused by killing perivascular cancer 
cells28,30 and stromal cells.95 unfortunately, these vessels 
become compressed again if the cancer or stromal 
cells regrow.

normalization of tumor matrix
Penetration of molecules and nanoparticles in tumors 
depends on the volume fraction of the components of the 

extracellular matrix, particularly the collagen and glyco-
saminoglycan content. to improve drug penetration we 
have attempted to degrade these components and thus 
increase the accessible volume to the diffusing particle.75 
Degradation of the collagen matrix with bacterial colla-
genase treatment in high collagen- content tumors (for 
example, Hsts26t sarcoma and mu89 melanoma xeno-
grafts) caused a two-fold increase in the diffusion of anti-
bodies, such as igG (hydrodynamic radius 4.5 nm),72,75,96 
while the interstitial distribution of herpes simplex virus 
(Hsv; hydrodynamic radius 75 nm) was increased by a 
factor of three (Figure 5a).73,97 the distribution of Hsv 
was also significantly increased by the ectopic expression 
of matrix metalloproteinase (mmP)-1 and mmP-8, which 
decreased the levels of tumor glycosamino glycans and 
improved convection.79 Bacterial collagenase, mmP-1 and 
mmP-8 considerably improved the antitumor efficacy of 
oncolytic Hsv. the hormone relaxin, which modifies the 
structure of collagen fibers, can also increase transport 
by diffusion (Figure 5b).98,99 relaxin treatment caused a 
twofold increase in the diffusion of igG and a threefold 
increase in the diffusion of dextran-2m (hydrodynamic 
radius 20 nm) in Hsts26t xenografts.98,99 a recently dis-
covered tumor penetrating peptide, irGD, also has the 
potential to improve the delivery of nanotherapeutics in 
solid tumors by improving interstitial transport.100
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Design considerations
For optimal efficacy, a therapeutic agent must reach 
tumors in amounts sufficient to kill cancer cells but at 
the same time should not have adverse effects in normal 
tissues. obviously, the smaller the particles the better 
the transport; however, small molecules, such as chemo-
therapeutics, generally extravasate in most normal tissues 
potentially causing adverse effects. the combination of 
the two constraints suggests that increasing the size of the 
nanoparticle will provide selectivity, but at the cost of lim-
iting extravasation from some pores of tumor vessels and 
decreasing diffusion through the tumor matrix. therefore, 
the size of the particle needs to be optimized for each 
tumor and its metastases. the challenge is that the tumor 
microenvironment is not spatially homogeneous and it 
changes with time and in response to treatment.

not only the size but also the surface charge and the 
shape of therapeutic nanoparticles play a crucial role in 
extravasation and interstitial transport. on the one hand, 
it has been shown that cationic nanoparticles preferentially 
target tumor endothelial cells and exhibit a higher vascu-
lar permeability compared with their neutral or anionic 
counterparts.45–47 on the other hand, neutral nanoparticles 
diffuse faster and distribute more homogeneously inside 
the tumor interstitial space than cationic and anionic par-
ticles, because the latter form aggregates with negatively 
charged (for example, hyaluronan) or positively charged 
(for example, collagen) matrix molecules.78,80 as far as 
the particle shape is concerned, studies have shown that 
macromolecules with linear, semi-flexible configurations 
diffuse more efficiently in the interstitial matrix than do 
comparable sized, rigid spherical particles.70,74

the size of therapeutic particles also affects their circu-
lation time in the blood stream. Provided the thera peutic 
agent is not toxic to normal tissues, it makes sense to 
prolong its half-life in the blood. the hydrodynamic dia-
meter is inversely related to renal clearance. Particles with 
a hydrodynamic diameter smaller than 5–6 nm are rapidly 
cleared by the kidney (blood half-life <600 min), while 
increase in particle diameter can significantly increase 
the half-life of these agents in the blood and body.101,102 
as for the effect of nano particle shape on the circulation 
time, it has been shown that filamentous micelles have 
circulation times about 10 times longer than their spheri-
cal counterparts,103 while filamentous nanotubes with 
very small diameters (<2 nm) have rapid renal clearance 
and circulation times of less than 3 h.104 in addition to 
the kidneys, inter action between nano particles and the 
reticulo endothelial system in the liver and the spleen has 
an important role in nanoparticle clearance. Clearance 
from the reticulo endothelial system depends not only 
on particle size but also on surface modification and can 
vary signifi cantly among the different types of nano-
particles.105,106 as the surface charge becomes larger (either 
positive or negative), interactions with the reticulo-
endothelial system increase and lead to greater clear-
ance of the particle. to achieve higher circulation times, 
modification with polyethylene glycols (PeGylation) is 
the most common approach. nanoparticles are steri-
cally stabilized by attaching PeGs to the surface and have 
surface charges that are slightly negative or positive. steric 
stabilization prevents opsonization by serum proteins and 
phago cytosis by Kuppfer cells or hepatocytes.107–109

Furthermore, if the nanoparticle requires intra cellular 
delivery, cellular internalization would depend on size, 
configuration and charge. For spherical particles, it has 
been shown that internalization is faster for smaller par-
ticles and might follow a different mechanism than for 
larger particles.110,111 in addition, researchers have found 
both experimentally and with the use of mathematical 
modeling that internalization is maximized for a range 
of particle sizes.112–114 For example, for gold and silver 
nanoparticles in the size range of 2–100 nm, particles of 
sizes 40–50 nm were able to most effectively bind and 
induce receptor-mediated endocytic processes.115 For 
non- spherical particles, it has been shown that the local 
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geometry of the particle at the contact point with the 
cell determines whether it will be internalized or not.116 
specifically, internalization is more effective when rod-
like particles align perpendicular to the cellular membrane 
as opposed to parallel alignment. also, internalization is 
faster and more efficient for elongated particles (high 
aspect ratio), carrying a positive charge.117 it should be 
noted, however, that many of the particles used in these 
studies were in the micrometer size range, much larger 
than the formulations used in nanomedicine. thus, their 
relevance to the delivery of nanomedicine in vivo remains 
to be shown.

the efficacy of nanomedicine might be improved by 
constructing nanoparticles that respond to properties of 
the tumor microenvironment (for example, low pH and 
partial oxygen pressure, and activated mmPs; Figure 6) or 
to external forces (for example, electric pulses, magnetic 
field, ultrasound, heat and light).118 solid tumors have a 
lower interstitial pH than normal tissues,119 and thus many 
pH-sensitive nanocarriers have been developed to deliver 
their drugs to tumors.120–123 in addition, nano particle 
formu lations have been developed that are activated by 
the enzymatic activity of proteinases in tumors.124–126 the 
targeting of nanoparticles to tumors can also be achieved 
by the application of external sources, such as electric or 
magnetic fields,127–129 ultrasound,130 heat,131 and light.132 
Furthermore, mesoporous silica particles have been devel-
oped that function as vehicles for the controlled release of 
therapeutic anticancer agents.133–135

nanoparticles with targeting ligands (for example, 
monoclonal antibodies, their Fab fragments and other 
moieties) on their surface have been developed to specifi-
cally recognize and bind to the tumor vasculature or 
cancer cells.136 the targeting of the tumor vasculature by 
nanoparticles armed with targeting peptides suppresses 
tumor growth and metastasis in mice.137–139 ligands that 
target cancer cells can increase the intracellular concen-
tration and cytotoxity of nanoparticles, however, the 
intratumoral penetration is not improved significantly 
compared with non-targeted drug delivery particles.140 
tumor penetration is a passive process that requires a long 
circulating half-life to allow extravasation of the particle 
across the hyperpermeable tumor vessels and effective dif-
fusion through the tumor interstitial space. the addition 
of targeting ligands increases the size and biological reac-
tivity of the particles, which exacerbates the problem of 
transport across these barriers. there are, however, cases 
where targeted nanoparticles have been proven to increase 
penetration. Coating of abraxane with the lyp-1 or irGD 
peptide increased drug penetration and, thus, the efficacy 
of the treatment.139,141 in addition, another nanoparticle 
formulation has been recently shown to effectively deliver 
sirna to humans.10 the challenge now is to deliver the 
nanoparticle uniformly throughout a tumor and its 

meta stases given the limitations of spatial and temporal 
changes in the expression of the target.

Conclusions
with increasing numbers of nanoparticles in preclinical 
and clinical studies for cancer detection and therapy, it is 
critical to consider the physiological barriers that hinder 
their delivery and develop strategies that can overcome 
these barriers. this coordinated approach will help to 
determine design criteria that optimize delivery. Given the 
highly heterogeneous and continuously evolving nature of 
the tumor microenvironment, the optimal design of nano-
particles is likely to be disease specific. this is a formidable 
task, especially considering the difference from one tumor 
to the next, from primary tumor to its metastasis, from 
one day to the next in the same tumor and the changes 
induced by treatment. in this review, we proposed some 
basic guidelines for the construction of nanotherapeutics 
based on approaches that reduce this heterogeneity.
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