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ABSTRACT
The goal of influence maximization is to select a set of seed users

that will optimally diffuse information through a network. In this

paper, we study how applying traditional influence maximization al-

gorithms affects the balance between different audience categories

(e.g., gender breakdown) who will eventually be exposed to a mes-

sage. More specifically, we investigate how structural homophily

(i.e., the tendency to connect to similar others) and influence diffu-

sion homophily (i.e., the tendency to be influenced by similar others)

affect the balance among the activated nodes. We find that even

under mild levels of homophily, the balance among the exposed

nodes is significantly worse than the balance among the overall

population, resulting in a significant disadvantage for one group. To

address this challenge, we propose an algorithm that jointly maxi-

mizes the influence and balance among nodes while still preserving

the attractive theoretical guarantees of the traditional influence

maximization algorithms. We run a series of experiments on mul-

tiple synthetic and four real-world datasets to demonstrate the

effectiveness of the proposed algorithm in improving the balance

between different categories of exposed nodes.
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1 INTRODUCTION
The goal of influence maximization is to optimize the diffusion of

content in a network by choosing an initial set of users who serve

as seeds for spreading the information through the network. As

suggested by the nature of this problem, influence maximization

can play a vital role in addressing practical issues such as viral mar-

keting. For example, if a corporate entity posts a job advertisement

on a social network and wants it to reach as many users as possible,
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it needs to promote the advertisement to an optimal set of users so

that the information spreads as much as possible through the net-

work. To determine the optimal set of users, influence maximization

algorithms need to be applied.

While these traditional algorithms are effective in amplifying

the outreach of information pushed into the network, they solely

focus on the number of users reached and do not consider specific

properties that drive the connectivity and the person-to-person

spread of information in the network. One such property is ho-
mophily, the phenomenon that a user is more likely to connect to

or be influenced by other like-minded users. As a result, the exist-

ing discrepancies between various categories of users in a social

network can be amplified by these algorithms, often putting certain

groups of users at a significant disadvantage. For example, in the

job advertisement case, by failing to account for the homophily in

the structure of the network and the diffusion of information, the

advertisement may reach a significantly smaller fraction of female

users, hurting their interest.

The area of influence maximization has been very active over

the last two decades. Previous work has investigated many dif-

ferent aspects of influence maximization, including how to scale

the traditional influence maximization algorithms [23, 34, 36], how

different spreading processes interact [9, 26, 29, 35], and how to

seed in the presence of competing campaigns [8, 16, 17], to name a

few. However, less research has been done on incorporating well-

established social phenomena, such as homophily, in the influence

models that largely determine the output of the influence maxi-

mization algorithms. Also, while there has been a great interest in

how the predictions on machine learning algorithms affect differ-

ent groups [5, 15, 18], there has been less focus on how influence

maximization algorithms affect different audience segments and

how to address any disparities.

In this paper, we aim to close this gap in the literature by making

the following contributions
1
:

• We set up a simulation framework that allows us to system-

atically investigate the impact of structural and diffusion

homophily on the categorical balance of the nodes reached

by seeds selected using influence maximization algorithms

(Section 3).

• We develop an influence maximization algorithm that jointly

maximizes the spread of information and achieving categori-

cal balance, and we demonstrate its effectiveness using both

simulations and four real-world datasets (Section 4).

In the rest of this paper, we gradually demonstrate the impact

of homophily on the categorical balance among the users who are

eventually exposed to the information. First, we show that balance

is not an issue in the absence of homophily (Section 3.1). Then, we
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test how homophily in network structure (Section 3.2), and later,

homophily in both network structure and influence impact balance

(Section 3.3), finding that it can have significant negative effects.

Finally, we propose an algorithm that simultaneously maximizes

influence and balance, and demonstrate that it performs better than

existing approaches (Section 4).

2 BACKGROUND
We start by reviewing key notions in the influence maximization

literature that we build upon in the rest of the paper. We highlight

recent advances most closely related to our work in Section 5.

Influence Maximization. Traditionally, the problem of max-

imizing influence has been tackled in the context of marketing.

Early data mining techniques aimed only at the intrinsic value of

the customers, i.e., only considered the individual gain from a cus-

tomer. Domingos and Richardson [14] were the first to account for

the network value of the customers, i.e., the additional value of the

customer’s influence on other people.

Kempe et al. [21] formulated this question as a standard opti-

mization problem, expressing it as: maxS ⊆V f (S) s.t. |S | = k , for
some parameter k , where f (S) denotes the size of the active set for
seed set S . Given the network of connections among the users, the

goal is to find a set S of k seeds that results in the largest influence

set, f (S). In our experiments, we use a more optimized version of

the algorithm by Kempe et al. named CELF [24] in order to reduce

the running times.

Network Generation Models. One of the key properties of

social networks is that they are scale-free, i.e., their degree distri-

bution follows a power law: pk ∼ k
−γ

, where pk is the probability

that a randomly sampled node has a degree k , and γ is a constant.

Intuitively, this property implies that there will be fewer nodes with

a higher degree.

Barabási and Albert [4] propose a model that generates undi-

rected, scale-free networks, where the probability of two users

connecting is directly proportional to their degrees. Bollobás et

al. [6] extend this model to directed networks, where both the in

and out-degree distributions follow a power law. Of interest to us

are also models that incorporate homophily into the network gen-

eration process. Almeida et al. [12] propose a model for homophilic,

scale-free networks but focus only on undirected networks.

In this work, we are interested in the impact of homophily on in-

fluence maximization in directed networks and build on ideas from

[6] and [12] to generate homophilic directed scale-free networks

and systematically vary the level of homophily in the network.

Influence DiffusionModels. In addition to specifying how the

nodes (users) in a network are connected, we also need to specify

how influence spreads from one node to another. Each node has two

possible states: active and inactive. According to the Independent
Cascade model, given an initial set of active nodes, the diffusion

proceeds discretely: at each step, an active node u gets a single

opportunity to activate its neighbor v with probability pu ,v [21].

As the name suggests, the probability that an edge is activated is

independent of whether any other edge is activated.

Homophily. In traditional network generation and influence

models, users’ probability to connect to or be influenced by another

user only depends on the number of their connections. However,

in the real world, people associate with and trust others very selec-

tively. One of the fundamental properties that sets social networks

apart from other networks is homophily, i.e., the tendency of “like

to associate with like” [11, 22, 28, 32]. There are two main conse-

quences of homophily that are relevant in the context of influence

maximization: (i) that people who share the same attributes are

more likely to be connected, and (ii) that, when influenced by their

connections, people are more likely to be influenced by others with

the same attributes [10, 13, 27].

Balance. In the context of influence maximization, the concept

of balance may have multiple meanings. For example, we can define

balance as the categorical balance among nodes in either the seed

set or the active set (i.e., the nodes that are eventually reached). In

this paper, we focus on the categorical balance in the active set, as

it directly represents the effectiveness of an algorithm in reaching

users from different categories fairly. In particular, we define the

ideal categorical balance as the case in which the categorical ratio

between the nodes in the network is preserved in the active set.

To simplify the exposition of the results, in the rest of the paper,

we only consider the two-category case, i.e., we assume that any

given node is either a majority node or a minority node. However,

the simulations and the algorithm we propose in Section 4 can

be easily extended to attributes or sets of attributes with multiple

categories.

3 INFLUENCE MAXIMIZATIONWITH
TRADITIONAL ALGORITHMS

We start by investigating the impact of homophily on balance when

applying traditional influence maximization algorithms. We pro-

pose a network generation model for homophilic directed scale-free

networks and a homophilic influence diffusion model, which al-

low us to systematically vary the levels of structural and diffusion

homophily. Wemeasure the balance under three scenarios: (i) no ho-

mophily (ii) structural homophily, and (iii) structural and diffusion

homophily. In each scenario, we:

(1) Specify a pair of network generation model and influence

diffusion model,

(2) Generate a set of networks using a specific network genera-

tion model,

(3) Assign each node to either majority or minority,

(4) Run the traditional influence maximization algorithm [21],

(5) Analyze the difference between the expected and the ob-

served majority in the active set.

We consider three parameters in generating the networks: (i) n,
the number of nodes; (ii) pM , the fraction of nodes in the majority

group; and (iii) h, the structural homophily index, i.e., the likelihood

of a connection within vs. across groups [19].

We also consider two parameters in specifying the influence

diffusion model: (i) bp , the base probability of a node successfully

influencing a neighbor node; and (ii) hp , the diffusion homophily

index, i.e., the likelihood of influence within vs. across groups.

Finally, we use k to denote the number of seeds.

Recall that we denote by f (S) the size of the active set for seed set
S . We also defineM(S) andm(S) to be the majority, and the minority

in the active set for seed set S ; then, f (S) = M(S)+m(S). To measure

the balance achieved by the algorithm, we consider the parameter
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Figure 1: Seeding of non-homophilic networks using the tra-
ditional influence maximization algorithm. Mean ∆(S) (dif-
ference in size between the observed and the target majori-
ties in the active set) for different values of pM (fraction of
nodes in the majority group) and bp (base influence proba-
bility of the diffusion model). In the absence of homophily,
the traditional influence maximization algorithm naturally
achieves a categorical balance among the nodes in the active
set. The error bands represent 95% CIs.

pt , the fraction of majority we want in the active set of nodes, and

we compare two quantities: (i) the observed size of the majority in

the active set, given byM(S), and (ii) the target size of the majority

in the active set, given by pt f (S). According to our definition of

ideal categorical balance, we want to preserve the majority vs.

minority ratio in the active set, i.e., we want pt = pM . We achieve

ideal categorical balance when the two quantities we compare are

equal, i.e., when ∆(S) = M(S) − pt f (S) = M(S) − pM f (S) = 0.

3.1 No Homophily
We start by analyzing the balance of the activated nodes in the

absence of homophily.

Network Generation Model. We generate a series of directed

scale-free networks using the model proposed by Bollobás et al. [6].

Let G(t) denote the network at time t with exactly t edges and
n(t) nodes. We start with an initial network G(t0) = G0 at time t0,
and non-negative real numbers α, β,γ , δin, δout s.t. α + β + γ = 1.

For any node u, we denote its in-degree and out-degree by din (u)
and dout (u), respectively. For t ≥ t0, we build G(t + 1) from G(t)
by adding an edge to G(t) at timestep t + 1 as follows:

• With probability α , we add a new nodev and an edge fromv
to an existing nodew . We choosew from all existing nodes

with probability proportional to din (w) + δin ,
• With probability β , we add an edge from an existing nodev to

an existing nodew . We choosev from all existing nodes with

probability proportional to dout (v) + δout , and we choose

w from all existing nodes with probability proportional to

din (w) + δin ,
• With probability γ , we add a new node w and an edge to

w from an existing node v . We choose v from all existing

nodes with probability proportional to dout (v) + δout .

In our experiments, we setα = β = γ = 1

3
in order to make the three

edge addition scenarios equally likely. We also set δin = δout = 1

in order to prevent zero division while calculating the probability

distribution. In order to categorize the nodes of the network into

two distinct categories, we assign each node in the network to the

majority category with probability pM .
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Figure 2: Assortativity of the networks generated using the
homophilic network generation model introduced in Sec-
tion 3.2 for different values of h ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0},
the structural homophily index (a model parameter), and
pM , the fraction of nodes in the majority group. The assor-
tativity of the networks has a clear linear relation to the
homophily index h, demonstrating that the networks gen-
erated by the model are indeed homophilic.

InfluenceDiffusionModel.We use the traditional (non-homo-

philic) Independent Cascade model where the probability of any

node successfully influencing a neighbor node is a constant, i.e.,

the base probability, bp .
Setup.We vary the number of nodes in the network: n ∈ {15k ,

20k}, the fraction of nodes in themajority group:pM ∈ {0.5, 0.6, 0.7,
0.8}, and the base influence probability: bp ∈ {0.01, 0.05, 0.1}. Since
we are interested in the outcomes in the absence of any kind of ho-

mophily, we do not need to consider the structural homophily index

(h) and the diffusion homophily index (hp ). For each pair (n,pM ),
we generated 20 networks and ran an optimized version [24] of the

influence maximization algorithm by Kempe et al. [21] to choose

k = 200 seeds.

Results and Observations. Figure 1 shows the difference be-
tween the observed and the target majorities (∆(S)) as a function
of the fraction of majority nodes in the network (pM ). We find that,

for all values of pM , ∆(S) is close to zero. This suggests that the

traditional influence maximization algorithm naturally selects seed

nodes that reach a balanced set of nodes when neither the network

nor the influence diffusion is homophilic.

3.2 Network Homophily
Next, we analyze the balance of the activated nodes in the presence

of network homophily, i.e., when similar nodes are more likely to

be connected.

Network Generation Model.We build upon the network gen-

eration models by Bollobás et al. [6] and Karimi et al. [19] to gen-

erate homophilic, scale-free networks. Using the same notation as

before, for any pair of nodes v andw , we define:

h(v,w) =

{
h if v andw are from the same category,

1 − h otherwise.

We add a single directed edge in each timestep. We build G(t + 1)
from G(t) by adding an edge to G(t) at timestep t + 1 as follows:

• With probability α , we add a new nodev and an edge fromv
to an existing nodew . We assign v to the majority category

with probability pM , and to the minority category other-

wise. We choosew from all existing nodes with probability

proportional to h(v,w)din (w) + δin ,
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Figure 3: Seeding of homophilic networks using the tradi-
tional influence maximization algorithm. Mean ∆(S) (differ-
ence in size between the observed and the target majorities
in the active set) for different values of pM (the fraction
on nodes in the majority group) and bp (the base influence
probability). ∆(S) rises as we approach stronger homophily
(h > 0.5). The more extreme pM , the steeper the rise.

• With probability β , we add an edge from an existing nodev to

an existing nodew . We choosev from all existing nodes with

probability proportional to dout (v) + δout , and we choose

w from all existing nodes with probability proportional to

h(v,w)din (w) + δin ,
• With probability γ , we add a new node w and an edge to

w from an existing node v . We assign w to the majority

category with probability pM , and to the minority category

otherwise. We choose v from all existing nodes with proba-

bility proportional to h(v,w)dout (v) + δout .

Similar to the previous section, we set α = β = γ = 1

3
in order to

make the three edge addition scenarios equally likely, as well as

δin = δout = 1 in order to prevent zero division while calculating

the probability distribution.

This model is particularly appealing as it generates networks

that resemble real-world social networks, i.e., have a small diameter,

power-law in- and out-degree distributions, and allows us to vary

the level of homophily in the network by changing the model

parameters.

To verify that the networks generated using this model have

the expected levels of homophily, we compute the assortativity

index [31] (a well-established measure of network homophily) of

networks generated using different values of h. We find that indeed

networks generated with larger values of the structural homophily

index, h, have higher assortativity (Figure 2), demonstrating that

the model achieves the desired effect.

Influence Diffusion Model. We use the same simple, non-

homophilic diffusion model for influence described in the previous

section, where the probability of any node successfully influencing

a neighbor node is bp .
Setup. We fix the number of nodes in the network to n = 20k

and vary the faction of nodes in the majority group: pM ∈ {0.5,
0.6, 0.7, 0.8}, the structural homophily index: h ∈ {0.5, 0.6, 0.7, 0.8,
0.9, 1.0}, and the base influence probability: bp ∈ {0.01, 0.05, 0.1}.
Since the diffusion model is non-homophilic, we did not need to

consider the diffusion homophily index, hp . As before, for each set

of values of the parameters, we generate 20 networks and choose

k = 200 seeds using an optimized version [24] of the influence

maximization algorithm by Kempe et al. [21].
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Figure 4: Seeding of homophilic networks under homophilic
influence using the traditional influence maximization al-
gorithm. Mean ∆(S) (difference in size between the observed
and the target majorities in the active set) for different val-
ues of h (the structural homophily index), hp (the diffusion
homophily index), and bp , (the base influence probability).
∆(S) is much higher when both the network and the diffu-
sion model are homophilic.

Results and Observations. Figure 3 shows the difference be-
tween the observed and the target majorities (∆(S)) as a function
of the structural homophily index (h). We find that when there is

an equal number of nodes in the two groups (pM = 0.5), the tradi-

tional influence maximization algorithm naturally achieves balance,

regardless of the homophily level in the network (h). However, as
soon as there are more nodes in one group (i.e., pM > 0.5) and some

homophily in the network formation (i.e., h > 0.5), the algorithm

starts to favor the majority group, selecting seeds that reach more

nodes in the majority group. This suggests that even when just

the network structure becomes mildly homophilic, the traditional

influence maximization algorithm fails to achieve balance.

3.3 Network and Diffusion Homophily
Finally, we analyze the balance of the activated nodes in the pres-

ence of network and diffusion homophily, i.e., when similar nodes

are more likely to both connect and influence each other.

Network Generation Model.We use the same model as in the

previous section to generate scale-free, homophilic networks.

Influence Diffusion Model. We now add homophily in the

influence diffusion. First, we define:

hp (v,w) =

{
hp if v andw are from the same category,

1 − hp otherwise.

Using this definition, for a given base probability bp , we define our
homophilic influence diffusion model such that the edge probability

assigned to an edge (v,w) is proportional to hp (v,w). The motiva-

tion behind this choice is to make the results comparable to the

experiments in which we used non-homophilic diffusion.

Experiments. We fix the number of nodes in the network to

n = 20k and the fraction of nodes in the majority group to pM = 0.8.

We vary the network homophily by setting different values of

the structural homophily index, h ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and
the diffusion homophily by using different values of the diffusion

homophily index: hp ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We also vary

the base influence probability of our influence diffusion model:



bp ∈ {0.01, 0.05, 0.1}. We average the results over 20 networks, in

each case choosing k = 200 seeds using an optimized version [24]

of the influence maximization algorithm by Kempe et al. [21].

Results and Observations. Figure 4 shows the difference be-
tween the observed and the target majorities (∆(S)) for different
values of the structural (h) and diffusion (hp ) homophily indices.

In all cases, we observe that the difference between the observed

and the target majorities increases as the homophily index h in-

creases from 0.5 to 1.0, and the network becomes more and more

homophilic. The difference further increases for the same values of

the structural homophily (h) as we increase the diffusion homophily

(hp ) from 0.5 to 1.0. Finally, the larger the probability for any single

edge to be activated (bp ), the larger the difference between the

observed and the target majorities (∆(S)) for the corresponding

values of h and hp . These observations suggest that the higher is
the structural and the diffusion homophily, the more severe is the

imbalance of the nodes reached by the seeds selected using the

traditional influence maximization algorithm.

4 BALANCED INFLUENCE MAXIMIZATION
4.1 Algorithm
So far, we have seen that even under mild homophily, the traditional

influencemaximization algorithm tends to select seeds that reach an

imbalanced set of active nodes, leading to a systematic disadvantage

for one group. To address this issue, in this section, we propose a

new algorithm for selecting seed nodes that jointly maximizes the

number and the balance of the users reached by the seed nodes.

We start by revisiting some basic terminology. Given a network

G(V , E) and seed set S , recall that we define f (S) to be the size of
the active set that results from seeding the nodes in S . We also

define M(S) andm(S) to be the majority and the minority in the

active set, respectively. Then, f (S) = M(S) +m(S). To simplify the

exposition, we focus on the case where the nodes belong to one of

two categories, but the algorithm can be readily extended to cases

where the nodes belong to more than two categories.

We aim to use a greedy hill-climbing approach inspired by Kempe

et al. [21] using the following objective function:

F (S) = (1 − λ) ·
f (S)

|V |︸           ︷︷           ︸
Influence

+ λ ·

√
γM(S) +

√
(1 − γ )m(S)

√
γpMn +

√
(1 − γ )(1 − pM )n︸                                     ︷︷                                     ︸

Balance

(1)

The first component of F (S) maximizes f (S), the size of the active
set, and the second component maximizes the categorical balance

in the active set. The denominators in both components are normal-

izing constants that make the semantics of the hyperparameter λ
consistent across different networks. The numerator of the balance

component includes two terms,

√
γM(S) and

√
(1 − γ )pMm(S). The

intuition behind this balance component is that once many majority

nodes are added to the active set, adding more majority nodes will

lead to diminishing gains, thanks to the square root function (i.e.,√
γM(S)), and the algorithm will favor minority nodes. The hyper-

parameter γ controls how much the balance component favors the

majority vs. the minority group, and the hyperparameter λ controls

the trade-off between balance and influence. For λ = 0 the objective

function is the same as the algorithm by Kempe et al. [21].

Algorithm 1: Balanced Influence Maximization

Input: G(V , E), k, λ, Diffusion model

Output: S
S ← ∅
while |S | < k do

u ← argmaxv ∈V

{
F (S ∪ {v}) − F (S)

}
S ← S ∪ {u}

return S

Using the terminology defined above, we propose Algorithm 1

to achieve categorical balance in influence maximization. Next, we

prove that Algorithm 1 provides a (1− 1

e )-guarantee in approximat-

ing maxS ⊆V F (S). To do so, we first prove the following theorems.

Theorem 4.1. (Non-negativity) Given a network G(V , E) and a
set of realizations R, for any S ⊆ V , F (S) ≥ 0.

Proof. This result follows from the non-negativity of f (S),M(S)
andm(S). □

Theorem 4.2. (Monotonicity) Given a networkG(V , E), F is mono-
tone, i.e., for any S ⊆ T ⊆ V , F (S) ≤ F (T ).

Proof. Note that seeding additional nodes cannot decrease the

size of the active set. Therefore, f is monotone. Similarly, seeding

additional nodes cannot decrease the size of the majority or the

minority in the set of active nodes. Therefore,M(S) andm(S) are
monotone as well. Then, from the definition, F is monotone. □

Theorem 4.3. (Submodularity) Given a network G(V , E), F is
submodular, i.e., for any S ⊆ T ⊆ V and any u ∈ V , F (S ∪ {u}) −
F (S) ≥ F (T ∪ {u}) − F (T ).

Proof. Abusing notation, let f (S) also denote the active set for

seed set S . Consider an arbitrary v ∈ V such that v ∈ f (T ∪ {u}) −
f (T ). Then v ∈ f (T ∪ {u}) but v < f (T ), i.e., v is activated by

u and not by the nodes in T . Since S ⊆ T , v cannot be activated

by the nodes in S either. So, v < f (S). However, v is activated

by u, and so v ∈ f (S ∪ {u}). Then, v ∈ f (S ∪ {u}) − f (S), and
therefore, f (S ∪ {u}) − f (S) ⊇ f (T ∪ {u}) − f (T ). In other words,

f (S ∪ {u}) − f (S) ≥ f (T ∪ {u}) − f (T ), and f is submodular.

Following the same logic, we can prove that M andm are sub-

modular. Then, we can use the following theorem [25] to show that
√
M and

√
m are also submodular:

Theorem 4.4. Given functions h : 2
V → R and д : R → R,

the composition H = д ◦ h : 2
V → R (i.e., H (S) = д(h(S))) is

non-decreasing submodular, if д is non-decreasing concave and h is
non-decreasing submodular.

Finally, since F is a non-negative linear combination of f ,
√
M

and

√
m, F must be submodular as well, as desired. □

Since F is non-negative, monotone and submodular, the follow-

ing result by Nemhauser, Wolsey, and Fisher [30] applies to F :

Theorem 4.5. For a non-negative, monotone submodular function
h, let S be a set of size k obtained by selecting elements one at a time,
each time choosing an element that provides the largest marginal
increase in the function value. Let S∗ be a set that maximizes the
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Figure 5: Seeding using balanced influencemaximization (Algorithm1) under structural and diffusionhomophily. The effect of
the hyperparameters λ (higher values givemore importance on balance) and γ (higher values givemore weight to themajority
group) on the trade-off between influence (x axis) and balance (y axis) for different values of the structural (h) and diffusion
(hp ) homophily indices. The points represent the means over ten runs, and the error bars represent 95% confidence intervals.

value of overall k-element sets. Then h(S) ≥ (1 − 1

e )h(S
∗); in other

words, S provides a (1 − 1

e )-approximation.

This theorem implies that our algorithm achieves a (1 − 1

e )-

guarantee in approximating the maximum value of our objective.

Computing the objective. As influence diffusion is a random

process, we cannot directly compute F (S). Therefore, the greedy
hill-climbing algorithm utilizes E[F (S)]. To approximate E[F (S)],
we define the following: a realization of G(V , E) under a specified
influence diffusion model is a subgraph G ′(V , E ′), such that for

any e ∈ E, the probability that e ∈ E ′ is the same as the diffusion

probability assigned to e under the influence diffusion model. For

a specific realization r of G(V , E), let fr (S) be the value of f (S)
conditioned on r . We defineMr (S) andmr (S) in a similar manner.

Then, for a sufficiently large set R of realizations,

E[F (S)] ≈ ER [F (S)]

= (1 − λ) ·
ER [f (S)]

|V |
+ λ ·

ER
[√

γM(S) +
√
(1 − γ )m(S)

]
√
γpMn +

√
(1 − γ )(1 − pM )n

= (1 − λ) ·

1

|R |

∑
r ∈R

fr (S)

|V |
+ λ ·

1

|R |

∑
r ∈R

√
γMr (S) +

√
(1 − γ )mr (S)

√
γpMn +

√
(1 − γ )(1 − pM )n

.

4.2 Simulation Experiments
Next, we use our simulation framework to test the performance of

Algorithm 1 on synthetic networks.

Setup. Similar to our previous experiments, we generate a set

of homophilic networks (using the model described in Section 3.2),

assign each node to one of two categories (majority and minority),

assume a homophilic diffusion model (as proposed in Section 3.3),

and choose a set of seeds using Algorithm 1.

We fix the number of nodes in this network to n = 20k and

fraction of nodes in the majority to pM = 0.8. We also fix the

base influence probability to bp = 0.2 and the number of real-

izations to |R | = 1k . We experiment with three pairs of values

for the structural homophily h and the diffusion homophily hp :

(h = 0.5,hp = 0.5), (h = 0.5,hp = 0.8), and (h = 0.8,hp = 0.8)2.

For each pair, we run Algorithm 1 to choose k = 200 seeds. We use

2
We also analyzed (h = 0.8, hp = 0.5) and found a very similar pattern to (h = 0.5,

hp = 0.8). To avoid visual clutter in Figure 5, we exclude those results.

different setting of the hyperparameters λ ∈ {0.0, 0.2, 0.5, 0.8, 1.0}
and γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and test their effect

on the size and the balance of the active set. To account for the

intrinsic randomness of the network generation and influence mod-

els, we repeat each experiment 10 times and report the means and

confidence intervals (Figure 5).

Results and Observations.We find that our algorithm exhibits

a similar pattern in all three homophily settings (h and hp ). When

λ = 0, our algorithm focuses solely on maximizing influence, and

consequently varying γ affects neither f (S), the size of the active
set, nor ∆(S), the difference between the observed and the target

majorities. As we increase λ, we begin to observe the trade-off be-

tween f (S) and ∆(S) for different γ ; namely, increasing γ increases

f (S), but also increases ∆(S). When λ = 1, our algorithm focuses

on balance, and this trade-off is at its maximum. We note that due

to the nature of the balancing component of our objective function

(Equation 1), even when λ = 1, the algorithm still implicitly aims

to maximize the size of the active set of each group.

In the absence of both structural and diffusion homophily (h =
0.5,hp = 0.5), we can achieve balance by simply focusing on in-

fluence, i.e., setting λ = 0, aligning with our observations in Sec-

tion 3.1. In fact, increasing λ and using more extreme values of

γ ∈ {0.1, 0.2, 0.3} can hurt both the influence and the balance. How-

ever, in the presence of structural homophily (h = 0.5, hp = 0.8)

or both structural and diffusion homophily (h = 0.8, hp = 0.8),

focusing solely on maximizing influence yields poor balance, i.e.,

high ∆(S). In these scenarios, higher values of λ achieve better

categorical balance in exchange for a decrease in influence.

Setting λ to a high value (e.g., λ = 1) and varying γ (the weight

assigned to the majority group) allows us to sample a wide range

of seeding choices that have different influence vs. balance trade-

offs. This is especially important in cases where we are interested

in adopting a more extreme definition of balance, e.g., an equal

number of majority and minority nodes in the active set.

4.3 Experiments in Real-World Networks
Next, we test the balanced influencemaximization algorithm on four

real-world networks and compare its performance to the algorithm

proposed by Stoica et al. [33].
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Figure 6: Results of seeding four real-world networks using Algorithm 1. The plots illustrate how the hyperparameters λ
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The points represent the means over ten runs; the 95% confidence intervals are too small to be visible.

Setup.We consider the careers Twitter accounts of four major

companies: Bank of America (@bofa_careers), UPS (@upsjobs), Ver-

izon (@verizoncareers), and Hershey’s (@hersheycareers), where

they often post job announcements. Using the Twitter API, we fetch

the followers of each account and the followers of the followers to

construct the network of connections among the followers of each

account. We also fetch the followers’ names and use genderize.io
to determine their gender

3
. genderize.io uses an extensive data-

base of first and last names and their gender associations from

many countries/languages and has been shown to have high ac-

curacy [20]. The networks vary in size (n), the fraction of users in

the majority group (pM ), and structural homophily (here we report

assortativity, A, which maps very closely to the h parameter in our

simulations, Figure 2):

@bofa_careers: n = 13,688, pM = 0.77 (male), A = 0.08,

@upsjobs: n = 13,851, pM = 0.69 (male), A = 0.33,

@verizoncareers: n = 9,226, pM = 0.77 (male), A = 0.04,

@hersheycareers: n = 3,726, pM = 0.68 (male), A = 0.05.

We choose k = 200 seeds using Algorithm 1, assuming the ho-

mophilic influence model with bp = 0.01, varying the level of

diffusion homophily, hp ∈ {0.5, 0.8} and measure the effect of

3
We tokenize each name, remove punctuation and tokens with less than three char-

acters, and query for the gender of each token. We discard cases where none or an

equal number of tokens are associated with a male or a female name, which includes

accounts by organizations. We ignore private Twitter accounts.

varying the hyperparameters λ ∈ {0.0, 0.2, 0.5, 0.8, 1.0} and γ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. To account for the random-

ness in the diffusion simulations, we repeat each experiment 10

times and report the means and 95% confidence intervals.

Baseline. In addition to the traditional influence maximization

algorithm, we also compare our algorithm’s performance with the

algorithm introduced by Stoica et al. [33]. They propose choos-

ing seed nodes based on node degree, but instead of simply se-

lecting the highest degree nodes from the full population, they

select the highest degree nodes for each group individually. The

main idea behind the algorithm is that imposing balance on the

seed set will lead to balance in the active set. To make fair com-

passion with our algorithm, we add an additional parameter to

their algorithm, koffset , which allows us to vary the proportion

of seeds in the majority group. In particular, we select as seeds

kM = ⌊pMk⌋ + koffset majority nodes with highest degree and

km = k −kM minority nodes with highest degree. We vary koffset ∈
{−50,−40,−30,−20,−10, 0, 10, 20, 30, 40, 50}, repeat each experiment

10 times, and report the means and confidence intervals.

Results and Observations. First, we analyze our algorithm’s

behavior for different values of λ and γ (Figure 6). We find that in

the absence of diffusion homophily (hp = 0.5), the hyperparameters

that achieve the best balance also achieve the greatest influence.

This is perhaps because the networks have very low structural

homophily. One exception is the @upsjobs network, which has a
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higher level of homophily (assortativity A=0.33), andwhere we need

to make a small sacrifice in the active set size to achieve the desired

balance. In the presence of diffusion homophily (hp = 0.8), the hy-

perparameter settings that achieve the desired balance do not lead

to the largest influence, except for the @upsjobs network. However,

in these cases, the algorithm successfully trades-off influence with

balance, achieving the desired balance by only slightly reducing the

size of the active set. For instance, in the @bofa_careers network,

the algorithm is able to decrease the surplus in majority nodes from

52 to 6, achieving nearly perfect balance, while reducing the size of

the active set by only 4 nodes (601 to 597).

Next, we compare the performance of our algorithm with the

performance of the baseline algorithm (Figure 7). We consider only

the results of our algorithm for λ = 0.5, assigning equal impor-

tance to influence and balance. We observe that both algorithms

can achieve the desired balance in the active set with the right

hyperparameter settings. However, we find that our algorithm is

consistently able to achieve a higher influence, selecting seeds that

reach a significantly larger number of nodes. This pattern holds

across all four networks, both in the absence (hp = 0.5) and the

presence (hp = 0.8) of diffusion homophily.

4.4 Hyperparameter Selection
The influence and the balance achieved by our algorithm depend

on many factors, including the network topology, the proportion

of majority vs. minority nodes, and the levels of structural and

diffusion homophily. Therefore, we cannot expect any single hyper-

parameter setting to achieve balance on every network. However,

based on our experiments, we recommend starting the exploration

of the hyperparameter space by setting λ = 0.5 and γ = 1 − pt ,
where pt is the desired proportion of majority nodes in the active

set. Setting λ = 0.5 gives equal importance to influence and balance,

and setting γ = 1−pt gives more importance to the minority group,

counteracting the natural advantage of the majority group.

5 RELATEDWORK
We build on existing work that has studied the performance of tradi-

tional seeding algorithms under various network models, analyzed

the relationship between homophily and diffusion, and investigated

the question of balance in influence maximization.

Aral and Dhilon [2] and Aral et al. [3] demonstrate the impor-

tance of using empirically motivated influence models. They show

that traditional influence models that do not model any empirical

properties of information diffusion, such as the independent cas-

cade model, can significantly underestimate influence propagation.

In this paper, we considered an influence model that takes into

account the homophily among the users and studied how different

levels of homophily affect the balance of the influenced users.

Several previous studies have modeled the relationship between

homophily and information diffusion [27], measured the gains in

accuracy of predicting diffusion when considering homophily [13],

and tested the effects of homophily in the adoption of behaviors [10].

In this work, we demonstrate that homophily can lead to an imbal-

ance among the influenced individuals when applying influence

maximization algorithms and propose an algorithm that mitigates it.

Bredereck et al. [7] consider the problem of assembling a group

of individuals that both score high on a certain quality measure and

are diverse as a group. Their method can be adopted for influence

maximization, where “quality” is defined as a certain measure of the

individual’s position in the network, e.g., their page-rank. However,

such an approach would not account for the fact that in influence

maximization, the “quality” of a user changes depending on which

other users are also selected to be in the group. For example, se-

lecting two high page-rank nodes that influence the same users is

suboptimal, although each of the two nodes is a good choice indi-

vidually. That is precisely the issue that our algorithm addresses.

Stoica et al. [33] propose the algorithm we used as a baseline in

Section 4.3, but also investigate the trade-off between balance and

influence as a function of the seed set size. They find that when the



size of the seed set is sufficiently large, imposing balance in the seed

set also leads to more influence. The intuition is that after selecting

the high degree majority nodes as seeds, promoting balance helps

reach other parts of the network that are not connected to the high

degree majority nodes.

In this paper, we focused on minimizing the disparities in infor-

mation exposure of users belonging to different categories when

applying influence maximization algorithms to a single campaign.

Garimella et al. [16] and Yu et al. [37] consider another scenario

where the goal is to reach a balanced set of users across several

campaigns simultaneously running in the network.

Finally, similar to the approach we took in this paper, Ali et

al. [1] consider group fairness in influence maximization. While

we address the challenges of applying influence maximization al-

gorithms in the presence of homophily, they focus on time-critical

influence maximization, i.e., applications where it is only beneficial

to influence users before a deadline.

6 CONCLUSION
In this paper, we studied how homophily in network formation

and influence diffusion affects the categorical balance of the nodes

reached by seeds selected to maximize influence. We found that

applying traditional influence maximization algorithms leads to a

significant imbalance in outreach even in the presence of mild net-

work or diffusion homophily. To address this issue, we proposed a

new influence maximization algorithm that jointly maximizes influ-

ence and balance, and has strong performance guarantees. Through

experiments in synthetic and real-world networks, we show that it

effectively trades-off between influence and balance, and outper-

forms existing algorithms for balanced influence maximization.

Our work opens new directions for future work, including how

to measure and mitigate imbalance in terms of continuous node

attributes and how to adopt recent advances in the design of in-

fluence maximization algorithms to improve the scalability of our

algorithm.
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