Detecting Network Effects Randomizing Over Randomized Experiments

Martin Saveski (@msaveski)_

MIT

Detecting Network Effects Randomizing Over Randomized Experiments

Martin Saveski MIT

Jean Pouget-Abadie Harvard

Guillaume Saint-Jacques MIT

Weitao Duan LinkedIn

Souvik Ghosh LinkedIn

Ya Xu LinkedIn

Edo Airoldi Harvard

Treatment

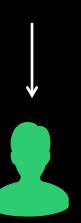
$$Z_i = 1$$

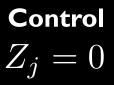
New Feed Ranking Algorithm

Treatment

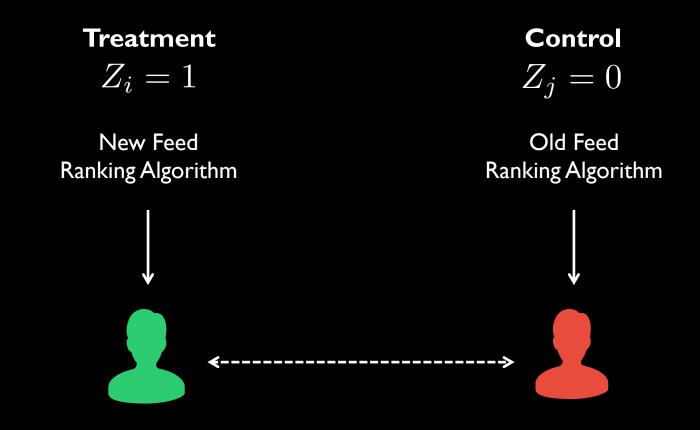
 $Z_i = 1$

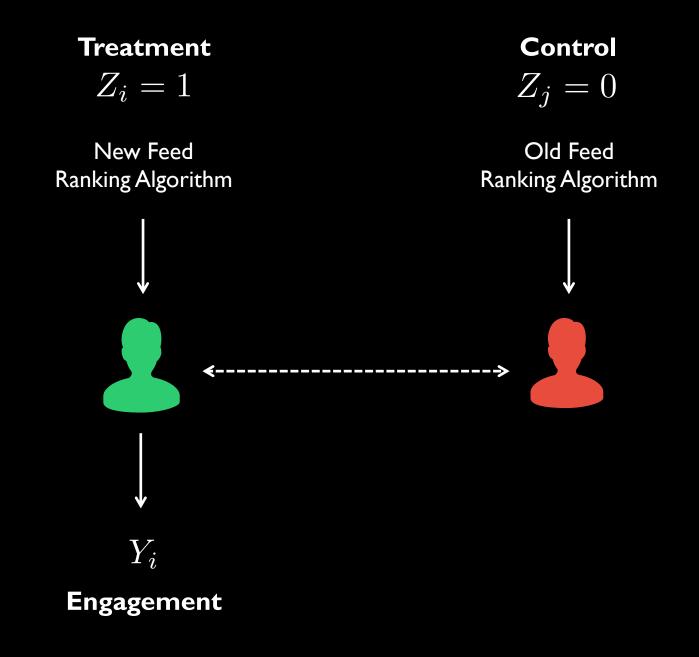
New Feed Ranking Algorithm

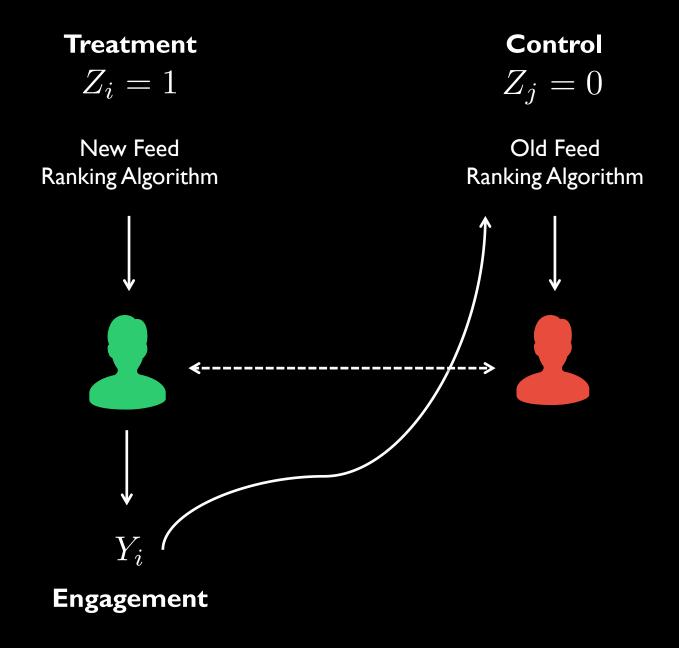


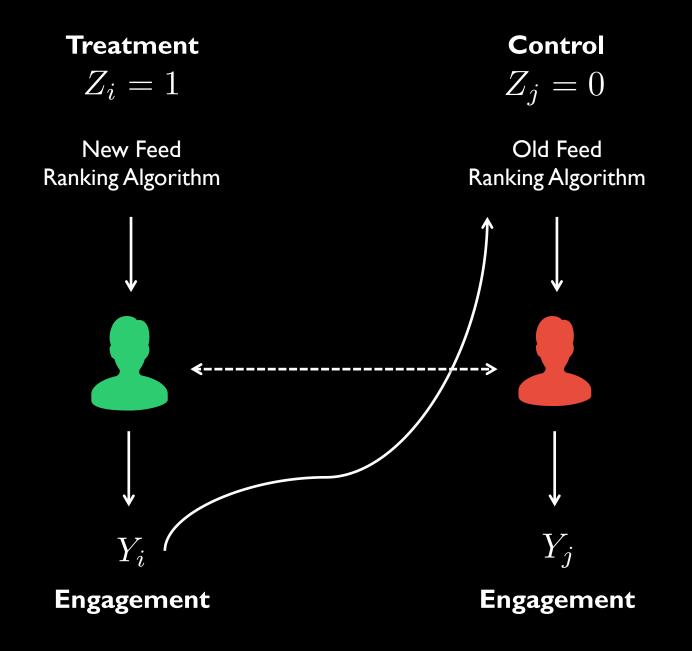


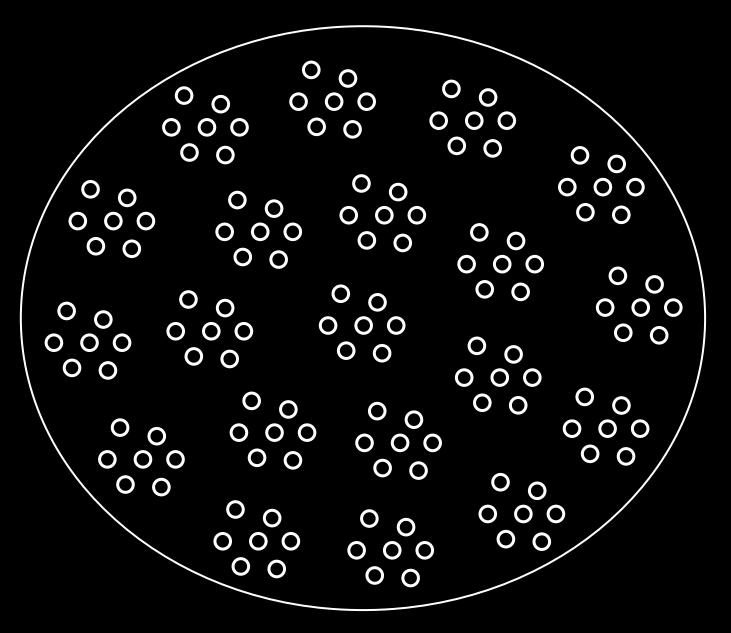
Old Feed Ranking Algorithm

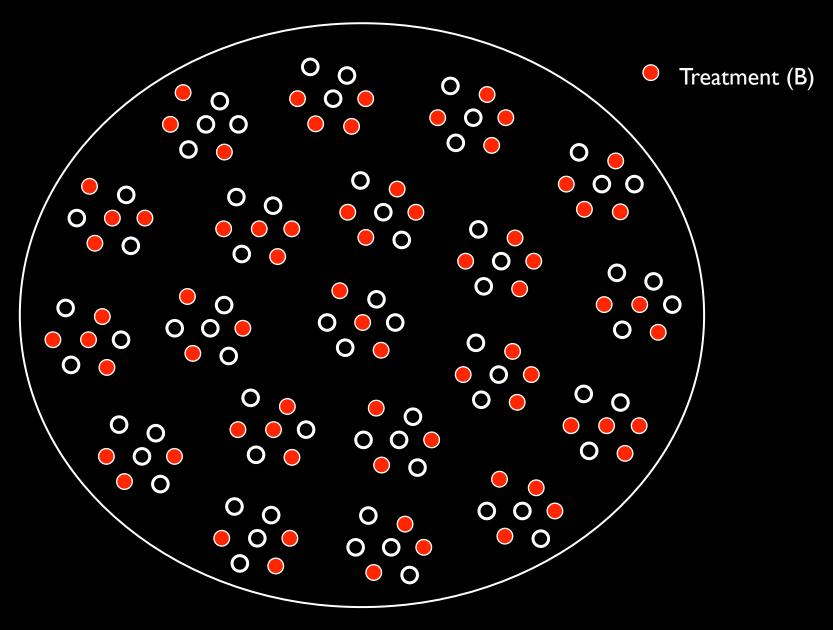


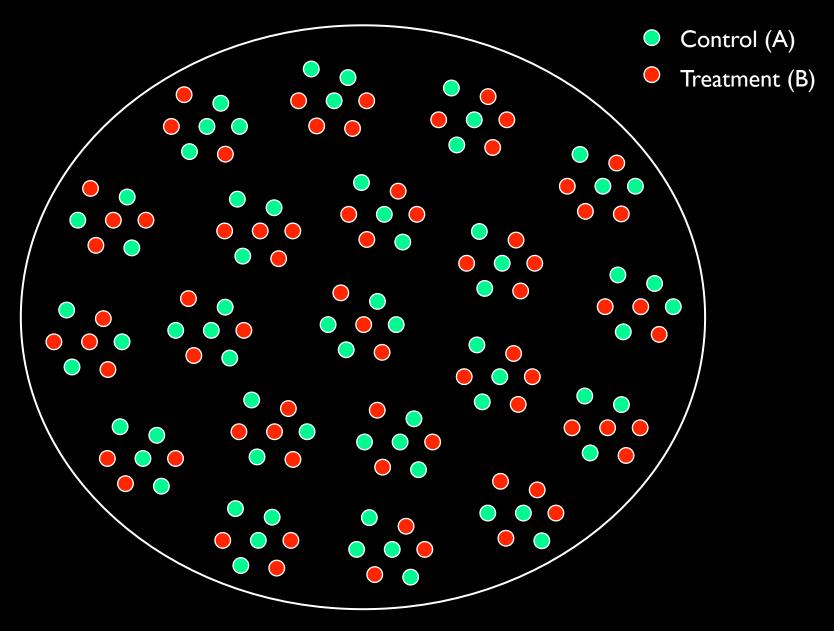


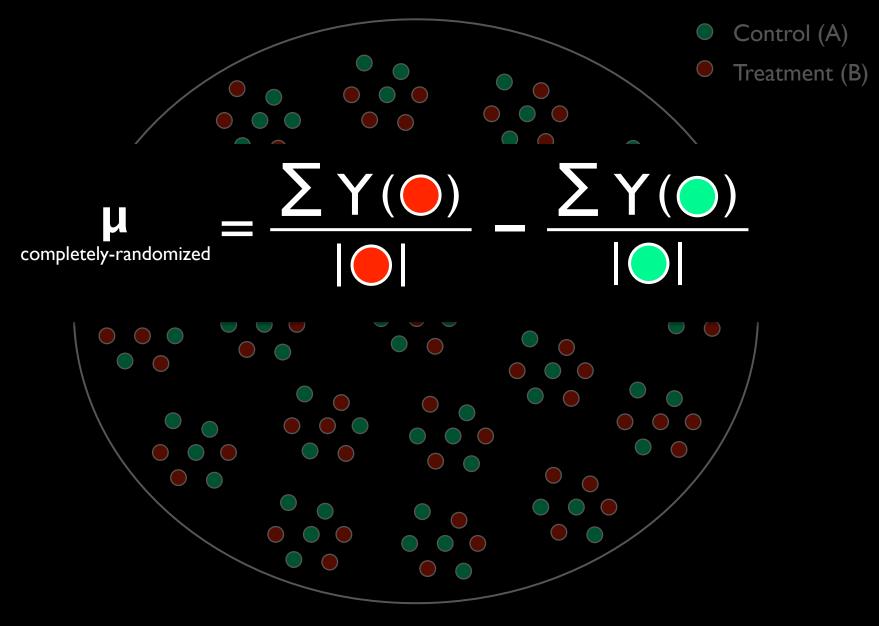


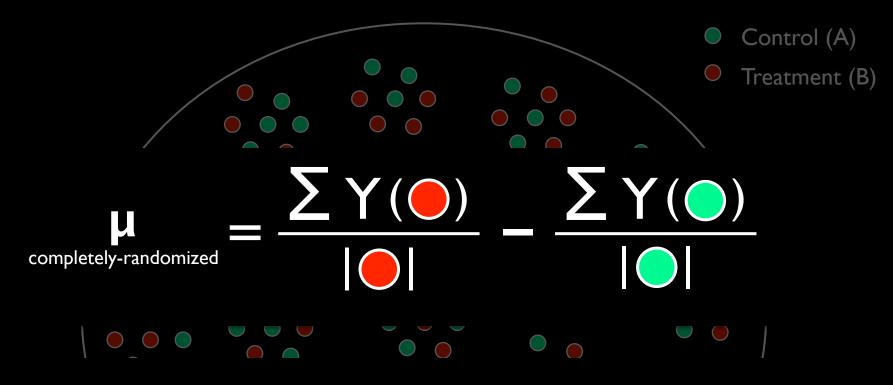






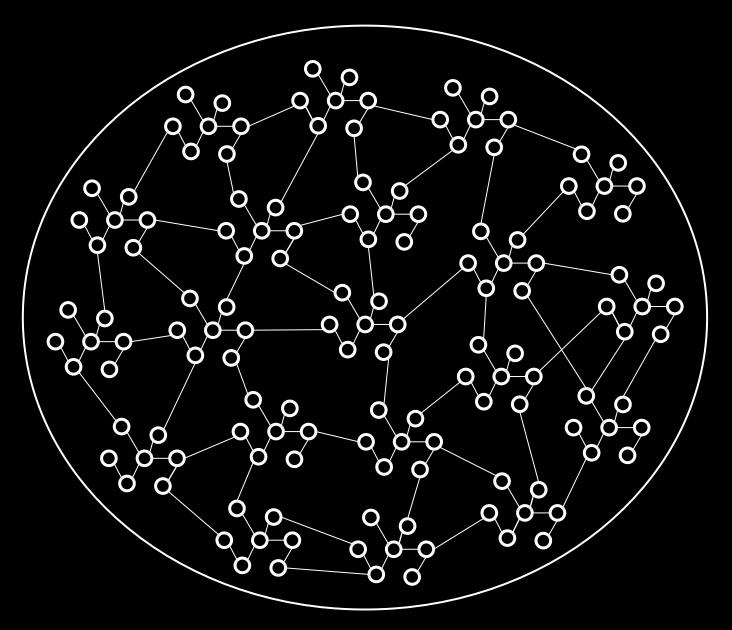




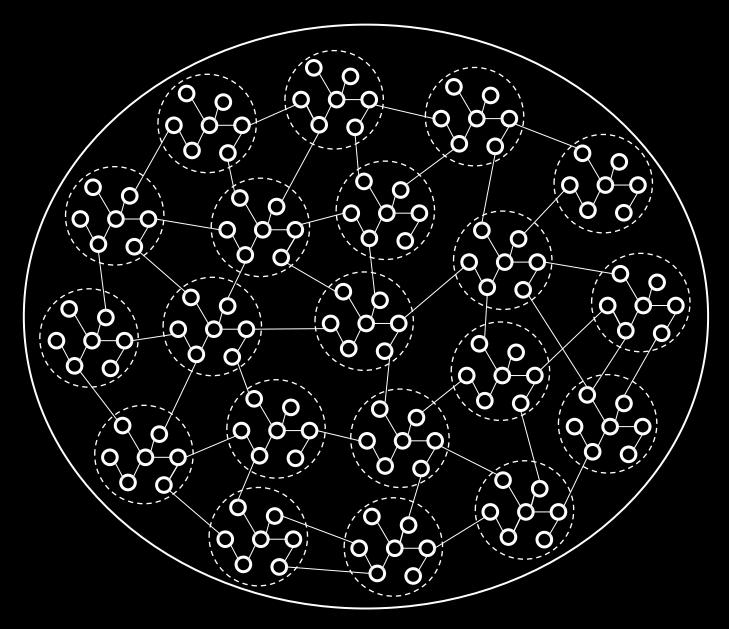


SUTVA: Stable Unit Treatment Value Assumption

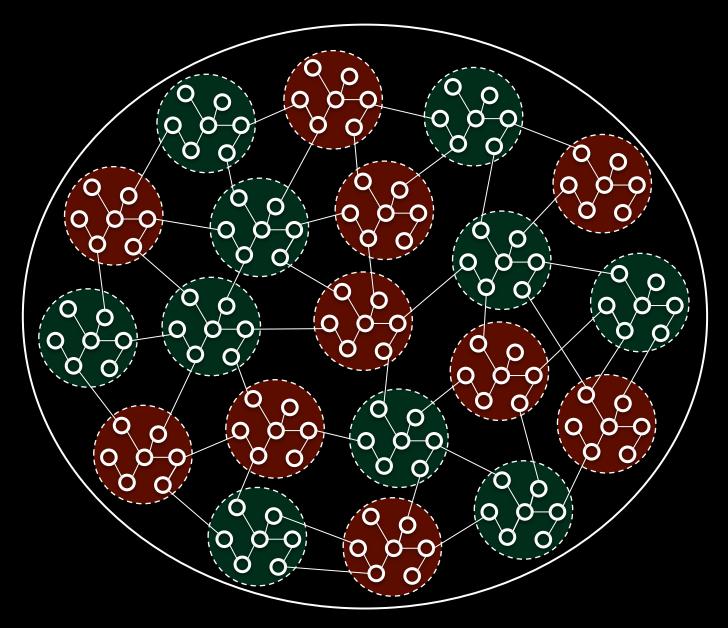
Every user's behavior is affected only by their treatment and NOT by the treatment of any other user

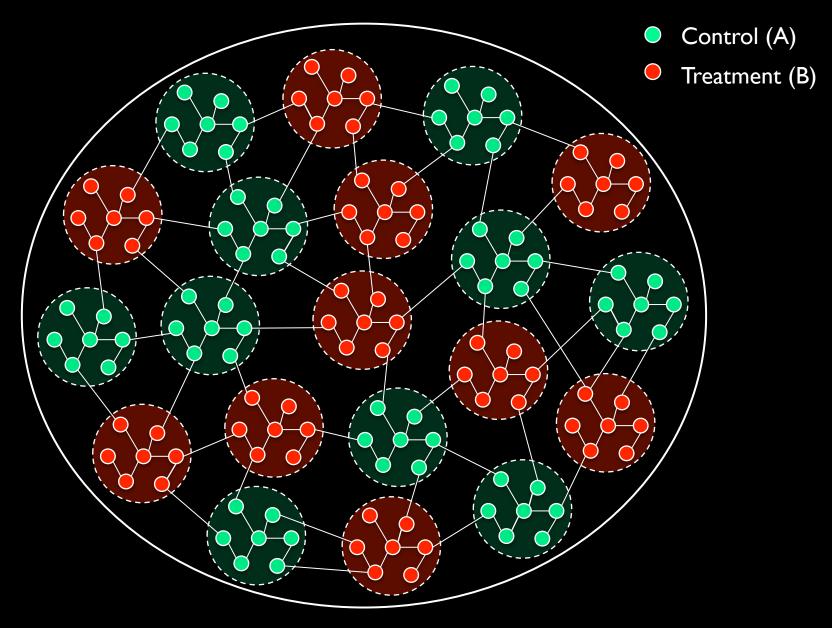


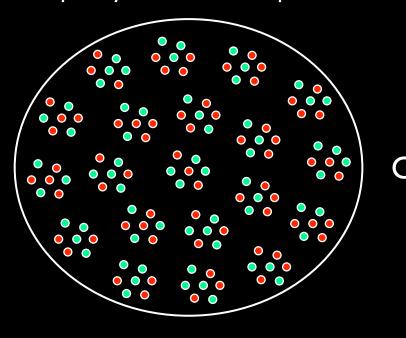
Cluster-based Randomized Experiment

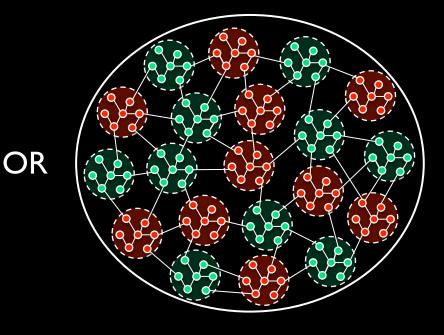


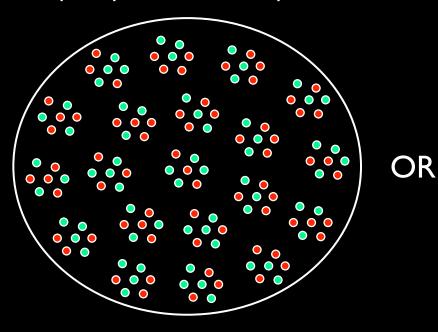
Cluster-based Randomized Experiment



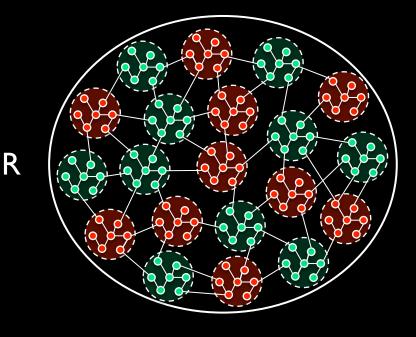








Cluster-based Randomized Experiment

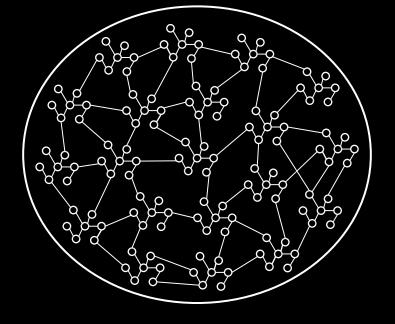


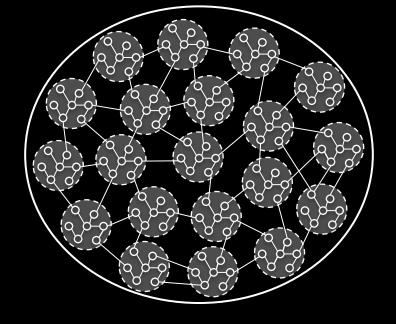
More Spillovers

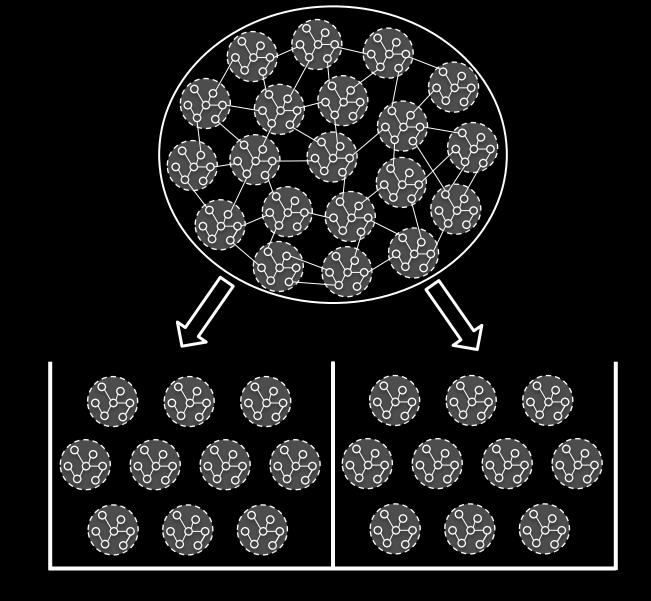
Lower Variance

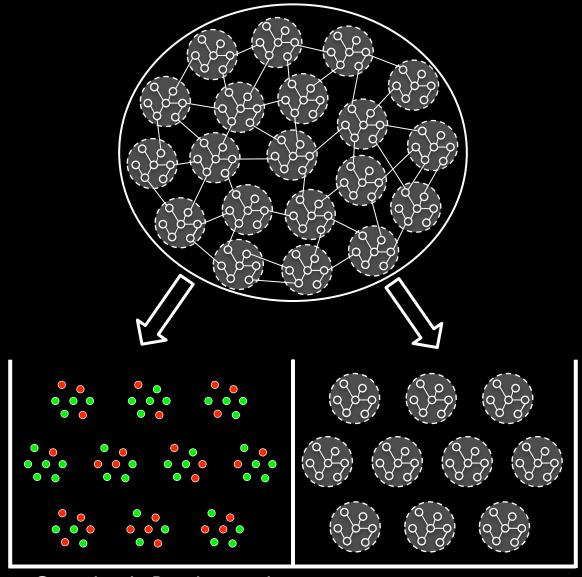
Less Spillovers Higher Variance

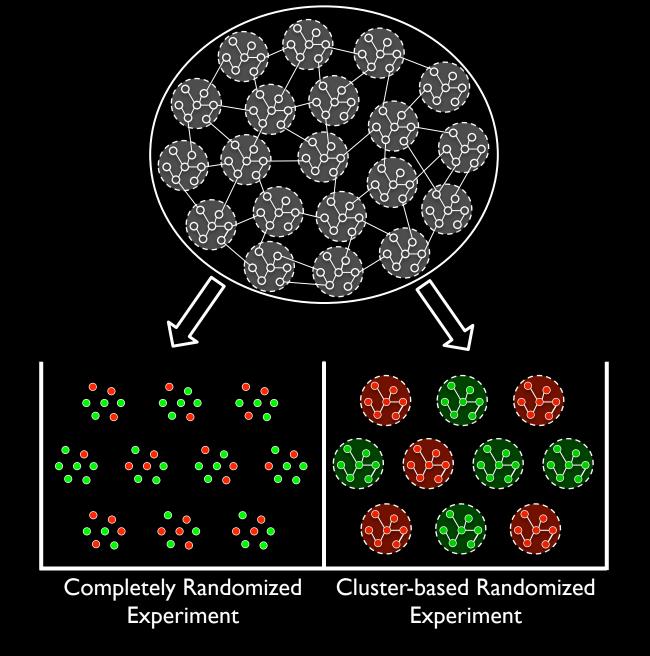
Design for Detecting Network Effects

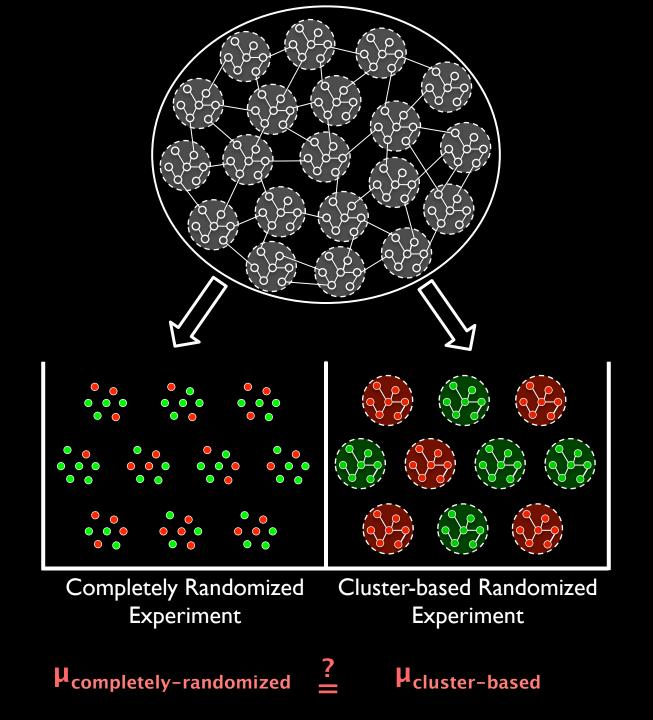












H₀: SUTVA Holds

H₀: SUTVA Holds

 $\overline{E_{\mathbf{W},\mathbf{Z}}\left[\hat{\mu}_{cbr}-\hat{\mu}_{cr}\right]}=0$

H₀: SUTVA Holds

 $E_{\mathbf{W},\mathbf{Z}}\left[\hat{\mu}_{cbr} - \hat{\mu}_{cr}\right] = 0$ $\operatorname{var}_{\mathbf{W},\mathbf{Z}}\left[\hat{\mu}_{cr} - \hat{\mu}_{cbr}\right] \leq E_{\mathbf{W},\mathbf{Z}}\left[\hat{\sigma}^{2}\right]$

H₀: SUTVA Holds

$$E_{\mathbf{W},\mathbf{Z}}\left[\hat{\mu}_{cbr} - \hat{\mu}_{cr}\right] = 0$$
$$\operatorname{var}_{\mathbf{W},\mathbf{Z}}\left[\hat{\mu}_{cr} - \hat{\mu}_{cbr}\right] \leq E_{\mathbf{W},\mathbf{Z}}\left[\hat{\sigma}^{2}\right]$$

Reject the null when:

H₀: SUTVA Holds

$$E_{\mathbf{W},\mathbf{Z}} \left[\hat{\mu}_{cbr} - \hat{\mu}_{cr} \right] = 0$$
$$\operatorname{var}_{\mathbf{W},\mathbf{Z}} \left[\hat{\mu}_{cr} - \hat{\mu}_{cbr} \right] \leq E_{\mathbf{W},\mathbf{Z}} \left[\hat{\sigma}^2 \right]$$

Reject the null when:

$$\left|\frac{|\hat{\mu}_{cr} - \hat{\mu}_{cbr}|}{\sqrt{\hat{\sigma}^2}} \geq \frac{1}{\sqrt{\alpha}}\right|$$

H_0 : SUTVA Holds

$$E_{\mathbf{W},\mathbf{Z}} \left[\hat{\mu}_{cbr} - \hat{\mu}_{cr} \right] = 0$$
$$\operatorname{var}_{\mathbf{W},\mathbf{Z}} \left[\hat{\mu}_{cr} - \hat{\mu}_{cbr} \right] \leq E_{\mathbf{W},\mathbf{Z}} \left[\hat{\sigma}^2 \right]$$

Reject the null when:

$$\frac{|\hat{\mu}_{cr} - \hat{\mu}_{cbr}|}{\sqrt{\hat{\sigma}^2}} \geq \frac{1}{\sqrt{\alpha}}$$

Type I error is no greater than $\, \alpha \,$

Nuts and Bolts of Running Cluster-based Randomized Experiments

Why Balanced Clustering?

- Theoretical Motivation
 - Constants VS random variables

- Theoretical Motivation
 - Constants VS random variables
- Practical Motivations

- Theoretical Motivation
 - Constants VS random variables
- Practical Motivations
 - Variance reduction

- Theoretical Motivation
 - Constants VS random variables
- Practical Motivations
 - Variance reduction
 - Balance on pre-treatment covariates (homophily => large homogenous clusters)

Most clustering methods find skewed distributions of cluster sizes (Leskovec, 2009; Fortunato, 2010)

Most clustering methods find skewed distributions of cluster sizes (Leskovec, 2009; Fortunato, 2010)

=> Algorithms that enforce equal cluster sizes

Most clustering methods find skewed distributions of cluster sizes (Leskovec, 2009; Fortunato, 2010)

=> Algorithms that enforce equal cluster sizes

Restreaming Linear Deterministic Greedy (Nishimura & Ugander, 2013)

Most clustering methods find skewed distributions of cluster sizes (Leskovec, 2009; Fortunato, 2010)

=> Algorithms that enforce equal cluster sizes

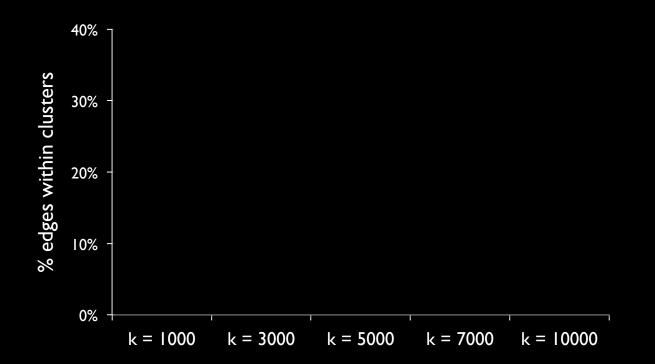
Restreaming Linear Deterministic Greedy

(Nishimura & Ugander, 2013)

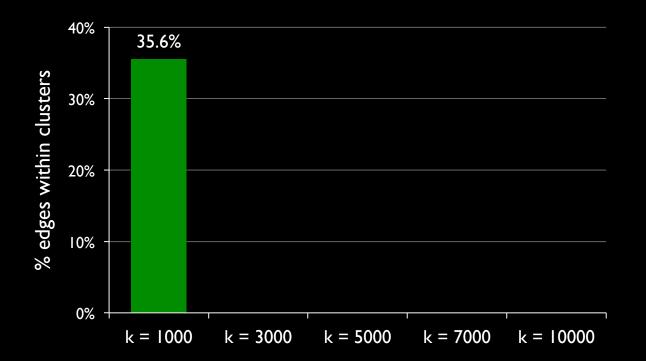
- Streaming
- Parallelizable
- Stable

- Graph: >100M nodes, >10B edges
- 350 Hadoop nodes
- I% leniency

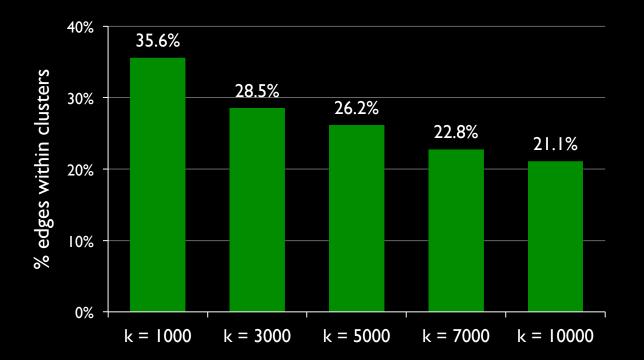
- Graph: >100M nodes, >10B edges
- 350 Hadoop nodes
- I% leniency

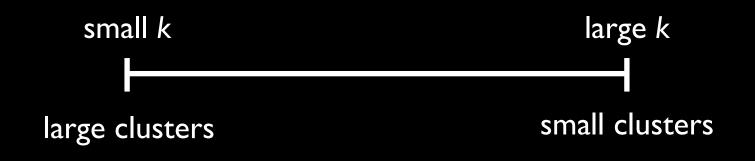


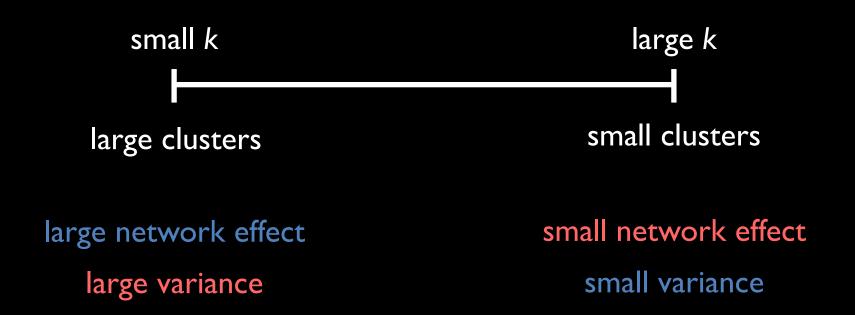
- Graph: >100M nodes, >10B edges
- 350 Hadoop nodes
- I% leniency



- Graph: >100M nodes, >10B edges
- 350 Hadoop nodes
- I% leniency







Understanding the Type II error

Understanding the Type II error

Assuming an interference model

Understanding the Type II error

Assuming an interference model

 $Y_i = \beta_0 + \beta_1 Z_i + \beta_2 \rho_i + \epsilon_i$

 ho_i : fraction of treated friends

Understanding the Type II error

Assuming an interference model

$$Y_i = \beta_0 + \beta_1 Z_i + \beta_2 \rho_i + \epsilon_i$$

 ho_i : fraction of treated friends

$$E\left[\hat{\mu}_{cbr} - \hat{\mu}_{cr}\right] \approx \rho \cdot \beta_2$$

ho : average fraction of a unit's neighbors contained in the cluster

Understanding the Type II error

Assuming an interference model

$$Y_i = \beta_0 + \beta_1 Z_i + \beta_2 \rho_i + \epsilon_i$$

 ho_i : fraction of treated friends

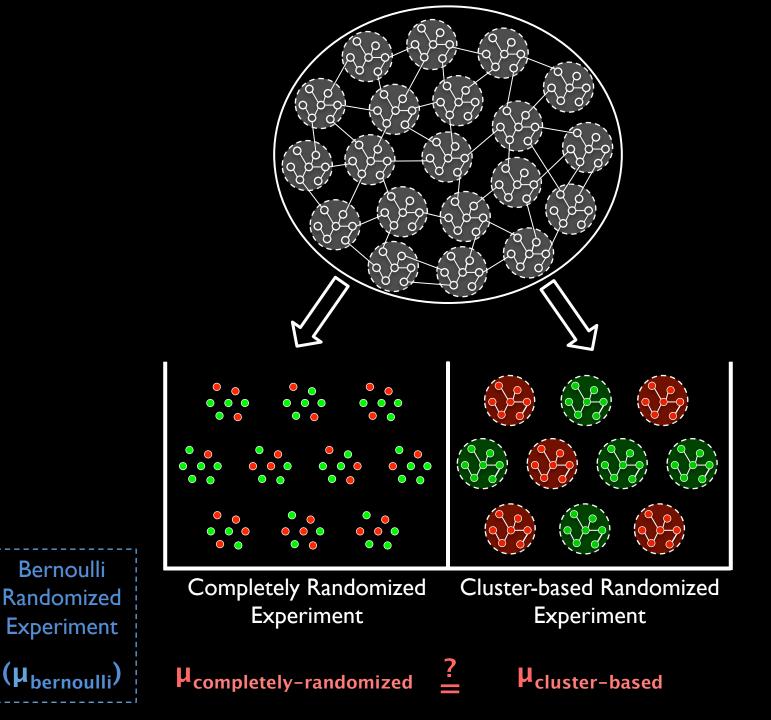
$$E\left[\hat{\mu}_{cbr} - \hat{\mu}_{cr}\right] \approx \rho \cdot \beta_2$$

ho : average fraction of a unit's neighbors contained in the cluster

Choose number of clusters M and clustering C such that

$$\max_{M,C} \frac{\rho}{\sqrt{\hat{\sigma}_C^2}}$$

Experiments on LinkedIn



- Population: 20% of all LinkedIn users [Bernoulli: 10%, Cluster-based: 10%]

- Population: 20% of all LinkedIn users [Bernoulli: 10%, Cluster-based: 10%]
- Time period: 2 weeks

- Population: 20% of all LinkedIn users [Bernoulli: 10%, Cluster-based: 10%]
- Time period: 2 weeks
- Number of clusters: k = 3,000

- Population: 20% of all LinkedIn users [Bernoulli: 10%, Cluster-based: 10%]
- Time period: 2 weeks
- Number of clusters: k = 3,000
- Outcome: feed engagement

- Population: 20% of all LinkedIn users [Bernoulli: 10%, Cluster-based: 10%]
- Time period: 2 weeks
- Number of clusters: k = 3,000
- Outcome: feed engagement

Treatment effect Standard Deviation

Bernoulli Randomization (BR)

Cluster-based Randomization (CBR)

Delta (CBR – BR)

- Population: 20% of all LinkedIn users [Bernoulli: 10%, Cluster-based: 10%]
- Time period: 2 weeks
- Number of clusters: k = 3,000
- Outcome: feed engagement

	Treatment effect	Standard Deviation
Bernoulli Randomization (BR)	0.0559	0.0050
Cluster-based Randomization (CBR)		
Delta (CBR – BR)		

- Population: 20% of all LinkedIn users [Bernoulli: 10%, Cluster-based: 10%]
- Time period: 2 weeks
- Number of clusters: k = 3,000
- Outcome: feed engagement

	Treatment effect	Standard Deviation
Bernoulli Randomization (BR)	0.0559	0.0050
Cluster-based Randomization (CBR)	0.0771	0.0260
Delta (CBR – BR)		

- Population: 20% of all LinkedIn users [Bernoulli: 10%, Cluster-based: 10%]
- Time period: 2 weeks
- Number of clusters: k = 3,000
- Outcome: feed engagement

	Treatment effect	Standard Deviation
Bernoulli Randomization (BR)	0.0559	0.0050
Cluster-based Randomization (CBR)	0.0771	0.0260
Delta (CBR – BR)	-0.0211	0.0265

- Population: 20% of all LinkedIn users [Bernoulli: 10%, Cluster-based: 10%]
- Time period: 2 weeks
- Number of clusters: k = 3,000
- Outcome: feed engagement

	Treatment effect	Standard Deviation
Bernoulli Randomization (BR)	0.0559	0.0050
Cluster-based Randomization (CBR)	0.0771	0.0260
Delta (CBR – BR)	-0.0211	0.0265

p-value: 0.4246

- Population: 36% of all LinkedIn users [Bernoulli: 20%, Cluster-based: 16%]

- Population: 36% of all LinkedIn users [Bernoulli: 20%, Cluster-based: 16%]
- Time period: 4 weeks

- Population: 36% of all LinkedIn users [Bernoulli: 20%, Cluster-based: 16%]
- Time period: 4 weeks
- Number of clusters: k = 10,000

- Population: 36% of all LinkedIn users [Bernoulli: 20%, Cluster-based: 16%]
- Time period: 4 weeks
- Number of clusters: k = 10,000
- Outcome: feed engagement

- Population: 36% of all LinkedIn users [Bernoulli: 20%, Cluster-based: 16%]
- Time period: 4 weeks
- Number of clusters: k = 10,000
- Outcome: feed engagement

Treatment effect Standard Deviation

Bernoulli Randomization (BR)

Cluster-based Randomization (CBR)

Delta (CBR – BR)

- Population: 36% of all LinkedIn users [Bernoulli: 20%, Cluster-based: 16%]
- Time period: 4 weeks
- Number of clusters: k = 10,000
- Outcome: feed engagement

	Treatment effect	Standard Deviation
Bernoulli Randomization (BR)	0.2108	0.2911
Cluster-based Randomization (CBR)		
Delta (CBR – BR)		

- Population: 36% of all LinkedIn users [Bernoulli: 20%, Cluster-based: 16%]
- Time period: 4 weeks
- Number of clusters: k = 10,000
- Outcome: feed engagement

	Treatment effect	Standard Deviation
Bernoulli Randomization (BR)	0.2108	0.2911
Cluster-based Randomization (CBR)	0.5390	0.5613
Delta (CBR – BR)		

- Population: 36% of all LinkedIn users [Bernoulli: 20%, Cluster-based: 16%]
- Time period: 4 weeks
- Number of clusters: k = 10,000
- Outcome: feed engagement

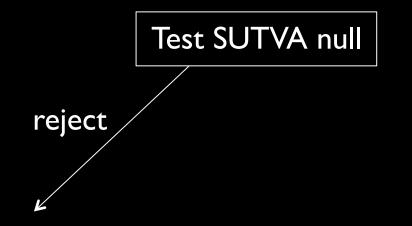
	Treatment effect	Standard Deviation
Bernoulli Randomization (BR)	0.2108	0.2911
Cluster-based Randomization (CBR)	0.5390	0.5613
Delta (CBR – BR)	-0.3281	0.5712

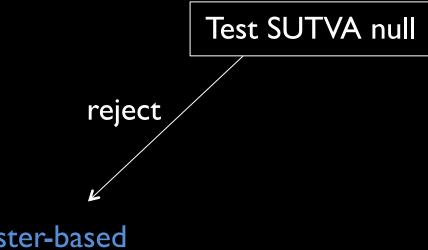
- Population: 36% of all LinkedIn users [Bernoulli: 20%, Cluster-based: 16%]
- Time period: 4 weeks
- Number of clusters: k = 10,000
- Outcome: feed engagement

	Treatment effect	Standard Deviation
Bernoulli Randomization (BR)	0.2108	0.2911
Cluster-based Randomization (CBR)	0.5390	0.5613
Delta (CBR – BR)	-0.3281	0.5712

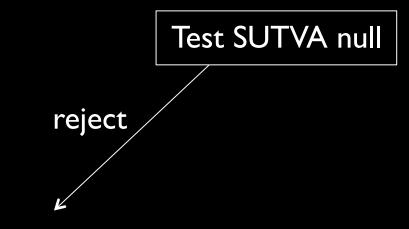
p-value: 0.0483

Test SUTVA null



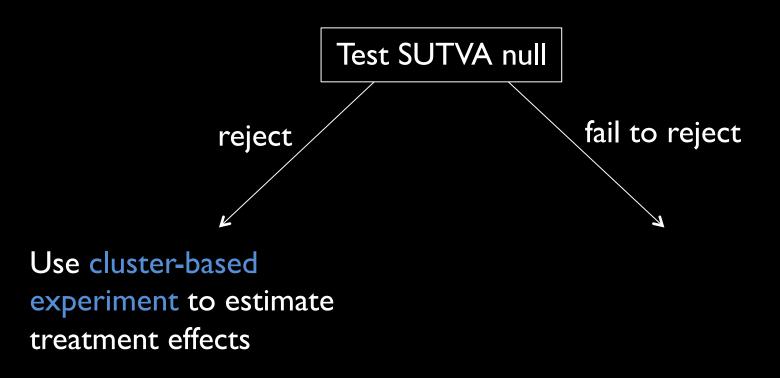


Use cluster-based experiment to estimate treatment effects

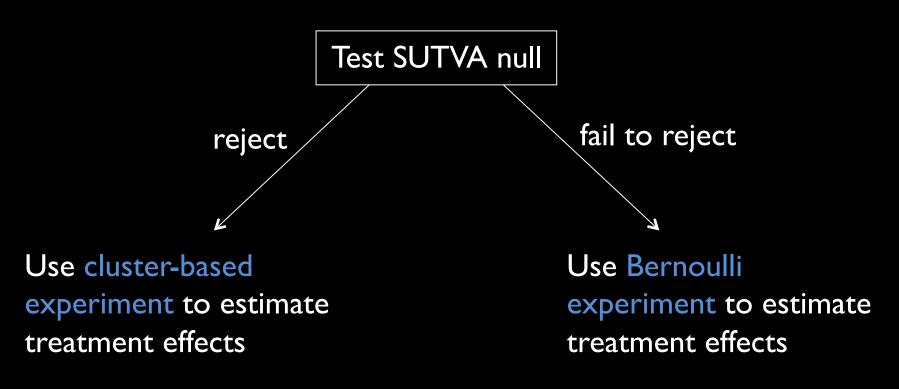


Use cluster-based experiment to estimate treatment effects

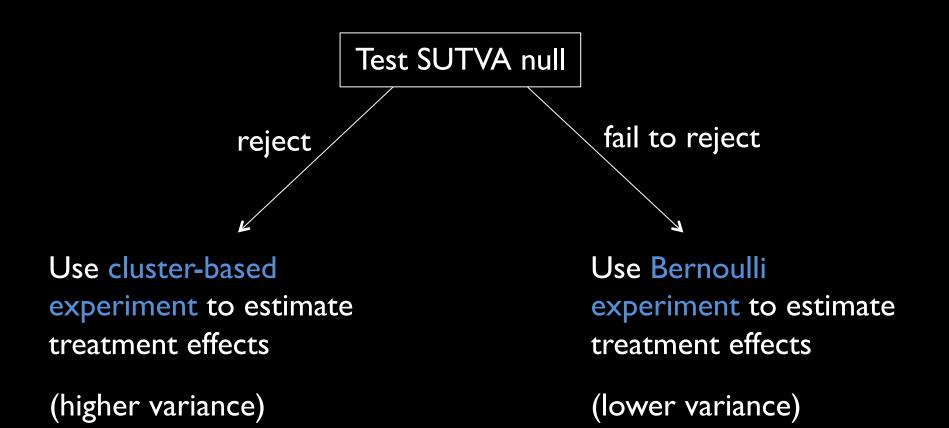
(higher variance)



(higher variance)



(higher variance)



Papers available online

KDD'17 Arxiv

Detecting Network Effects Randomizing Over Randomized Experiments

Martin Saveski (@msaveski)_

MIT