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SUTVA: Stable Unit Treatment Value Assumption 

Every user’s behavior is affected only by their treatment  
and NOT by the treatment of any other user 

 



Cluster-based Randomized Experiment 



Cluster-based Randomized Experiment 



Cluster-based Randomized Experiment 



Cluster-based Randomized Experiment 



Cluster-based Randomized Experiment 

Control (A) 

Treatment (B) 



Completely-randomized Experiment Cluster-based Randomized Experiment 

OR 



Completely-randomized Experiment Cluster-based Randomized Experiment 

Lower Variance 

More Spillovers 

Higher Variance 

Less Spillovers 

OR 



Design for Detecting Network Effects 
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Reject the null when: 

Type I error is no greater than  ↵



Nuts and Bolts of Running 
Cluster-based Randomized Experiments  
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Why Balanced Clustering? 

•  Theoretical Motivation 
–  Constants VS random variables 

 

•  Practical Motivations 

–  Variance reduction 

–  Balance on pre-treatment covariates 
(homophily => large homogenous clusters) 
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=> Algorithms that enforce equal cluster sizes 

Most clustering methods find skewed distributions of cluster sizes 
(Leskovec, 2009; Fortunato, 2010) 

Restreaming Linear Deterministic Greedy 
(Nishimura & Ugander, 2013) 

–  Streaming 

–  Parallelizable 
–  Stable 

Algorithms for Balanced Clustering 
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Assuming an interference model 

Yi = �0 + �1Zi + �2⇢i + ✏i
⇢i : fraction of treated friends 

: average fraction of a unit's neighbors contained in the cluster ⇢i

E [µ̂cbr � µ̂cr] ⇡ ⇢ · �2

Choose number of clusters M and clustering C such that 

max

M,C

⇢p
�̂2
C

Choosing the Number of Clusters 
Understanding the Type II error 



Experiments on LinkedIn 
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