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>mall memory footprint i_) Stochastic optimization

Fast training time One pass learning

Low prediction latency —> Sparse models



Learning Ranking Functions



Learning Ranking Functions

Three broad tamilies of models
1. Pointwise (Logistic regression)
2. Pairwise (RankSVM)

3. Listwise (ListNet)



Learning Ranking Functions
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| oss functions

e Evaluation functions (NDCG)

e Surrogate functions
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Lambda Rank (Burges et al., 2007)

Product 1 Product 2 Product3 Product 4
X : Features X1 X2 X3 X4
I' : Ground-truth Rank 1 1 2 3
i J

Importance of sorting : and j correctly
AM = M(r) — M(r;;)

Difference in scores

AS = max{0, w'x;

Loss

LX;w)= Y AM-AS

rigrj

— W  Xj
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ElasticRank

Introducing Sparsity

Adding /1 and /> penalties

1
L* (X, w) = L(X,w) + AWl + 5 o] [wll3

Soth Ay and A» control model complexity

e )\ trades-off sparsity and performance

® )\ adds strong convexity & Improves convergence
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Optimization Algorithms

Extensions of Stochastic Gradient Descent

FOBOS Forward-Backward Splitting (puchi, 2009)

1. Gradient step

2. Proximal step involving the regularization

RDA Regularized Dual Averagi

e Keeps a running average of a

NQ (Xiao, 2010)

past gradients

e Solves a proximal step using the average

PSGD Pruned Stochastic Gradient Descent

cf\wz\<6’:>wZ:O

® Prunes every k gradient steps



Hyper-parameter Optimization

e Turn-key inference
e Automatic adjustment of hyper-parameters

¢ Bayesian Approach (Snoek, Larochelle, Adams; 2012)

e (Gaussian Process

e Thomson Sampling



L ETOR Experiments

ElasticRank is comparable with state-of-the-art models
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Amazon.com Experiments

Experimental Setup

e # examples =~ millions

e # features ~ thousands (millions of dimensions)

e Purchase logs from contiguous time interval

Training Validation Testing




Experimental Results

ElasticRank performs best
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Sparsity vs Performance

RDA achieves the best trade-off

Recall @ 1
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Contributions

How to learn ranking functions with
® Single pass
e Small memory footprint

® Sparse

WITHOUT sacrificing performance
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