One-Pass Ranking Models for Low-Latency Product Recommendations

> Martin Saveski @msaveski

MIT (Amazon Berlin) One-Pass Ranking Models for Low-Latency Product Recommendations Amazon Machine Learning Team, Berlin

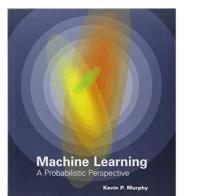
Antonino Freno

Rodolphe Jenatton

Cédric Archambeau

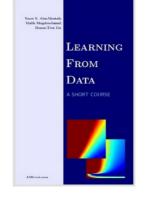
Product Recommendations

Customers Who Bought This Item Also Bought



<

Machine Learning: A Probabilistic Perspective (Adaptive Computation and → Kevin P. Murphy ★★★★★★ 46 Hardcover \$76.97 √Prime

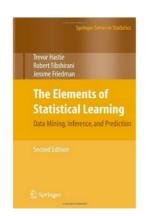


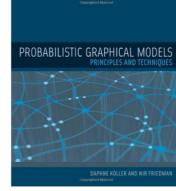
Learning From Data

Yaser S. Abu-Mostafa
88

#1 Best Seller (in Computer)

Neural Networks Hardcover





Machine Learning: The Art and Science of Algorithms that Make Sense of Data Peter Flach Tr Paperback \$51.60 *Prime*

>

1. Large # of examples Large # of features

- 1. Large # of examples Large # of features
- 2. Drifting distribution

- 1. Large # of examples Large # of features
- 2. Drifting distribution
- 3. Real-time ranking (<few ms)

- Large # of examples → Small memory footprint Large # of features
- 2. Drifting distribution
- 3. Real-time ranking (<few ms)

- Large # of examples → Small memory footprint Large # of features
- 2. Drifting distribution \longrightarrow Fast training time
- 3. Real-time ranking (<few ms)

- Large # of examples → Small memory footprint Large # of features
- 2. Drifting distribution \longrightarrow Fast training time
- 3. Real-time ranking → Low prediction latency (<few ms)

Our approach Product Recommendations

Small memory footprint

Fast training time

Low prediction latency

Our approach Product Recommendations

Small memory footprint

Fast training time

Stochastic optimization One pass learning

Low prediction latency

Our approach Product Recommendations

Small memory footprint

Fast training time

St O

Stochastic optimization One pass learning

Learning Ranking Functions

Learning Ranking Functions

Three broad families of models

- 1. Pointwise (Logistic regression)
- 2. Pairwise (RankSVM)
- 3. Listwise (ListNet)

Learning Ranking Functions

Three broad families of models

- 1. Pointwise (Logistic regression)
- 2. Pairwise (RankSVM)
- 3. Listwise (ListNet)

Loss functions

- Evaluation functions (NDCG)
- Surrogate functions

Lambda Rank (Burges et al., 2007)

Lambda Rank (Burges et al., 2007)

	Product 1	Product 2	Product 3	Product 4
X: Features	$\mathbf{x_1}$	$\mathbf{x_2}$	\mathbf{x}_{3}	\mathbf{x}_4
${f r}$: Ground-truth Rank	1	1	2	3

Lambda Rank (Burges et al., 2007)

	Product 1	Product 2	Product 3	Product 4
X: Features	$\mathbf{x_1}$	\mathbf{X}_{2}	\mathbf{X}_{3}	\mathbf{x}_4
${f r}$: Ground-truth Rank	1	1	2	3
		i		j

Lambda Rank (Burges et al., 2007)

	Product 1	Product 2	Product 3	Product 4
X: Features	$\mathbf{x_1}$	\mathbf{X}_{2}	\mathbf{X}_{3}	$\mathbf{x_4}$
${f r}$: Ground-truth Rank	1	1	2	3
		i		j

Importance of sorting i and j correctly

 $\Delta \mathcal{M} = \mathcal{M}(\mathbf{r}) - \mathcal{M}(\mathbf{r}_{i/j})$

Lambda Rank (Burges et al., 2007)

	Product 1	Product 2	Product 3	Product 4
X: Features	$\mathbf{x_1}$	\mathbf{X}_{2}	$\mathbf{X_3}$	\mathbf{x}_4
${f r}$: Ground-truth Rank	1	1	2	3
		i		j

Importance of sorting i and j correctly

 $\Delta \mathcal{M} = \mathcal{M}(\mathbf{r}) - \mathcal{M}(\mathbf{r}_{i/j})$

Difference in scores

$$\Delta S = \max\{0, \mathbf{w}^{T}\mathbf{x}_{j} - \mathbf{w}^{T}\mathbf{x}_{i}\}\$$

Lambda Rank (Burges et al., 2007)

	Product 1	Product 2	Product 3	Product 4
X: Features	$\mathbf{x_1}$	\mathbf{X}_{2}	$\mathbf{X_3}$	\mathbf{x}_4
${f r}$: Ground-truth Rank	1	1	2	3
		i		j

Importance of sorting i and j correctly

$$\Delta \mathcal{M} = \mathcal{M}(\mathbf{r}) - \mathcal{M}(\mathbf{r}_{i/j})$$

Difference in scores

$$\Delta S = \max\{0, \mathbf{w}^{T}\mathbf{x}_{j} - \mathbf{w}^{T}\mathbf{x}_{i}\}\$$

Loss

$$L(\mathbf{X}; \mathbf{w}) = \sum_{\mathbf{r}_i \leq \mathbf{r}_j} \Delta \mathcal{M} \cdot \Delta S$$

Introducing Sparsity

Adding l_1 and l_2 penalties $L^*(\mathbf{X}, \mathbf{w}) = L(\mathbf{X}, \mathbf{w}) + \lambda_1 ||\mathbf{w}||_1 + \frac{1}{2}\lambda_2 ||\mathbf{w}||_2^2$

Introducing Sparsity

Adding l_1 and l_2 penalties $L^*(\mathbf{X}, \mathbf{w}) = L(\mathbf{X}, \mathbf{w}) + \lambda_1 ||\mathbf{w}||_1 + \frac{1}{2}\lambda_2 ||\mathbf{w}||_2^2$

Both λ_1 and λ_2 control model complexity

Introducing Sparsity

Adding l_1 and l_2 penalties $L^*(\mathbf{X}, \mathbf{w}) = L(\mathbf{X}, \mathbf{w}) + \lambda_1 ||\mathbf{w}||_1 + \frac{1}{2}\lambda_2 ||\mathbf{w}||_2^2$

Both λ_1 and λ_2 control model complexity

• λ_1 trades-off sparsity and performance

Introducing Sparsity

Adding l_1 and l_2 penalties $L^*(\mathbf{X}, \mathbf{w}) = L(\mathbf{X}, \mathbf{w}) + \lambda_1 ||\mathbf{w}||_1 + \frac{1}{2}\lambda_2 ||\mathbf{w}||_2^2$

Both λ_1 and λ_2 control model complexity

- λ_1 trades-off sparsity and performance
- λ_2 adds strong convexity & improves convergence

Optimization Algorithms Extensions of Stochastic Gradient Descent

Optimization Algorithms

Extensions of Stochastic Gradient Descent

FOBOS Forward-Backward Splitting (Duchi, 2009)

- 1. Gradient step
- 2. Proximal step involving the regularization

Optimization Algorithms

Extensions of Stochastic Gradient Descent

FOBOS Forward-Backward Splitting (Duchi, 2009)

- 1. Gradient step
- 2. Proximal step involving the regularization

RDA Regularized Dual Averaging (Xiao, 2010)

- Keeps a running average of all past gradients
- Solves a proximal step using the average

Optimization Algorithms

Extensions of Stochastic Gradient Descent

FOBOS Forward-Backward Splitting (Duchi, 2009)

- 1. Gradient step
- 2. Proximal step involving the regularization

RDA Regularized Dual Averaging (Xiao, 2010)

- Keeps a running average of all past gradients
- Solves a proximal step using the average

pSGD Pruned Stochastic Gradient Descent

• Prunes every k gradient steps

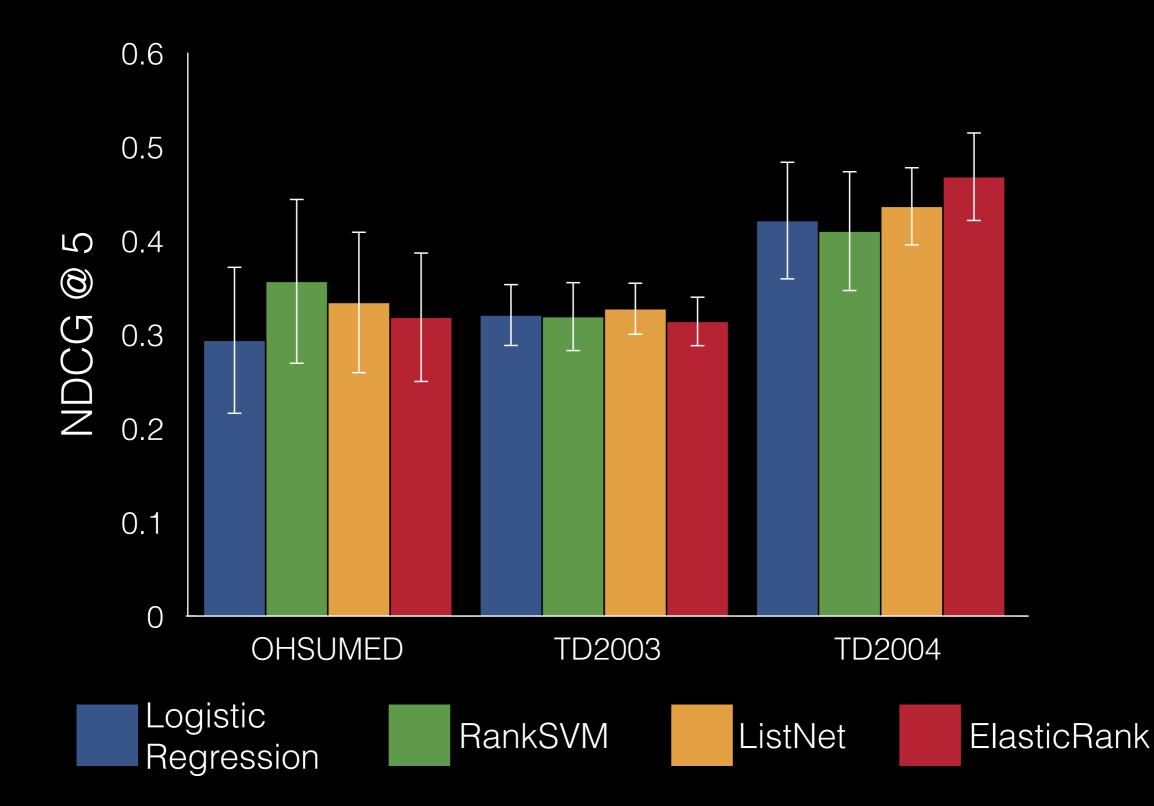
• If
$$|w_i| < \theta \Rightarrow w_i = 0$$

Hyper-parameter Optimization

- Turn-key inference
- Automatic adjustment of hyper-parameters
- Bayesian Approach (Snoek, Larochelle, Adams; 2012)
 - Gaussian Process
 - Thomson Sampling

LETOR Experiments

ElasticRank is comparable with state-of-the-art models



Amazon.com Experiments

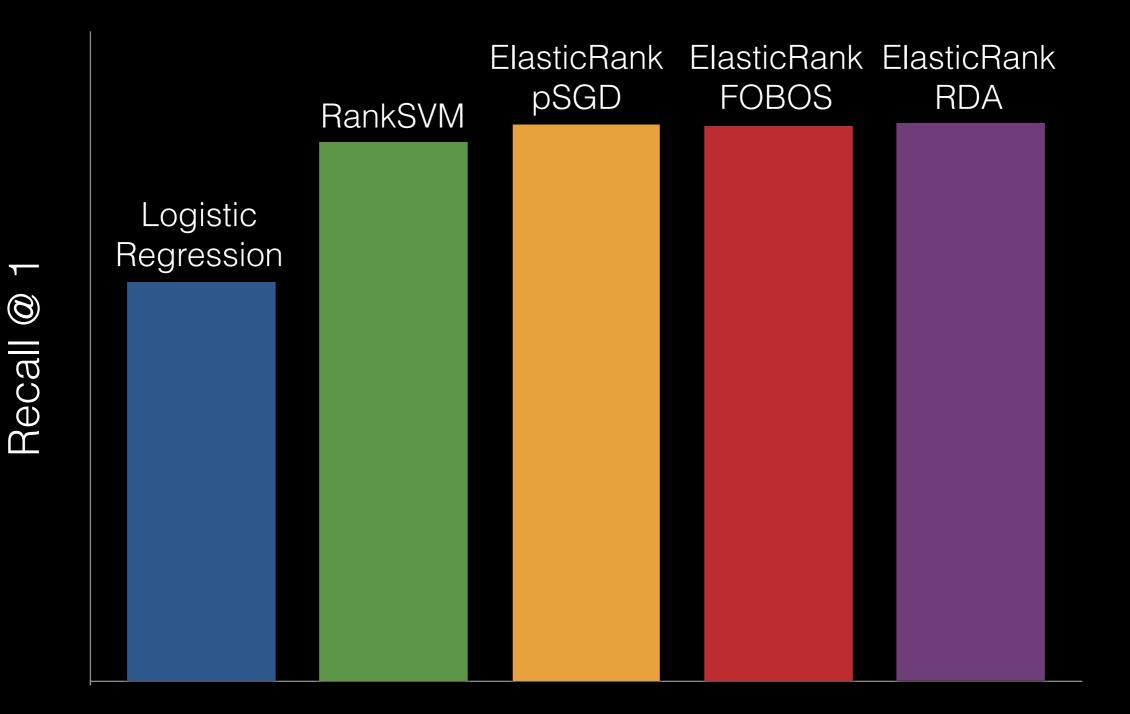
Experimental Setup

- # examples \approx millions
- # features \approx thousands (millions of dimensions)
- Purchase logs from contiguous time interval

Training	Validation	Testing
9	1	1
$\overline{11}$	11	11

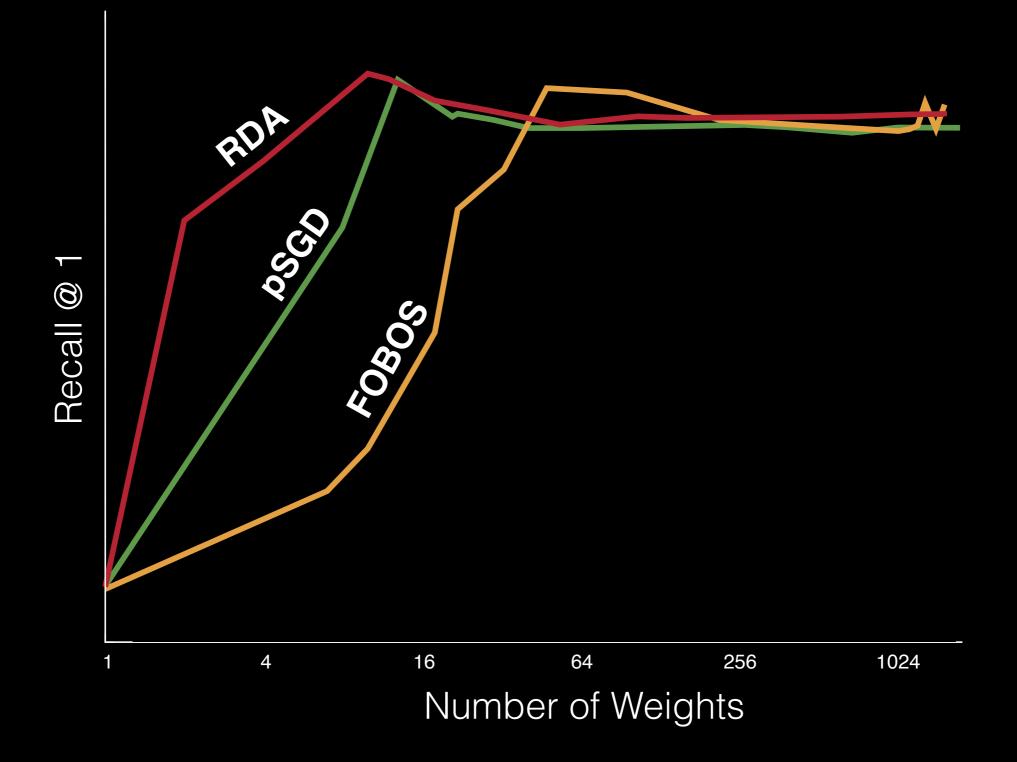
Experimental Results

ElasticRank performs best

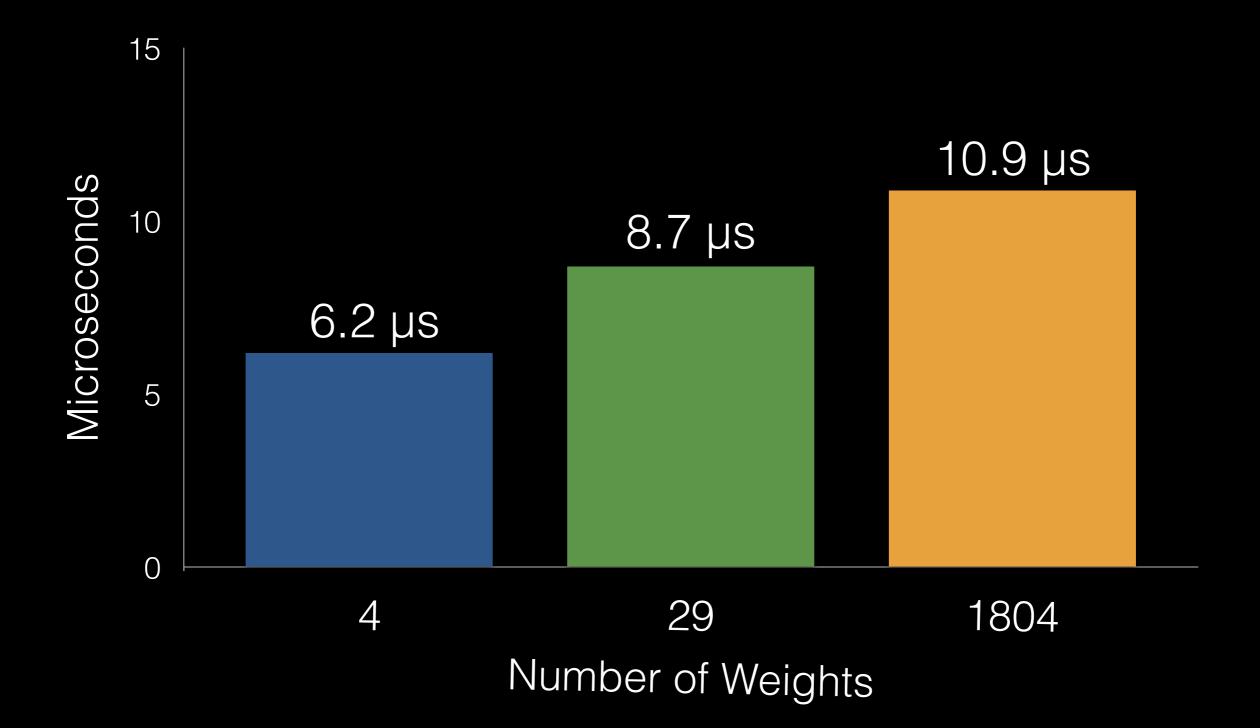


Sparsity vs Performance

RDA achieves the best trade-off



Prediction Time



Contributions

How to learn ranking functions with

- Single pass
- Small memory footprint
- Sparse

WITHOUT sacrificing performance

References

- C. J. C. Burges, R. Ragno, and Q. V. Le. *Learning to rank with nonsmooth cost functions*. In Advances in Neural Information Processing Systems (NIPS), 2006.
- J. C. Duchi and Y. Singer. *Efficient online and batch learning using forward backward splitting*. Journal of Machine Learning Research (JMLR), 2009.
- L. Xiao. *Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization*. Journal of Machine Learning Research (JMLR), 2010.
- J. Snoek, H. Larochelle, and R. P. Adams. *Practical bayesian optimization of machine learning algorithms*. In Advances in Neural Information Processing Systems (NIPS), 2012.

One-Pass Ranking Models for Low-Latency Product Recommendations

> Martin Saveski @msaveski

MIT (Amazon Berlin)