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Stochastic optimization
One pass learning

Sparse models

Small memory footprint

Fast training time

Low prediction latency
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Loss functions 
•  Evaluation functions (NDCG) 
•  Surrogate functions
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Importance of sorting   and   correctly

Difference in scores
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    : Features
    : Ground-truth Rank 1 1 2 3

Product 1 Product 2 Product 3 Product 4

r
X x1 x2 x3 x4

i j

Loss

�M = M(r)�M(ri/j)

L(X;w) =
X

rirj

�M ·�S

i j
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ElasticRank 
Introducing Sparsity

Adding    and     penalties

Both     and     control model complexity
•      trades-off sparsity and performance

•      adds strong convexity & improves convergence

�1

�2

l2l1

L⇤(X,w) = L(X,w) + �1||w||1 +
1

2
�2||w||22
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 Extensions of Stochastic Gradient Descent

  FOBOS Forward-Backward Splitting (Duchi, 2009) 

1. Gradient step 
2. Proximal step involving the regularization

  RDA Regularized Dual Averaging (Xiao, 2010) 

• Keeps a running average of all past gradients 
• Solves a proximal step using the average

  pSGD Pruned Stochastic Gradient Descent 
• Prunes every    gradient steps 
• If 

k

|wi| < ✓ ) wi = 0



Hyper-parameter Optimization 
 

• Turn-key inference 

• Automatic adjustment of hyper-parameters 

• Bayesian Approach (Snoek, Larochelle, Adams; 2012) 

• Gaussian Process  
• Thomson Sampling
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LETOR Experiments 
ElasticRank is comparable with state-of-the-art models
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Amazon.com Experiments 
Experimental Setup

• # examples     millions  

• # features     thousands (millions of dimensions) 

• Purchase logs from contiguous time interval
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Experimental Results 
ElasticRank performs best



Sparsity vs Performance 
RDA achieves the best trade-off
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Contributions 
 

How to learn ranking functions with 

• Single pass 

• Small memory footprint  

• Sparse 

WITHOUT sacrificing performance
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