
To handle large high-dimensional datasets it is crucial to exploit sparsity and
perform only minimum number of operations per update.

We add:
• L1-regularization term to enforce sparsity,
• L2-regularization term to improve convergence and add strong convexity.

The picture below shows the “Customers Who Bought This Item Also Bought”
widget shown on all product pages in AMAZON.com. The goal of this widget
is to provide accurate recommendations and help users find relevant items.
In this study, we are interested in using purchase logs to learn more accurate
ranking models and improve the quality of product recommendations.

R
E

C
O

M
M

E
N

D
A

T
IO

N
S

 O
N

 A
M

A
Z

O
N

.C
O

M

E
LA

S
T

IC
 R

A
N

K
E

X
P

E
R

IM
E

N
T

S

P
R

O
D

U
C

T
 R

E
C

O
M

M
E

N
D

A
T

IO
N

S
ONE-PASS RANKING MODELS
Antonino Freno, Martin Saveski, Rodolphe Jenatton, Cédric Archambeau – Amazon Machine Learning Team – Berlin, Germany
antonino.freno@zalando.de, msaveski@mit.edu, jenatton@amazon.com, cedrica@amazon.com

FOR LOW-LATENCY PRODUCT RECOMMENDATIONS

�∗M(r,l)(X;ϕw) = �M(r,l)(X;ϕw) + λ1‖w‖1 +
1

2
λ2‖w‖22

• RDA and pSGD allow us to smoothly increase the sparsity induced, while
keeping the model performance under control.

• FOBOS achives less optimal trade-off and is less stable.

We consider three optimization algorithms for which an update for a single
instance is linear in the number of non-zero features.

FOBOS: Forward-Backward Splitting [2], solves the regularized optimization
problem by alternating between two phases:

 1. Taking a simple gradient step:

 2. Taking a proximal step that involves the elastic-net regularization:

where is learning rate.

RDA: Regularized Dual Averaging [3], solves a proximal step involving the
running average of all past gradients of the loss functions

• The exponentially weighted average is first updated as:

• The weights are adjusted as follows:

pSGD: Pruned Stochastic Gradient Descent, enforces sparsity by simply
adding a pruning operation to the L2-regularized SGD update rule.

• Every k steps we set:

w̃t = wt − ηt∇w�M(r,l)(X;ϕw),

ηt

wt+1,i =

{
0 if |w̃t,i| ≤ ηtλ1,

1
1+ηtλ2

(w̃t,i − sgn(w̃t,i)ηtλ1) otherwise.

ḡt =
t− 1

t
ḡt−1 +

1

t
∇w�M(r,l)(X;ϕw)

wt+1,i =

{
0, if |ḡt,i| ≤ λ1,

− 1
λ2+ηt

(ḡt,i − sgn(ḡt,i)λ1) otherwise.

|wi| < θ ⇒ wi = 0

A variety of deployment constraints make the applicability of machine learning
algorithms challenging:

1. The scale of the data: large number of examples, large number of features
2. Constant change in customer’s preferences: requires constant retraining
3. Making predictions in real time: to provide better customer experience

We address these challenges by making the following design decisions:
1. Stochastic optimization
2. Single-pass learning
3. Exploiting sparsity

• Ranking metrics (like NDCG) are hard to optimize explicitly, since they are
discontinuous.

• LambdaRank [1] estimates the model parameters while implicitly accounting
for the ranking metric.

• Parameter updates are weighted proportionally to changes in the ranking metric.

For a given ranking evaluation metric , we introduce delta function:

(is the ranking obtained by swapping the positions of product i and j in r.)
 measures the importance of sorting i and j correctly. .

∆M(r,l)(i, j) = M(r, l)−M(ri/j , l)

∆M(r,l)(i, j)

ri/j

M(r, l)

Let be the features associated to the products and
be a parametric function. We define the ranking loss as follows:

Possible choices of include:

• If little loss is incurred
• If the pairwise loss is weighted by

�M(r,l)(X;ϕ) =
∑

ri�rj

∆M(r,l)(i, j) ·P(ϕ(xi), ϕ(xj))

X= {x1, . . . ,xn} ϕ(xi)

P(x, y) = max
{
0, y − x+ ε

}
P(x, y) = log(1 + exp(x− y))

ϕ(xi)

∆M(r,l)(i, j)

ABSTRACT. We present a web scale recommender system that has a small
memory footprint, fast training time, and low prediction latency. We show
that by using stochastic optimization with only a single pass over the data
and sparsity constraints, we can efficiently learn ranking functions without
sacrificing accuracy.

Goal: Assess how ElasticRank compares to state-of-the-art ranking models
Dataset: LETOR 3.0 benchmark collection

0.0

0.1

0.2

0.3

0.4

0.5

OHSUMED TD2003 TD2004
Dataset

N
D

C
G

 @
 5

Method
LogisticRegression
RankSVM
RankBoost
ListNet
AdaRank
ElasticRank

LO
S

S
 F

U
N

C
T

IO
N

Next, we evaluate ElasticRank on a dataset collected on the Amazon retail
website. To run the experiments, we sampled a set of impression log data
from a contiguous time interval, and used 9/11 of the data for training and
1/11 for validation and testing, leaving the temporal order intact.

• Number of examples ~ Millions
• Number of features ~ Thousands (leading to millions of dimensions)

Perfomance Comparison

• ElasticRank is more accurate than both LR and RankSVM.
• The three variants of ElasticRank achieve similar performance.
Sparsity vs Performance Trade-off

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

 0.305

 1 4 16 64 256 1024

R
 @

 1

of non-zero parameters

PSGD
FOBOS

RDA

References

1. C. J. C. Burges, R. Ragno, and Q. V. Le. “Learning to rank with nonsmooth cost functions”. Advances
in Neural Information Processing Systems (NIPS), 2006.

2. J. C. Duchi and Y. Singer. “Efficient online and batch learning using forward backward splitting”. Journal
of Machine Learning Research, 2009.

3. L. Xiao. “Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization”.
Journal of Machine Learning Research, 2010.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%

LogisticRegression RankSVM ElasticRank
 pSGD

ElasticRank
 FOBOS

ElasticRank
 RDA

R
ec

al
l @

 1
 (I

m
pr

ov
em

en
t o

ve
r r

an
do

m
)

This experiment doesn’t capture the time required to precompute/access the
features, which may be much longer than the time needed to compute the
scoring function. Hence, aside from the time needed to compute the scores
alone, model sparsity may be even more impactful when it comes to web-
scale deployment of the ranking system.

Latency

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

 0.305

 1 4 16 64 256 1024

R
 @

 1

of non-zero parameters

PSGD
FOBOS

RDA
 0.645

 0.65

 0.655

 0.66

 0.665

 0.67

 0.675

 0.68

 0.685

 0.69

 1 4 16 64 256 1024

R
 @

 4

of non-zero parameters

PSGD
FOBOS

RDA

(a) Recall@1, one pass (b) Recall@4, one pass

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

 0.305

 1 4 16 64 256 1024

R
 @

 1

of non-zero parameters

PSGD
FOBOS

RDA
 0.645

 0.65

 0.655

 0.66

 0.665

 0.67

 0.675

 0.68

 0.685

 0.69

 1 4 16 64 256 1024

R
 @

 4

of non-zero parameters

PSGD
FOBOS

RDA

(c) Recall@1, two passes (d) Recall@4, two passes

Figure 3: Predictive performance of the three algorithms: PSGD, FOBOS, and RDA in terms of Recall@1 (left) and Recall@4
(right), over one (top) and two (bottom) passes. RDA and PSGD are more reliable than FOBOS at trading-off model sparsity
for predictive performance.

FOBOS without the �2 penalty. The resulting curves were
less stable and less accurate than those reported for FOBOS.

Independently of these stability considerations, Elastic-
Rank based on RDA or PSGD converges faster to the high
values regime as a function of model size (i.e., the number
of non-zero parameters). In other words, RDA and PSGD
enable us to pick more informative features than the ones se-
lected by FOBOS. This is important, because when latency
is a mission-critical requirement, we might have to restrict
the maximal number of features a priori.

Next, we turn our attention to question (iii). Letting
the algorithm run for more than one pass over the training
data is mostly useful for the algorithm that is slowest in
converging to its highest value (i.e., FOBOS). We only show
results for up to 2 training passes as additional passes over
the data did not improve the quality of the learned models.

We end this section by analyzing the prediction latency,
i.e., the time it takes for our model to compute the score
of candidate recommendations as a function of the model
sparsity. We benchmarked the scoring functions learned over
the runs plotted in Figure 3 by averaging the time to score

of weights Latency TPS

4 0.0062 ms ≈ 161,290
29 0.0087 ms ≈ 114,942
1804 0.0109 ms ≈ 91,743

Table 2: Average latency per recommendation and total
throughput per second (TPS, i.e., number of scored impres-
sions) for models of decreasing sparsity.

approximately 5 million examples. The results are reported
in Table 2.

The latency/throughput requirements in web-scale appli-
cations can be extremely strict. It is crucial to enforce the
desired level of sparsity when learning a ranking model as
too many non-zeros can rapidly lead to exceeding these re-
quirements due to the amount of traffic. For example, to
meet the requirements of a latency smaller than 0.009 ms,
one would not be able to afford more than 29 parameters.

We benchmarked the scoring functions learned by averaging the time to
score approximately 5 million examples:

ϕ(xi) > ϕ(xj) =>

ϕ(xi) < ϕ(xj) =>

