
One-Pass Ranking Models for
Low-Latency Product Recommendations

Antonino Freno∗

Zalando
Berlin, Germany

antonino.freno@zalando.de

Martin Saveski∗
MIT Media Lab

Cambridge, USA
msaveski@mit.edu

Rodolphe Jenatton
Amazon

Berlin, Germany
jenatton@amazon.com

Cédric Archambeau
Amazon

Berlin, Germany
cedrica@amazon.com

ABSTRACT
Purchase logs collected in e-commerce platforms provide rich
information about customer preferences. These logs can be
leveraged to improve the quality of product recommenda-
tions by feeding them to machine-learned ranking models.
However, a variety of deployment constraints limit the näıve
applicability of machine learning to this problem. First, the
amount and the dimensionality of the data make in-memory
learning simply not possible. Second, the drift of customers’
preference over time require to retrain the ranking model
regularly with freshly collected data. This limits the time
that is available for training to prohibitively short intervals.
Third, ranking in real-time is necessary whenever the query
complexity prevents us from caching the predictions. This
constraint requires to minimize prediction time (or equiva-
lently maximize the data throughput), which in turn may
prevent us from achieving the accuracy necessary in web-
scale industrial applications. In this paper, we investigate
how the practical challenges faced in this setting can be tack-
led via an online learning to rank approach. Sparse models
will be the key to reduce prediction latency, whereas one-
pass stochastic optimization will minimize the training time
and restrict the memory footprint. Interestingly, and per-
haps surprisingly, extensive experiments show that one-pass
learning preserves most of the predictive performance. Ad-
ditionally, we study a variety of online learning algorithms
that enforce sparsity and provide insights to help the practi-
tioner make an informed decision about which approach to
pick. We report results on a massive purchase log dataset
from the Amazon retail website, as well as on several bench-
marks from the LETOR corpus.

∗Antonino Freno and Martin Saveski contributed to this
work while they were at Amazon Development Center Ger-
many.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3664-2/15/08 ...$15.00.
DOI: http://dx.doi.org/10.1145/2783258.2788579.

1. INTRODUCTION
Ranking algorithms for document retrieval and (content-

based) product recommendation typically work with high-
dimensional feature vector representations of the products
to be ranked. The available features range from query-
independent information (e.g., product category or docu-
ment topic) to information measuring the match between
the user or query and the retrieved product or document
(e.g., similarity scores or other relational quantities). The
dimensionality of the feature vectors and the complexity of
the statistical relationships involved are such that accurate
results cannot be achieved by designing the relevant ranking
functions manually. Therefore, learning to rank from exam-
ples has become the dominant approach when designing and
optimizing ranking systems [16,21].

Learning to rank in web-scale, real-time applications pose
at least three major challenges to algorithmic design. First,
the learning algorithms must be able to process several gi-
gabytes (when not terabytes) of training data in a limited
amount of time. Here, the data set size stems both from
the huge number of training examples (in the order of mil-
lions to hundreds of millions) and the large number of at-
tributes describing the examples. When a ranking system is
deployed to production, a common requirement is to train
a new model at regular intervals (e.g., daily) on fresh query
logs, which are collected over the past few days. This limits
the amount of time available for training to at most a few
hours, taking into account the overhead imposed by collat-
eral deployment issues. Second, when the amount of training
data is too large, we cannot store anything but a minimal
fraction of the available data in memory. This restricts the
range of viable learning options to methods characterized by
extremely frugal memory requirements. In particular, any
learning method whose memory footprint grows with the size
of the training data set is a nonstarter in this setting. Third,
the learned ranking function must meet strict requirements
in terms of latency/throughput. For instance, when the cus-
tomer of an e-commerce website is browsing the catalogue,
we must be able to compute recommendations tied to that
particular, dynamically generated context in quasi real time,
i.e., at the same time as he or she is loading and scrolling
the content of the web page. In practice, this means that,
for lists containing hundreds of candidate recommendations,

all the products in each list need to be scored/ranked in just
a few milliseconds.

The general framework we adopt in order to address these
challenges is listwise ranking loss minimization with sparsity-
inducing penalties, where optimization is based on single
pass of stochastic gradient descent (SGD) updates or vari-
ants thereof. In particular, we focus on a set of techniques
within the LambdaRank family [3]. The main reasons for
this choice are the following. First, LambdaRank provides
a straightforward way to customize the loss function in or-
der to accommodate for different ranking evaluation metrics.
This allows us to abstract our analysis from a specific ap-
plication domain, such as product recommendation or docu-
ment retrieval. Second, SGD requires the smallest memory
footprint we might achieve, i.e., one training example for
each model update or (small) mini-batches. Third, doing
one pass through the training examples minimizes the time
needed to stream data from disk or through a network con-
nection, which can be extremely expensive. Finally, we learn
sparse models (i.e., models where most of the data attributes
play no role at prediction time) to significantly reduce the
amount of computation required to score/rank candidates
(not only in terms of strict scoring time, but especially in
terms of fetching/extracting the required features), which
brings us closer to our low-latency requirements.

The impact of sparsity-inducing schemes on ranking qual-
ity is a relatively recent topic in the learning-to-rank com-
munity. The `1-based methods that we consider in the next
sections are related to the truncated gradient approach [19],
which has been applied to text document retrieval in [31].
The authors of [18] also consider a sparsity-inducing ap-
proach, but it is based on a different primal-dual optimiza-
tion scheme. Emphasis on non-convexity issues in sparsity-
enforcing ranking loss formulations has been discussed in-
stead in [20]. While we share the same interest in sparsity
as the aforementioned studies, at least one point has not
been addressed by them (or, to the best of our knowledge,
by any related work). Specifically, previous work does not
explore the impact (in terms of learning and ranking quality)
of working under such constraints as minimal training time
(i.e., only one pass allowed over the training data) and min-
imal prediction latency (i.e., extremely aggressive sparsity
requirements). Furthermore, they evaluate (sparse) rank-
ing models on benchmarks of relatively modest size, both
in terms of sample size and in terms of dimensionality. As
a concrete illustration, the used benchmarks contained at
most 64 features and 148,657 samples (see the summary
in [18]). Such a setting is simply not commensurable with
the scale of current challenges from the WWW. Therefore,
we believe that we are filling a gap in the learning-to-rank
research by benchmarking sparsity-inducing schemes in a
more realistic scenario.

This paper aims to provide empirically solid answers to
the following two questions:

1. Can we achieve state-of-the-art ranking quality by one-
pass SGD (or variants thereof) over the training data?

2. Can we boost the efficiency of our ranking function to
the extent necessary to cope with low-latency (real-
time) WWW applications?

Our investigation is rooted in web-scale machine learning
practice (as enforced, in particular, in the online retail in-

Figure 1: Two examples of Amazon’s Recent History Footer
(RHF) widget showing 5 (top) and 7 (bottom) products to
the customer. The number of products shown depends on
the browser’s viewing settings.

dustry), which we deem to be crucial to back theoretical
results with their empirical counterpart.

The paper is organized as follows. We provide an overview
of the use case in Section 2 and discuss related ranking eval-
uation metrics in Section 3. In Section 4, we discuss related
work. The listwise ranking model and the on-line learning
algorithms are introduced in Section 5. Section 6 describes
the Bayesian optimization technique that we use in order to
make hyperparameter tuning, both, accurate and efficient.
In Section 7, we assess the predictive performance of our
approach by looking at three benchmark datasets from the
LETOR collection, which is a universally accessible refer-
ence for research on learning to rank. After demonstrating
the quality of the adopted method on these benchmarks,
we investigate the behavior of the proposed approach on a
more challenging, web-scale application based on Amazon
retail data and discuss the latency/predictive power trade-
off (Section 8). The lessons learned from our study are sum-
marized in Section 9.

2. USE CASE: RECOMMENDATIONS
BY AMAZON WIDGETS

Consider the two examples shown in Figure 1. Each one
is a list of impressions from the recent history footer (RHF)
widget. RHF appears at the bottom of many pages on
the retail website. The widget displays a number of prod-
ucts which are deemed to be relevant w.r.t. the most recent
browsing history of a website visitor (rather than the whole
browsing/purchase history, or an aggregate, non-personalized
relevance model). When the RHF widget is displayed to a
customer, a smaller or larger number of recommendations
are actually shown depending on viewport constraints, typ-
ically screen resolution, browser font size, etc.

As depicted in Figure 1 the product impressions are shown
horizontally. The relative ordering of the products within
a widget of size k is not crucial to capture the customer’s
attention; any product appearing within the top k will be
considered relevant. However, once the size k of the widget
is determined, it is important to move the products that are
most likely to be considered by the customer within the top k
positions. If a product which is appealing for the customers

is ranked below position k, they do not have the possibility
to go directly to the detail page.

Other widgets, with a similar structure, are displayed on
the product detail pages from the Amazon retail portal.
One such widget is the “Customers Who Bought This Item
Also Bought” carousel. Instead of considering relevance to
the customer’s recent browsing history, this widget focuses
on relevance to the currently visited product detail page,
based on the criterion of a purchase-to-purchase similarity.
Yet, another widget is based on view-to-purchase similarity
(“What Other Items Do Customers Buy After Viewing This
Item?”). Each widget provides a different type of recom-
mendations by ranking different sets of products.

3. RANKING METRICS
The goal in product recommendation is to recommend

products that maximize the click-through rate (CTR) or the
purchase rate (PR), which are computed based on the im-
pression logs of these products. CTR and PR express an
ordering of the products in the catalog (or any subset of it),
which we will call the target ranking. Several ranking evalu-
ation metrics have been proposed in information retrieval [7]
to assess the quality of rankings produced, for example, by
machine-learned ranking models. These data-driven models
try to minimize the discrepancy between the ranking they
produce and the target ranking.

Consider a list of n products that is (partially) displayed
to one customer. We denote by l = (l1, . . . , ln) the relevance
labels associated to the products in this list. Label li is the
feedback provided by the customer regarding product i. It
could be an integer in {1, . . . , n}, but it need not be. For
example, the feedback could be in some cases continuous,
like the purchase price of the product, or ordinal, like a
rating by the customer. We will consider the case where
every display of a list of products will result in at most one
non-zero feedback.

Let r = (r1, . . . , rn) be a ranking of the products in the
list. The rank ri of product i is an integer in {1, . . . , n},
where 1 is the first position and n the last one. A popular
metric to evaluate the quality of r in light of the relevance
labels l is the discounted cumulative gain (DCG):

DCG(r, l) =

n∑
i=1

2li − 1

log2(ri) + 1
. (1)

DCG is non-negative and larger values correspond to better
rankings; the contribution of products with low relevance
labels that are poorly ranked are downweighted as desired.
A closely related evaluation metric is NDCG, which is ob-
tained by normalizing the righthand side of (1) such that the
perfect ranking corresponds to a value of NDCG equal to 1
and does not depend on the length of the list. NDCG, can
be further parameterized by a threshold k ∈ {1, . . . , n}, such
that the summation only runs over the top k products of the
proposed ranking r. We will call this measure NDCG@K .
This variant is appealing in practice as one is usually only
interested in an accurate estimation of the rank of the most
relevant products.

When the relevance labels are restricted to be binary (i.e.
li ∈ {0, 1}), for example, because we only care about rele-
vant products being ranked at position k or above, we can

use recall at k (R@K):

R@K(r, l) =

∑n
i=1 I(ri 6 k)li∑n

i=1 li
, (2)

where I(·) is the indicator function. R@K is non-negative
and larger values correspond to better rankings. This eval-
uation metric is more suitable than NDCG@K when the
relative sorting of the top products does not matter.

Other popular metrics include precision at k, mean aver-
age precision, mean reciprocal rank, Kendall’s tau and the
area under the ROC curve. We refer the interested reader
to [5, 22] for in-depth discussions of these metrics, but we
will not further discuss them as the most appropriate metric
depends on the target application. In Section 7, we report
results in terms of NDCG@K as this is the evaluation metric
typically used to compare ranking models on the benchmark
data sets we consider. In Section 8, we adopt R@K as it
matches our use case more closely.

4. BACKGROUND AND RELATED WORK
Learning-to-rank models can be classified into three broad

families: pointwise, pairwise, and listwise methods [21]. Point-
wise approaches postulate a scoring function and attempt
to estimate the relevance score of every item. The relevance
score is typically the rank of the item in the list or a trans-
formed version of it. At prediction time, the items returned
for a query are sorted according to their estimated scores.
Linear or logistic regression are examples of scoring func-
tions used in pointwise approaches. Pairwise methods score
ordered pairs of items instead of individual items. The goal
is now to learn the order of such pairs correctly. In other
words, the task is to score the more relevant items higher
than less relevant ones. In general, this approach is prefer-
able to the pointwise approach, because it does not require
to learn absolute relevance scores. RankSVM [12,16] is one
of the most popular pairwise approaches. It formalizes rank-
ing as a binary classification problem of item pairs and uses
support vector machines as the underlying binary classifier.
Alternatively, one could use Rank Logistic Regression (Ran-
kLR), which was shown to work slightly better [29]. Rank-
Boost [11] is another pairwise ranking model, where boosting
is used to learn the ranking. The idea is to construct a se-
quence of ‘weak rankers’ over iteratively reweighted training
data, and then to make rank predictions using a linear com-
bination of the weak learners. While the predictive power
of RankBoost is greater in theory, it only marginally im-
proves the quality of the ranking in practice (see Section 7).
Finally, listwise approaches assume that the training exam-
ples are lists of ranked items. They attempt to minimize a
loss function defined over the whole list instead of ordered
pairs extracted from the list. ListNet [6] is a listwise ranking
algorithm, which performs gradient descent over a loss func-
tion defined in terms of the cross-entropy. AdaRank [34] is
another listwise approach, based instead on boosting. While
more costly to learn, in practice these methods perform
similarly to pairwise approaches (see Section 7). Recently,
gradient-boosted trees (GBTs) have become pretty popu-
lar in learning to rank [4, 25]. Although GBTs have been
shown to outperform simpler approaches (e.g., plain linear
models), training them in the large-scale setting can be very
expensive. Moreover, scoring latency is a serious issue for
GBTs whenever we are not able to precompute and cache

predictions for the task at hand, for the following reasons.
In typical real-world applications, several hundreds of base
learners (i.e. regression trees) are necessary to reach the de-
sired accuracy, where each tree has about 4 to 8 leaves. This
means going through a few thousands of decision rules for
each candidate to be scored, which is problematic in our
setting. In particular, parallelizing decisions would not be a
solution in this case, because single-host multithreading has
further latency overhead in terms of spawning the threads,
whereas distributing to multiple hosts is even less effective
because of inter-host communication. On top of these con-
siderations about scoring latency, one more difficulty is that,
without enforcing global feature selection strategies, most or
all of the involved features will be used throughout our set of
regression trees. This means having to go through the whole
feature extraction process, which is often the most expen-
sive side of online candidate scoring. On the other hand,
sparse modelling would not suffer from such an overhead by
simply dropping features from the scoring function. An al-
ternative model, which has been shown to be very effective
for the large-scale setting, is referred to as the WSABIE al-
gorithm [32]. While WSABIE also uses SGD learning, it
has not been targeted at the one-pass setting. Moreover,
low-dimensional embeddings and data sub-sampling are the
main learning tools used by that model, whereas our focus
is on sparsity-inducing regularization schemes.

A recent trend in learning to rank is to attempt opti-
mizing the ranking evaluation metric directly. This class of
approaches typically falls into the listwise approaches, as
the ranking metrics are functions of ranked lists (rather
than of individual pairs or individual items). In princi-
ple, such listwise approaches should be able to outperform
pairwise or pointwise methods w.r.t. the ranking metric,
as the learning process is more firmly tied to the rank-
ing objective. However, direct optimization of the ranking
metric is problematic in practice. Evaluation metrics such
NDCG@K and R@K are defined in terms of the resulting
ranking, not the scoring functions that induce these rank-
ings. Hence, the ranking metrics are discontinuous (and
thus non-differentiable) w.r.t. the parameters of the scor-
ing functions, which in turn means that we cannot apply
continuous optimization techniques such as gradient-based
methods. One solution to this problem is to construct a con-
tinuous approximation of the ranking metric [28], whose op-
timization will indirectly improve the actual objective. An-
other solution is to appeal to the idea of an implicit ranking
metric, called LambdaRank [3]. The strategy consists in esti-
mating the parameters of a (differentiable) scoring function
while implicitely accounting for the ranking metric. This is
achieved by weighting parameter updates proportionally to
changes in the ranking metric. We pursue the approach of
LambdaRank in the present paper, as discussed at greater
length in the next section.

5. RANKING LOSS MINIMIZATION
In this section, we present our regularized formulation of

the problem and discuss the different optimization strategies
we use. We divide our discussions in two parts, first expos-
ing a convex approach suitable for stochastic optimization
strategies and then describing non-convex alternatives. The
regularizer we choose leads to sparse solutions to ensure low-
latency scoring functions with minimal computation time
and memory footprint.

For a given ranking evaluation metric M(r, l), we intro-
duce the delta function ∆M(r,l), which is given by:

∆M(r,l)(i, j) = M(r, l)−M(ri/j , l), (3)

where ri/j is the ranking we would obtain by swapping the
positions of product i and j in r. Intuitively, the delta func-
tion ∆M(r,l) can be thought of as measuring the importance
of sorting i and j correctly in order for r to maximize the
value of M(r, l).

Further, let X = {x1, . . . ,xn} be the features associated
to the products in the (unsorted) list and suppose that prod-
uct i is scored by some parametric function ϕ(xi). We define
the ranking loss as follows:

`M(r,l)(X;ϕ) =
∑
ri6rj

∆M(r,l)(i, j) ·P(ϕ(xi), ϕ(xj)), (4)

where P(x, y) is a pairwise loss term. Possible choices for the
pairwise loss include the hinge loss, P(x, y) = max

{
0, y −

x+ ε
}

(for some slack parameter ε > 0), or the logistic loss,
P(x, y) = log(1 + exp(x− y)).

The loss defined in (4) can be understood as follows. If
the score of i is higher (or marginally lower) than the score
of j, then little loss (or no loss) is incurred. However, if the
score of j is higher than the score of i, then the pairwise loss
is weighted by ∆M(r,l)(i, j), which is the cost of not ranking
i and j correctly.

Given a training sample, that is, a list of products to be
ranked together with relevance labels, we can learn the pa-
rameters in ϕ by minimizing the ranking loss `M over that
sample. This task can be accomplished via standard (sub)
gradient descent methods. Any choice for the parametric
form of ϕ, ranging from a simple linear regression to a multi-
layer perceptron, will be compatible with the ranking metric
we are adopting as long as we are able to compute the cor-
responding (sub)gradients. To satisfy the requirements of
our web-scale application, we will restrict ourselves to linear
scoring functions. The score of a feature vector xi is thus
given by ϕ(xi) = wᵀxi. This choice preserves the convex-
ity of the ranking loss defined in (4), which is a convenient
property for the optimization stage we discuss next.

5.1 Convex approach
In order to induce sparsity in the learned scoring func-

tions, i.e., to zero out some components in the weight vector
w, we add a `1-regularization term to the loss defined in
(4). This regularized objective is convex (since `1 is a norm)
with, both, theoretical guarantees and efficient algorithmic
schemes (e.g., see [26] and references therein). As advocated
in large-scale settings (e.g., [24] in the context of online ad-
vertising), we additionally consider a squared `2-term, thus
leading to the following regularized ranking loss:

`∗M(r,l)(X;ϕw) = `M(r,l)(X;ϕw) + λ1‖w‖1 +
1

2
λ2‖w‖22, (5)

where λ1 and λ2 are the nonnegative hyperparameters de-
termining, respectively, the weight of the `1 and `2 penalties
within the overall loss. Note that the resulting regularization
is usually referred to as elastic-net [35]. In the remainder of
the paper, we will refer to our listwise ranking model as
ElasticRank.

Our training set is composed of several lists of products
{l(j), r(j),X(j)}, where j = 1 . . .m, so that instead of min-
imising (5), we seek to optimise the averaged regularized

problem, which is given by:

min
w

{
1

m

m∑
j=1

`M(r(j),l(j))(X
(j);ϕw) + λ1‖w‖1 +

1

2
λ2‖w‖22

}
.

(6)
In our web-scale application, m is typically in the order of
106. We therefore resort to stochastic optimization tools [2]
to solve (6), where the update rule to get the next iterate is
based solely on a single randomly drawn ranked list. The lit-
erature dedicated to the stochastic optimization of functions
of the form of (6) is vast (e.g., [9,10,14,23,33]), and we shall
focus next on two representative options. Note that we have
not considered the recently proposed incremental-gradient
schemes (e.g., see [8] and references therein) well-suited to
the optimization of (6) because of the their prohibitive mem-
ory footprint.

Here, we consider two algorithms that can be implemented
efficiently: the update for a single instance is linear in the
number of non-zero features and independent of the total
number of features. In many settings the data are described
by a large number of features, but in each individual exam-
ple only a small subset of these are non-zero. For instance, in
text-based applications the number of features corresponds
to size of the vocabulary (i.e., the number of unique to-
kens in the corpus), while each document contains only a
small fraction of all the words in the vocabulary. Similarly,
one-hot representation of categorical variables that can take
many values results in a large number of binary features (as
described in Section 8), but typically in each example only
one feature is active. Thus, to handle large high-dimensional
data sets it is crucial to exploit the sparsity of the examples
and perform only the minimum number of operations in each
iteration.

Forward-Backward Splitting (FOBOS) [10], on the one
hand, solves the regularized optimization problem by alter-
nating between two phases: taking a simple gradient step
followed by a proximal step that involves the elastic-net reg-
ularization. More specifically, we first perform an uncon-
strained gradient step:

w̃t = wt − ηt∇w`M(r,l)(X;ϕw), (7)

where ηt is the learning rate at iteration t. Subsequently, we
take a proximal step based on the elastic-net regularization
(e.g., see Section 3.3 of [1]):

wt+1,i =

{
0 if |w̃t,i| ≤ ηtλ1,

1
1+ηtλ2

(w̃t,i − sgn(w̃t,i)ηtλ1) otherwise.

Note that the regularization hyperparameter λ1 is scaled by
the learning rate ηt, thus inducing more regularization at
earlier iterations.

Regularized Dual Averaging (RDA) [33], on the other
hand, adjusts the learning variables by solving a proximal
step that involves the running average of all past gradients
of the loss functions instead of taking a gradient step at
each iteration. More formally, the exponentially weighted
average is first updated as:

ḡt =
t− 1

t
ḡt−1 +

1

t
∇w`M(r,l)(X;ϕw).

Next, the weights are adjusted as follows:

wt+1,i =

{
0, if |ḡt,i| ≤ λ1,

− 1
λ2+ηt

(ḡt,i − sgn(ḡt,i)λ1) otherwise.

Parameter t is the iteration number and parameter ηt the
learning rate. We refer the interested readers to [23] for a
in-depth discussion about the connections between FOBOS
and RDA.

5.2 Non-convex approach
There exists a variety of approaches similar to (6) where,

either a non-convex penalty, or some heuristics are used in
lieu of the convex `1 term to promote sparsity. We discuss
below two possible options.

As proposed in [19], we can simply enforce sparsity by
adding a pruning operation to the l2-regularized stochastic
gradient descent (SGD) update rule. The pruning, sched-
uled every k gradient steps, simply consists of setting to 0 all
the weights wi such that, for a chosen threshold θ, |wi| < θ.
We refer to this (somehow näıve) strategy as pruned SGD
(PSGD). Clearly, the higher the value we choose for θ, the
sparser the model will get as a result. Despite its simplicity,
our experiments show that PSGD applied to (6) with λ1 = 0
compares remarkably well to the more sophisticated convex
approaches discussed previously.

A more elaborate variation built upon this idea is pro-
vided by Truncated Gradient Descent (TGD) [19], which
truncates the solutions obtained by standard SGD after ev-
ery k iterations based on the `1 norm. It is worth noting
that if we restrict FOBOS to only use the `1 penalty, we
end up with an algorithm that is a special case of TGD (as
detailed in [19]). In particular, the technique used in [31] is
exactly this special variant of TGD, and hence, is equivalent
to FOBOS without the `2 regularization.

6. BAYESIAN OPTIMIZATION OF
THE HYPERPARAMETERS

The family of ranking models we are focusing on is param-
eterised by several hyperparameters. Our formulation de-
pends on the careful choice of the weighting scheme ∆M(r,l),
the pairwise loss function P, the regularization parameters
for both the `1 and `2 penalties, and the choice of the online
optimization algorithm itself.

While some of these hyperparameters could be tuned sepa-
rately based on tailored heuristics (e.g., the `1-regularization
parameter via homotopy techniques [27]), it becomes much
more challenging to optimize them all jointly in a scalable
fashion. To this end, we resort to recent progress made in the
field of Bayesian optimization applied to the automatic tun-
ing of machine-learning hyperparameters [15, 30]. Bayesian
optimization is well-suited to carry out the optimization of
unknown black-box functions whose evaluation is expensive,
which, in our context, corresponds to the entire ranking loss
minimization pipeline.

In a nutshell, this class of methods works as follows: while
collecting (possibly noisy) observations over the course of the
optimization, a probabilistic model of the unknown black-
box function is being constructed and maintained. The next
point to evaluate is determined based on the posterior distri-
bution of the probabilistic model combined with some sur-
rogate acquisition function, such as the expected improve-
ment [17]. This process is then continued until some pre-
defined budget gets consumed, e.g., expressed as a maxi-
mum number of black-box function evaluations. In our set-
tings, we typically run the optimization for 30 evaluations.
Note that this hyperparameter-tuning step is made possible

thanks to the sufficiently low training- and evaluation-time
requirements of our ranking model.

As advocated in [30], for our probabilistic engine we con-
sider a Gaussian process with a 5/2-Matérn covariance func-
tion and automatic relevance determination. Moreover, re-
garding the choice of the acquisition function to drive the
optimization, we found that Thompson sampling worked
best at trading off exploration and exploitation (e.g., as also
recently reported in [13]). Given that our space of hyper-
parameters is relatively small (two numerical and three cate-
gorical hyper-parameters), we observed that a simple empir-
ical Bayes approach performed well to handle the covariance
parameters of the Gaussian process.

It is lastly worth mentioning that in our industrial envi-
ronment, the different development and deployment phases
of our ranking package imply that customer teams with vari-
ous skills, in particular, without machine-learning expertise,
should have access to a simple turn-key interface. Moreover,
this interface should at the same time be easy to extend to
additional instantiations of the loss family (4). We have
found that Bayesian optmization is a good choice in these
respects.

7. DOCUMENT RETRIEVAL BENCHMARK
In this section, we conduct experiments on benchmark

data sets for text document retrieval. In the next section,
we will return to our use case and report results on large-
scale experiments with Amazon data.

The goal of the first set of experiments is to assess how
the proposed approach compares to a selection of state-of-
the-art learning-to-rank models in terms of predictive per-
formance. We focus on the LETOR 3.0 benchmark collec-
tion, which provides easy access to a number of author-
itative baselines in terms of different evaluation metrics.1

In particular, we provide results for TD2003, TD2004, and
OHSUMED data sets. TD2003 contains 49,058 query-document
pairs. Each pair is described by a 64-dimensional, pre-
extracted feature vector. The total number of unique queries
is 50, and for each query, the corresponding list of results is
labeled by a binary relevance judgment for the document.
TD2004 has the same number of features and labeling struc-
ture as TD2003, except that there are 75 queries overall, i.e.,
a total of 74,146 query-document pairs. Finally, OHSUMED
contains 16,140 query-document examples, described by 45
attributes, for a total number of 106 queries. The relevance
judgments are organized on a 3-graded integer scale.

For ease of exposition, our approach is referred to as Elastic-
Rank. We compare ElasticRank based on RDA to a selection
of alternative methods in the pointwise, pairwise and listwise
families, including both linear and non-linear estimators (see
Section 4): RankSVM [12, 16], RankBoost [11], ListNet [6],
AdaRank-NDCG [34], and simple linear regression. The re-
sults are reported in Figure 2. They were obtained based on
5 random splits into train and test.

Overall, ElasticRank is competitive w.r.t. state-of-the-art
learning-to-rank models, while only performing a single pass
on the data. The other models are allowed to run as many
iterations as needed in order to converge to optimal perfor-
mance. On OHSUMED (Figure 2c), ElasticRank is achiev-
ing the highest performance (forNDCG@1–5) and on TD2003

1Documentation available at http://research.microsoft.
com/en-us/um/beijing/projects/letor/default.aspx.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

k = 1 k = 2 k = 3 k = 4 k = 5

N
D

C
G

 @
 k

ElasticRank
RankSVM

ListNet
AdaRank

RankBoost
Regression

(a) TD2003

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

k = 1 k = 2 k = 3 k = 4 k = 5

N
D

C
G

 @
 k

ElasticRank
RankSVM

ListNet
AdaRank

RankBoost
Regression

(b) TD2004

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

k = 1 k = 2 k = 3 k = 4 k = 5

N
D

C
G

 @
 k

ElasticRank
RankSVM

ListNet
AdaRank

RankBoost
Regression

(c) OHSUMED

Figure 2: Predictive performance in terms of NDCG@K
measured on three different data sets from the LETOR 3.0
collection: (a) TD2003, (b) TD2004 and (c) OHSUMED.
Results are averaged based on 5-fold cross-validation.
ElasticRank is competitive w.r.t. the other models, while
only performing a single pass on the training data.

Metric R@1 R@2 R@3 R@4 R@5 NDCG

LR 92.30% 57.27% 35.68% 23.17% 12.83% 18.67%
RankSVM 124.54% 75.36% 47.71% 32.04% 19.80% 25.99%
PSGD 128.73% 77.21% 48.62% 32.74% 20.00% 26.64%
FOBOS 128.27% 75.73% 48.39% 32.04% 19.16% 26.16%
RDA 129.03% 76.26% 48.37% 32.08% 19.13% 26.33%

Table 1: Highest R@K achieved by each one of the considered algorithms (over the test set) after one training pass. R@K is
reported in terms of relative improvement (in percentage) over the values achieved by ranking the recommendations uniformly
at random. ElasticRank (listwise) is more accurate than RankSVM (pairwise), which in turn outperforms LR (pointwise).

(Figure 2a) it performs best in NDCG@1. The performance
obtained on TD2004 is less satisfying (Figure 2b), although
for NDCG@1–2 ElasticRank is still outperforming ListNet
and RankSVM. The best results for TD2004 are achieved by
RankBoost, which suggests that non-linearities are impor-
tant here. Unfortunately, nonlinear methods usually do not
scale and, in practice, only linear methods are feasible. More
data also leads to larger feature sets, which in turn, provide
a way to compensate for the absence of nonlinearities.

8. PRODUCT RECOMMENDATION
ON AMAZON.COM

In this section, we evaluate ElasticRank on a data set col-
lected on the Amazon retail website. The task is to learn
ranking models based on purchase logs. The results we re-
port are based on data collected for a widget similar to the
one described in Section 2. We cannot name the actual wid-
get for confidentiality reasons.

We focus on the following questions, which are crucial to
provide practical guidance when considering massive, low-
latency ranking problems:

i. Which regularization technique leads to the highest
predictive performance?

ii. In the one-pass setting, which sparsity-inducing tech-
nique is best at trading-off performance for sparsity?

iii. How large is the impact of the number of training
passes w.r.t. the quality of the learned models?

In order to run our experiments, we sampled a set of im-
pression log data from a contiguous time interval, and used
9
11

of the data for training and 1
11

for validation and testing
respectively, leaving the temporal order intact. The sample
contains millions of impressions, where an impression is sim-
ply one of the items displayed within the widget as a recom-
mendation tied to a particular context. Note that this size
is larger than the average size of the LETOR benchmarks
by several orders of magnitude. Each item is described by a
high-dimensional feature vector, including boolean, numer-
ical, and categorical features. In order to protect sensitive
information, we cannot disclose the exact number of features
available from our logs, their actual semantics or the way
they are engineered. For the purpose of the present experi-
ment we consider up to a few thousand features. We convert
categorical features into numerical ones using a sparse, one-
hot representation, which may generate hundreds of thou-
sands or even millions of dimensions. We scale the feature
values in a listwise fashion, so that the minimum and max-
imum values of each feature are, respectively, 0 and 1 for

each of the processed impression lists. Relevance labels are
derived from purchase decisions made by the customers.

Table 1 collects the highest values obtained by Elastic-
Rank in the one-pass setting, both for R@K and NDCG@K .
The algorithms described in Section 5, namely RDA, FO-
BOS and PSGD, are compared to one another. We further
compare to a number of alternative ranking models, respec-
tively logistic regression (LR), which falls into the pointwise
family, and RankSVM, which falls into the pairwise family.

From the results listed in the table, we can draw at least
two conclusions. First, ElasticRank (abstracting from the
choice of the specific regularization technique) is more accu-
rate than both LR and RankSVM. The fact that RankSVM
performs slightly worse should not be a surprise as it can
be seen as optimizing a special case of the objective stated
in (4). Indeed, RankSVM simply sets the delta function to
1 and considers a hinge loss. Second, the three variants of
ElasticRank are all pretty close to one another in terms of
achieved performance. This answers question (i) above.

Figure 3 shows the predictive performance of the mod-
els learned by different sparsity-inducing formulations, mea-
sured by R@1 and R@4, as a function of the number of non-
zero parameters. The plots are obtained by varying the reg-
ularization parameter (λ1 or θ depending on the algorithm).
We report results for K = 1 and K = 4 to show that the ob-
served trends are not an artifact of the specific values of K.
We only report result for R@K because this evaluation met-
ric matches our use case better and it is therefore preferred
over NDCG@K . Note, however, that we observed similar
trends with the NDCG@K -based delta function, but the re-
sults were slightly worse than for R@K -based one (which
was not the case in the LETOR experiments).

Next, let us focus on question (ii). RDA allows us to
smoothly increase the sparsity induced in the model while
keeping the model performance under control. In fact, when
regularization becomes too aggressive, the ranking quality
decreases with a trend which is seemingly monotonic in the
growth of λ1. This relatively smooth decay in ranking qual-
ity is what ensures the model sparsity can be safely adapted
to the latency requirements of the application without the
risk of missing the optimal sparsity/performance trade-off.
Interestingly, such smoothness is also observed for PSGD,
which is a simple way of reducing the model latency. On
the contrary, the curves for FOBOS are pretty bumpy, which
means we could get stuck in suboptimal solutions whenever
we cannot afford to explore a wide range of λ1 values.

As a sanity check whether elastic net helps, we also tested
the version of TGD adopted in [31], which corresponds to

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

 0.305

 1 4 16 64 256 1024

R
 @

 1

of non-zero parameters

PSGD
FOBOS

RDA
 0.645

 0.65

 0.655

 0.66

 0.665

 0.67

 0.675

 0.68

 0.685

 0.69

 1 4 16 64 256 1024

R
 @

 4

of non-zero parameters

PSGD
FOBOS

RDA

(a) Recall@1, one pass (b) Recall@4, one pass

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

 0.305

 1 4 16 64 256 1024

R
 @

 1

of non-zero parameters

PSGD
FOBOS

RDA
 0.645

 0.65

 0.655

 0.66

 0.665

 0.67

 0.675

 0.68

 0.685

 0.69

 1 4 16 64 256 1024

R
 @

 4

of non-zero parameters

PSGD
FOBOS

RDA

(c) Recall@1, two passes (d) Recall@4, two passes

Figure 3: Predictive performance of the three algorithms: PSGD, FOBOS, and RDA in terms of Recall@1 (left) and Recall@4
(right), over one (top) and two (bottom) passes. RDA and PSGD are more reliable than FOBOS at trading-off model sparsity
for predictive performance.

FOBOS without the `2 penalty. The resulting curves were
less stable and less accurate than those reported for FOBOS.

Independently of these stability considerations, Elastic-
Rank based on RDA or PSGD converges faster to the high
values regime as a function of model size (i.e., the number
of non-zero parameters). In other words, RDA and PSGD
enable us to pick more informative features than the ones se-
lected by FOBOS. This is important, because when latency
is a mission-critical requirement, we might have to restrict
the maximal number of features a priori.

Next, we turn our attention to question (iii). Letting
the algorithm run for more than one pass over the training
data is mostly useful for the algorithm that is slowest in
converging to its highest value (i.e., FOBOS). We only show
results for up to 2 training passes as additional passes over
the data did not improve the quality of the learned models.

We end this section by analyzing the prediction latency,
i.e., the time it takes for our model to compute the score
of candidate recommendations as a function of the model
sparsity. We benchmarked the scoring functions learned over
the runs plotted in Figure 3 by averaging the time to score

of weights Latency TPS

4 0.0062 ms ≈ 161,290
29 0.0087 ms ≈ 114,942
1804 0.0109 ms ≈ 91,743

Table 2: Average latency per recommendation and total
throughput per second (TPS, i.e., number of scored impres-
sions) for models of decreasing sparsity.

approximately 5 million examples. The results are reported
in Table 2.

The latency/throughput requirements in web-scale appli-
cations can be extremely strict. It is crucial to enforce the
desired level of sparsity when learning a ranking model as
too many non-zeros can rapidly lead to exceeding these re-
quirements due to the amount of traffic. For example, to
meet the requirements of a latency smaller than 0.009 ms,
one would not be able to afford more than 29 parameters.

The latency due to the computation of the scoring function
might seem very small and it can be noted that it does not
grow linearly with the size of the model. However, features
are rarely readily available in real-time applications. Even if
the features are pre-computed, they might have to be read
from disk or transmitted over the network. The time re-
quired to access the features is much longer than the time
required to process them with the scoring function. Hence,
and even though this claim is not fully illustrated here in
the time needed to compute the scores alone, model spar-
sity may be even more impactful when it comes to web-scale
deployment of the ranking system.

9. CONCLUSIONS
The core question motivating this work was whether learning-

to-rank methods are able to cope with the scale of a global
e-commerce platform. In particular, we asked whether the
ranking quality, which is typically demonstrated on pub-
lic learning-to-rank benchmarks, is still achievable when the
challenges in terms of training time and memory require-
ments, as well as prediction latency and throughput, are
pushed to their limits. Our results suggest that web-scale
efficiency requirements can be met without sacrificing pre-
dictive performance. Surprisingly enough, such goal is ex-
emplarily achieved by just sticking to the simplest options
available. First, we obtain state-of-the-art results by using
a linear scoring function as the basic modeling tool. Sec-
ond, making only one-pass over the training data is suffi-
cient for SGD-type algorithms to converge to fairly accu-
rate solutions. Third, naively pruning the estimated model
weights at regular training intervals leads to models which
are nearly as sparse and accurate as those delivered by the
best-behaved `1-based regularization techniques, such as elas-
tic net.

10. ACKNOWLEDGMENTS
We are grateful to Mitchell Goodman, Vijai Mohan, and

JJ Tavernier for helping us geting a grip on the log data and
model deployment infrastructure at Amazon. We are also
indebted to Ralf Herbrich for providing input and feedback
on model design.

11. REFERENCES
[1] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski.

Optimization with sparsity-inducing penalties.
Foundations and Trends in Machine Learning,
4(1):1–106, 2011.

[2] L. Bottou and Y. LeCun. Large scale online learning.
In Advances in Neural Information Processing
Systems, volume 16, pages 217–224, 2004.

[3] C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to
rank with nonsmooth cost functions. In Advances in
Neural Information Processing Systems (NIPS), pages
193–200, 2006.

[4] C. J. C. Burges, K. M. Svore, P. N. Bennett,
A. Pastusiak, and Q. Wu. Learning to Rank Using an
Ensemble of Lambda-Gradient Models. In Proceedings
of the Yahoo! Learning to Rank Challenge, held at
ICML 2010, Haifa, Israel, June 25, 2010, pages 25–35,
2011.

[5] S. Büttcher, C. L. Clarke, and G. V. Cormack.
Information Retrieval: Implementing and Evaluating
Search Engines. MIT Press, 2010.

[6] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: from pairwise approach to listwise
approach. In Proceedings of the 24th International
Conference on Machine learning (ICML 2007), pages
129–136, New York, NY, USA, 2007. ACM.

[7] B. Croft, D. Metzler, and T. Strohman. Search
Engines: Information Retrieval in Practice.
Addison-Wesley, Boston (MA), 2009.

[8] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A
fast incremental gradient method with support for
non-strongly convex composite objectives. Technical
report, preprint arXiv:1407.0202, 2014.

[9] J. Duchi, E. Hazan, and Y. Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning
Research, 12:2121–2159, 2011.

[10] J. C. Duchi and Y. Singer. Efficient online and batch
learning using forward backward splitting. Journal of
Machine Learning Research, 10:2899–2934, 2009.

[11] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
Efficient Boosting Algorithm for Combining
Preferences. Journal of Maching Learning Research,
4:933–969, 2003.

[12] R. Herbrich, T. Graepel, and K. Obermayer. Large
Margin Rank Boundaries for Ordinal Regression. In
Smola, Bartlett, Schölkopf, and Schuurmans, editors,
Advances in Large Margin Classifiers, chapter 7, pages
115–132. MIT Press, 2000.

[13] M. Hoffman, B. Shahriari, and N. de Freitas. On
correlation and budget constraints in model-based
bandit optimization with application to automatic
machine learning. In Proceedings of the International
Conference on Artificial Intelligence and Statistics
(AISTATS), pages 365–374, 2014.

[14] C. Hu, J. T. Kwok, and W. Pan. Accelerated gradient
methods for stochastic optimization and online
learning. In Advances in Neural Information
Processing Systems, 2009.

[15] F. Hutter, H. H. Hoos, and K. Leyton-Brown.
Sequential model-based optimization for general
algorithm configuration. In Proceedings of LION-5,
page 507-523, 2011.

[16] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 133–142, New
York, NY, USA, 2002. ACM.

[17] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient
global optimization of expensive black-box functions.
Journal of Global optimization, 13(4):455–492, 1998.

[18] H. Lai, Y. Pan, C. Liu, L. Lin, and J. Wu. Sparse
Learning-to-Rank via an Efficient Primal-Dual
Algorithm. IEEE Transactions on Computers,
62:1221–1233, 2013.

[19] J. Langford, L. Li, and T. Zhang. Sparse Online
Learning via Truncated Gradient. Journal of Machine
Learning Research, 10:777–801, 2009.

[20] L. Laporte, R. Flamary, S. Canu, S. Déjean, and
J. Mothe. Nonconvex Regularizations for Feature

Selection in Ranking With Sparse SVM. IEEE Trans.
Neural Netw. Learning Syst., 25(6):1118–1130, 2014.

[21] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[22] C. D. Manning, P. Raghavan, and H. Schutze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[23] B. H. McMahan. Follow-the-Regularized-Leader and
Mirror Descent: Equivalence Theorems and L1
Regularization. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and
Statistics, AISTATS 2011, Fort Lauderdale, USA,
April 11-13, 2011, pages 525–533, 2011.

[24] H. B. McMahan, G. Holt, D. Sculley, M. Young,
D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,
D. Golovin, et al. Ad click prediction: a view from the
trenches. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 1222–1230. ACM, 2013.

[25] A. Mohan, Z. Chen, and K. Q. Weinberger.
Web-Search Ranking with Initialized Gradient
Boosted Regression Trees. In Yahoo! Learning to Rank
Challenge, pages 77–89, 2011.

[26] S. Negahban, P. Ravikumar, M. J. Wainwright, and
B. Yu. A unified framework for high-dimensional
analysis of M-estimators with decomposable
regularizers. In Advances in Neural Information
Processing Systems, 2009.

[27] M. Y. Park and T. Hastie. L1-regularization path
algorithm for generalized linear models. Journal of the
Royal Statistical Society. Series B, 69(4):659–677,
2007.

[28] T. Qin, T.-Y. Liu, and H. Li. A general approximation
framework for direct optimization of information
retrieval measures. Information Retrieval,
13(4):375–397, 2010.

[29] D. Sculley. Large scale learning to rank. In NIPS
Workshop on Advances in Ranking. 2009.

[30] J. Snoek, H. Larochelle, and R. P. Adams. Practical
bayesian optimization of machine learning algorithms.
In Advances in Neural Information Processing
Systems, pages 2960–2968, 2012.

[31] Z. Sun, T. Qin, Q. Tao, and J. Wang. Robust sparse
rank learning for non-smooth ranking measures. In
Proceedings of the 32nd Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR 2009, Boston, MA,
USA, July 19-23, 2009, pages 259–266. ACM, 2009.

[32] J. Weston, S. Bengio, and N. Usunier. WSABIE:
Scaling Up to Large Vocabulary Image Annotation. In
IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, pages 2764–2770,
2011.

[33] L. Xiao. Dual Averaging Methods for Regularized
Stochastic Learning and Online Optimization. Journal
of Machine Learning Research, 11:2543–2596, 2010.

[34] J. Xu and H. Li. Adarank: A boosting algorithm for
information retrieval. In SIGIR ’07: Proceedings of the
30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 391–398, New York, NY, USA, 2007. ACM.

[35] H. Zou and T. Hastie. Regularization and variable
selection via the elastic net. Journal of the Royal
Statistical Society. Series B, 67(2):301–320, 2005.

