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ABSTRACT
Recommender systems suggest to users items that they might
like (e.g., news articles, songs, movies) and, in doing so, they
help users deal with information overload and enjoy a per-
sonalized experience. One of the main problems of these
systems is the item cold-start, i.e., when a new item is in-
troduced in the system and no past information is available,
then no effective recommendations can be produced. The
item cold-start is a very common problem in practice: mod-
ern online platforms have hundreds of new items published
every day. To address this problem, we propose to learn
Local Collective Embeddings–a matrix factorization that ex-
ploits items’ properties and past user preferences while en-
forcing the manifold structure exhibited by the collective
embeddings. We present a learning algorithm based on
multiplicative update rules that are efficient and easy to
implement. Experiments on two item cold-start use cases:
news recommendation and email recipient recommendation,
demonstrate the effectiveness of this approach and show that
it significantly outperforms six state-of-the-art methods for
item cold-start.

1. INTRODUCTION
Recommender systems are aimed to help users of online

platforms to deal with the large volumes of information and
to provide them a personalized experience. This is achieved
by suggesting items of interest to the users based on their ex-
plicit and implicit preferences. Recommender systems use a
number of different technologies, but may be broadly classi-
fied into two groups: content-based and collaborative filter-
ing systems. Content-based systems examine the properties
of the items and recommend items which are similar to the
ones the user preferred in the past. They model the taste
of a user by building a user profile based on the properties
of the items the user liked, and use the profile to compute
the similarity with new items. Items which are most sim-
ilar to the user’s profile are recommended. Collaborative
filtering systems, on the other hand, ignore the properties
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of the items and base their recommendations on community
preferences. They recommend items that users with simi-
lar tastes and preferences liked in the past. Two users are
considered similar if they have many items in common.

One of the main problems for recommender systems is the
cold-start problem, i.e., when a new item or user is intro-
duced in the system. In this study we focus on the problem
of producing effective recommendations for new items: the
item cold-start. Collaborative filtering systems suffer from
this problem as they rely on the previous ratings of the users.
Content based approaches, on the other hand, may still pro-
duce recommendations using the description of the items
and are the default solution to the item cold-start. How-
ever, they tend to achieve lower accuracy and, in practice,
they are seldom the only choice.

The problem of item cold-start is of great practical im-
portance because of two main reasons. First, modern online
platforms have hundreds of new items everyday and effec-
tively recommending them is essential for keeping the users
continuously engaged. Second, collaborative filtering meth-
ods are at the core of most recommendation engines, as they
tend to achieve the state-of-the-art accuracy [16]. However,
to produce recommendations at the expected accuracy they
require that items are rated by a sufficient number of users.
Therefore, it is crucial for every collaborative recommender
to reach this state as soon as possible. Having methods that
produce accurate recommendations for new items will allow
enough feedback to be collected in a short amount of time,
making effective collaborative recommendations possible.

Recently, matrix factorization techniques have been exten-
sively used in the recommendation systems and topic mod-
elling literature. Many collaborative filtering systems ap-
proximate the collaborative matrix by applying techniques
such as Singular Value Decomposition (SVD) or UV de-
composition [20]. Similar matrix factorization techniques
have been used to discover topics in a document collections
by decomposing the content, i.e., document-term matrix.
Non-negative Matrix Factorization (NMF) is one such ap-
proach that factorizes the document-term matrix in two non-
negative, low-rank matrices, where one matrix corresponds
to the topics in the collection and the other represents the ex-
tent to which documents belong to these topics. Due to the
non-negativity constraints, NMF produces a so-called “ad-
ditive parts-based” representation of the data that increases
the sparsity and interpretability of the hidden factors [12].

In this paper, we propose a new hybrid recommendation
approach that exploits both the properties of the items and
the similarity of the user preferences. We introduce Local



Collective Embeddings (LCE), a collective matrix factor-
ization technique that collectively decomposes the content
and the collaborative matrices in a common low-dimensional
space while preserving the local geometrical structure of the
data.

Given the description of a new item (e.g., the content
of a news article), we may project it in the common low-
dimensional space and infer the users which are most likely
to be interested in it. By doing so, we are able to overcome
the item cold-start problem. Moreover, LCE provides a nat-
ural way of explaining the recommendations — in terms of
user’s affinity to topics. Finally, we perform an extensive ex-
perimental evaluation of the models on two item cold-start
use cases: email recipient recommendation (based on explicit
feedback) and news recommendation (based on implicit feed-
back). We show that the proposed models outperform six
state-of-the-art baseline approaches.

Our contributions in this paper can be summarized as
follows:

• We introduce a new method for recommendation, LCE,
that combines the content and collaborative information
in a unified matrix factorization framework while exploit-
ing the local geometrical structure of the data;

• We propose a simple and efficient learning algorithm,
based on multiplicative update rules and prove its con-
vergence;

• We conduct an extensive experimental study and we
show that the proposed methods outperform six state-
of-the-art methods for item-cold start recommendation.

2. RELATED WORK
In this section, we briefly describe several hybrid recom-

mender systems that can handle the item cold-start scenario.
Soboroff [29] proposed a technique based on Latent Se-

mantic Indexing (LSI) for combining the collaborative fil-
tering input and the document content for recommendation
of textual items. The method builds a content profile for
each user as a linear combination of the preferred docu-
ments. LSI is then applied to the user profiles to discover
topics in the collection and implicitly learn commonalities
among the user profiles. Incoming documents are projected
into the LSI space and compared to user profiles. The doc-
uments are recommended to the users with the most similar
profiles. The author argues that applying LSI on the user
profiles instead of the documents allows one to take into
account the collaborative input and consequently improves
the recommendation performance. However, the system is
not evaluated in the cold-start scenario. In section 5, we
compare this technique against the method we propose.

Schein et al. [26] propose a probabilistic model for cold-
start recommendations that is very similar to the one pro-
posed by Soboroff. Their approach extends the work of Hoff-
man and Puzicha [18] which models the joint distribution of
users and items through an aspect model that clusters users
and items in a latent space. In order to deal with new items,
instead of modelling the joint distribution of users and items,
the authors propose to model the joint distribution of users
and content features. At query time a “folding-in”’ tech-
nique [17] is used to embed new items into the latent space
so that items can be recommended. After careful analysis
one may notice that the technique essentially boils down

to building user profiles and applying pLSA to discover la-
tent factors. Taking into account that previous studies have
shown the correspondence between pLSA and NMF [15], one
may clearly distinguish between this approach and our pro-
posal. Instead of explicitly building user profiles and finding
latent features, we discover a latent space common to both
the content and collaborative information that allows us to
link one to the other.

Singh and Gordon [28] propose the idea of collective ma-
trix factorization, a general framework for multi-relational
factorization models. They subsume models on any number
of relations as long as their loss function is a twice differen-
tiable decomposable loss. In their work, they address both
rating prediction and item recommendation. The matrix
factorization approach proposed in this work is based on
a similar idea of collective factorization. However, we en-
force non-negativity constraints on the factorization to ob-
tain sparse and interpretable factors, and we consider the
specific scenario of cold-start recommendations.

Shmueli et al. [27] consider a similar scenario of news rec-
ommendation (Section 5.3), i.e., predicting the articles a
user is most likely to comment on. They combine content-
based and collaborative filtering approach using a latent fac-
tor model. The odds that a user will comment an article are
estimated as the inner product of the user and article factors,
where the article factors are represented as the sum of the la-
tent factors associated with the textual content (tags–named
entities) and the commenters. A modification of the model
for real-time scenarios is presented in [3]. The authors show
that the recommendation accuracy grows as the number of
commenters grows. However, in an item cold-start scenario
articles are not yet associated with commenters, thus an ar-
ticle can only be represented with the latent factors of the
textual tags.

Exploiting the local geometric structure of the data to dis-
cover better low-dimensional representations has been ex-
ploited by Cai et al. [9]. Inspired by the success of using
the nearest neighbour graph for label propagation in semi-
supervised learning, they propose a clustering technique.
The algorithm favours factorizations for which similar in-
stances have similar low-dimensional representations. The
authors show that, by imposing this constraint, they outper-
form classical clustering algorithms and classical factoriza-
tion techniques. In this work, we impose such geometrical
constraints but for collective factorization for which we can
handle multiple data sources, i.e., the content and collabo-
rative data matrices.

3. LOCAL COLLECTIVE EMBEDDINGS
In this section we formally define the problem, we explain

the intuition behind learning collective embeddings and ex-
ploiting locally, and finally we show how such embeddings
can be learnt and how they can be used for prediction.

3.1 Problem Statement
The scenario we consider is the item cold-start recom-

mendation, where we would like to suggest new items – for
which no interests has been expressed so far – to potentially
interested users. Given a new item, its corresponding de-
scription and the patterns of past activities of the users, we
want to retrieve users who would likely manifest interest in
this item. More formally, we can define the problem as fol-
lows. At training time, we are given a collection of n items



described by: (1) a set of m properties stored in a matrix
Xs ∈ Rn×m, where a row corresponds to an item and a col-
umn to an item property; and (2) a set of u users stored in
a matrix Xu ∈ Rn×u, where a cell (i, j) indicates if the user
j has shown interest in item i. At test time, we are given a
new item q with description qs ∈ R1×m, and our goal is to
predict qu ∈ R1×u, i.e., to score how likely is a user to show
interest in the new item.

3.2 Intuition Behind Collective Factorization
Given the problem defined, items are associated with a

description and a set of users who consumed them. In the
case of news, each news article is described by the set of
words it contains and by all the users that commented on
it. This information is then represented with two matrices,
a document-term matrix Xs ∈ Rn×v, and a document-user
matrix Xu ∈ Rn×u, where n is the number of documents,
v is the vocabulary size and u is the number of users. The
document-term matrix (Xs) may be a boolean matrix or
may represent the TF-IDF scores of the words in the docu-
ment. On the other hand, the entries of the document-user
matrix (Xu) reflect whether a given user commented on a
given article. If we factorize Xs in two lower-dimensional
matrices, we will discover the topics that appear in the doc-
uments and the extent to which each document belongs to
these topics. Similarly, factorizing Xu leads to the discov-
ery of user communities and the extend to which each doc-
ument triggers interest within the communities. However,
if factorized independently each factorization will represent
a different latent space and there will be no correspondence
between the topics and the communities. The idea of LCE
is that both, documents and users, should be represented
in a common latent space. In other words, each factor can
be described by a set of words (i.e., a topic) but also by a
set of users (i.e., a community). To achieve this, we collec-
tively factorize Xs and Xu and enforce a low-dimensional
representation in a common space. Additionally, to achieve
an additive effect we impose non-negativity constraints that
lead to interpretable and sparse latent representations.

More formally, given the matrices Xs and Xu, we define
the following optimization problem:

min : J =
1

2
[α||Xs −WHs||2 + (1− α)||Xu −WHu||2+

+ λ(||W||2 + ||Hs||2 + ||Hu||2)] (1)

s.t. W ≥ 0,Hs ≥ 0,Hu ≥ 0

The first two terms correspond to the factorization of the
matrices Xs and Xu. The common latent space representa-
tion is achieved by using the same matrix W in the decom-
positions of both Xs and Xu. α ∈ [0, 1] is a hyper-parameter
that controls the importance of each factorization. Setting
α = 0.5 gives equal importance to both factorizations, while
values of α > 0.5 (or α < 0.5) give more importance to
the factorization of Xs (or Xu). The remaining terms are
Tikhonov (Frobenius norm) regularization of W, Hu, and
Hs, controlled by the hyper-parameter λ ≥ 0. It is used to
enforce smoothness of the solution and avoid overfitting.

3.3 Exploiting Locality
When performing collective factorization, as in Eq. (1),

we attempt to find a common low-dimensional space that
is optimized for the linear approximation of the data from

both views. We make an implicit assumption that the data
from both views is drawn from a common distribution. One
may hope that additional knowledge of this distribution can
be exploited to discover a better low-dimensional space. A
natural assumption could be that: if two data points xi and
xj , in any view, are close in the intrinsic geometry of the dis-
tribution, then their representations in the low-dimensional
space should also be close to each other. This assumption
is commonly referred to as the manifold assumption and
plays an essential role in algorithms for dimensionality re-
duction [6] and semi-supervised learning [7, 30].

In reality the geometric structure of the distribution is not
known and cannot be directly used. However, recent studies
on spectral graph theory [10] and manifold learning [5] have
shown that the local geometric structure can be effectively
modeled through a nearest neighbor graph on a scatter of
data points. Consider a graph with n nodes where each
node represents a data point. For each point we find the p
nearest neighbors and we connect the corresponding nodes
in the graph. The edges may be binary (1 if one of the
nearest neighbors, 0 otherwise) or may be weighted (e.g.,
cosine similarity). This results in a matrix A which can
later be used to measure the local closeness of two points xi
and xj .

Recall that the collective factorization maps each data
point xi into a low-dimensional representation wi (a row of
the matrix W). A natural way to measure the distance be-
tween two low dimensional representations, given the choice
of a loss function, is to compute the Euclidean distance:
||wi − wj ||2. Using the above defined weight matrix A we
may measure the smoothness of the low dimensional repre-
sentation as:

S =
1

2

n∑
i,j=1

||wi − wj ||2Aij

=

n∑
i=1

(wT
i wi)Dii −

n∑
i,j=1

(wT
i wj)Aij

= Tr(WTDW)− Tr(WTAW) = Tr(WTLW),

where D is a diagonal matrix whose entries are the row sums
of A (or column, as A is symmetric), i.e., Dii =

∑
i Aij ;

L = D−A is called the Laplacian matrix of the graph [10]
and Tr(•) is the trace operator.

3.4 LCE Optimization Problem
Given the above, we modify the formulation of in Eq. (1)

as to enforce locality when discovering the factors. This
leads to the following optimization problem:

min : J =
1

2
[α||Xs −WHs||2 + (1− α)||Xu −WHu||2+

+ βTr(WTLW) + λ(||W||2 + ||Hs||2 + ||Hu||2)]

s.t. W ≥ 0,Hs ≥ 0,Hu ≥ 0, (2)

where L is the Laplacian matrix of the graph, and β is a
hyper-parameter which controls the extent to which locality
is enforced. The hyper-parameters α and λ have the same
semantics as in Eq. (1).

3.5 Learning Algorithm
The optimization problem defined above is non-convex in

terms of all parameters (W, Hs, Hu) together. Thus, it is



unrealistic to expect an algorithm to find the global min-
imum. In what follows, we derive an iterative algorithm
based on multiplicative update rules which can achieve a
stationary point.

The partial derivatives of J w.r.t. W, Hs, and Hu are:

∇WJ = αWHsHs
T − αXsHs

T + (1− α)WHuHu
T−

− (1− α)XuHu
T + βLW + λW, (3)

∇HsJ = αWTWHs − αWTXs + λHs (4)

∇HuJ = (1− α)WTWHu − (1− α)WTXu + λHu (5)

Applying the Karush-Kuhn-Tucker (KKT) first-order op-
timality conditions to J [11], we derive:

W ≥ 0, Hs ≥ 0, Hu ≥ 0, (6)

∇WJ ≥ 0, ∇HsJ ≥ 0, ∇HuJ ≥ 0, (7)

W �∇WJ = 0, Hs�∇HsJ = 0, Hu�∇HuJ = 0,
(8)

where � corresponds to the element-wise matrix multiplica-
tion operator.

Substituting the derivatives of J from Equations (3), (4)
and (5) in Equation (8) leads to the following update rules:

W←W � [αXsHs
T + (1− α)XuHu

T + βAW]

[αWHsHs
T + (1− α)WHuHu

T + βDW + λW]
,

(9)

Hs ← Hs �
[αWTXs]

[αWTWHs + λHs]
, (10)

Hu ← Hu �
[(1− α)WTXu]

[(1− α)WTWHu + λHu]
, (11)

where •
• denotes the element-wise matrix division operator.

We define the following theorem:

Theorem 1. The objective function J in Equation (2) is
nonincreasing under the update rules in Equations (9), (10),
and (11). The objective function J is invariant under these
updates if and only if Hu, Hs and W are at a stationary
point of the function.

A detailed proof of the above theorem is provided as sup-
plement material1.

3.6 Inference
Once the model has been trained to learn W, Hs and Hu,

we can use these factors for prediction. For instance, given
the bag-of-words vector of a new news article qs, we can
predict the users that are most likely to leave a comment,
i.e., qu. To do so, we project the document vector qs to the
common hidden space by solving the overdetermined system
qs = wHs using the least squares method (with a projection
to 0 of the negative values, see [8]). The vector w, computed
online, captures the factors — in the common hidden space
— that explain the observed news article qs. Then, by using
this low dimensional vector w we may infer the missing part
of the query: qu ← wHu. Each element of qu represents a
score of how likely it is that the user will comment the new
article. Then, given these scores, we may rank the users.

1https://github.com/msaveski/LCE/blob/master/
Th1Proof.pdf

4. EXPLAINING RECOMMENDATIONS
Good recommendations are not only accurate but also

transparent, i.e., supported with explanations. This allows
the end users to understand the reasoning behind the recom-
mendations and helps them build trust towards the system.

LCE provides a natural way of explaining recommenda-
tions in terms of users’ affinity to topics. To obtain the
topical interest profile for a user i we can construct a vector
xu ∈ R1×u (u is the number of users), where all elements are
equal to zero except [xu]i = 1, and solve for w in xu = wHu;
every element of w quantifies the user’s affinity to a specific
topic. Topics may be presented using the top-k terms or
by automatic annotation (e.g., [21]). Furthermore, by com-
puting xs ← wHs (xs ∈ R1×m), we obtain the association
between the user and every word in the vocabulary; we may
present this information to the user, e.g., using a word cloud.

To debug and track down the source of unexpected be-
haviour of the system one may examine the link between
topics and communities (e.g., by looking at the top words
and users). This link may also be exploited in other ap-
plications, such as advertising, where advertisers can easily
identify target users based on their topical interests.

5. EXPERIMENTAL EVALUATION
In this section we present a series of experiments to evalu-

ate the performance of LCE in the item cold-start scenario.
We first describe the baselines and then we compare them
with LCE in two item cold-start use cases: email recipi-
ent recommendation and news recommendation. Finally,
we analyse the parameter settings and the running times.

5.1 Baselines for Comparison
We compare LCE to six other approaches: pure content-

based recommender, content-topic-based recommender, LSI
applied on the author profiles, author topic-model, learning
attribute-to-feature mappings, and fLDA.

Content-based Recommender (CB). We build a profile
for each user based on the properties of the items preferred
in the past. Experimentally we find that weighting each
item inversely proportional to the number of users that in-
teracted with the item leads to an improved performance.
Thus, in the user profile, very popular items are given less
importance, while less popular items are given more im-
portance. More formally, a user profile U is defined as:
U =

∑
i∈I(~vi/freqi), where I is the set of items the user

interacted with in the past, ~vi is the description of item i
and freqi is the number of users that interacted with i. At
test time, we rank the items by computing the cosine simi-
larity between the new items and the user profiles.

Content-topic-based Recommender (CTB). We extract
topics from the content of the items by applying NMF and
we describe each item as a mixture of the topics extracted.
We then build a topical profile for each user based on the top-
ics of the items the user interacted with in the past. At test
time, we infer the topics of the new items and we rank the
items based on the cosine similarity between the item’s top-
ics and the users’ topical profiles. The CTB recommender
allows us to investigate the importance of performing joint
factorization of both the content and collaborative matrix,
instead of factorizing only the content matrix.

https://github.com/msaveski/LCE/blob/master/Th1Proof.pdf
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LSI on the User Profiles (UP-LSI). We apply the hybrid
recommendation system proposed in [29] (see Section 2).
The approach combines the content and collaborative in-
formation by building user profiles and applying Latent Se-
mantic Indexing (LSI) to discover latent factors. At test
time, the new items are projected in the latent space and
compared to the user profiles. Finally, the items are recom-
mended to the users with the most similar profiles.

Author-topic Model (ATM). The author-topic model [24]
is a generative probabilistic model which extends LDA to in-
clude authorship information. It associates each author with
a multinomial distribution over topics, and each topic with
multinomial distribution over words. As the authors point
out, the model may not only be used to find the topics as-
sociated with the authors, but also to predict the authors of
unobserved documents. In the email recipient recommenda-
tion experiment we model the recipients as authors, while
in the news recommendation scenario we model the users as
authors. As recommended, we set the parameters as: α =
50/k, where k is the number of topics, β = 0.01, and we
perform 500 iterations of the Gibbs Sampler.

Learning Attribute-to-Feature Mappings (BPR-kNN).
This method [14] handles the cold-start in two steps: (1)
factorizing the collaborative matrix to learn latent factor
representation of the users and items, (2) learning a map-
ping between the user/item attributes and the corresponding
latent factors. When a new user/item arrives in the system,
the mapping from (2) is used to infer the factors from the at-
tributes, and then the factors are used to make predictions.
As proposed by the authors, we used Bayesian Personal-
ized Ranking (BPR) to factorize the collaborative matrix.
To learn the mappings we used the K-Nearest-Neighbour
and BPR optimization; however, the kNN mapping was su-
perior in all cases and thus we report the results for only
for kNN mapping. This is consistent with their experimen-
tal results. We test with different number of latent factors
k ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}.

fLDA. Is a latent factor model proposed in [2] and it is an
extension of the Regression Based Latent Factor model [1]
for applications where ”bag-of-words”representation of items
is natural. The main idea is regularizing the user and item
factors simultaneously through the user features and the
words associated with the items. The user ratings are mod-
elled as user’s affinity to the item’s topics, where the user’s
affinity to topics and topic assignments to items are learned
jointly in supervised fashion. In our experiments we only
use the item feature as user features are not available. As
recommended by the authors, we run 20 EM iterations with
100 samples, drawn after 10 burn-in samples. In the email
recommendation experiment, we test for k ∈ {10, 25, 50}
factors, while for the news recommendation experiment we
test only k = 10 due to the long running times.

5.2 Email Recipient Recommendation
When people write emails they do not necessarily start

by filling in the recipient address (i.e., the “to” field), but
may start by writing the body of the message. Given the
content of the message and the messaging habits of the user,
i.e., with whom the user exchanged messages with similar
content in past, we would like to predict the most likely
recipients of the new message. In this experiment, we test
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Figure 1: Comparison of the different methods on
the Enron dataset.

the accuracy of the recipient recommendations produced by
LCE against the six baseline techniques.

Dataset. The data is composed of email messages released
during investigation of the Federal Energy Regulatory Com-
mission against the Enron Corporation. We consider the 10
largest mailboxes and within each mailbox the emails sent by
the owner. There are 36,010 emails sent to 4,984 recipients.
The size of the vocabularies for each mailbox ranges from
12,375 to 56,193 unique tokens. The messages have been
preprocessed by removing the headers (from/to/cc fields),
converting all tokens to lower case and removing numbers,
stop-words and infrequent tokens (appearing < 5 times).

Evaluation Metrics. The output of the algorithms is a
ranking of the past recipients of how likely they are to be
recipients of the new email. The feedback from the users is
explicit, i.e., we have ground truth of who are the recipients
of the mail as specified by the user. To evaluate the ranking
produced by each algorithm we use the state-of-the-art met-
rics from Information Retrieval: Micro and Macro F1, Mean
Average Precision (MAP), and Normalized Discounted Cu-
mulative Gain (NDCG) [4].

Evaluation Protocol. As the data is intrinsically influenced
by time we sort the mailboxes chronologically. We divide
the messages in 80% training and 20% testing, resulting in
10 independent train/test subsets. Only the recipients that
appear in the training period are considered as potential re-
ceivers. We tune the hyper-parameters of the methods on
independent validation set, 10% of the training set. Finally,
we evaluate the statistical significance of the differences in
performance by using a Wilcoxon signed rank test [13].

Results. Figure 1 shows the average performance of each
method across the 10 mailboxes. LCE performs better than
the other methods in all measures with differences ranging
from 5%-15%. All differences are statistically significant
(Wilcoxon signed rank test, p < 0.05). Imposing locality
leads to small performance improvements in some measures,
however the differences are not statistically significant. This
indicates that nearest neighbour graph does not bring ad-
ditional information in the case of emails. One explanation
may be that emails are user generated content and as such
contain a lot of noise, such as misspellings or informal ex-
pressions, that leads to inaccurate nearest neighbour graphs.



5.3 News Recommendation
To improve the user experience, online news platforms

allow users to engage with articles by posting comments.
Moreover, to encourage user engagement on the platform the
users are recommended articles that they may be interested
in. We consider the item cold-start scenario, i.e., when a new
article is published and none of the users have commented
on it yet. Thus, given the content of the new articles and the
past commenting patterns we would like to recommend to
the users the articles that they are most likely to comment.

Dataset. We consider a random sample of news articles and
the corresponding comments posted on the Yahoo! News
website in a period of 40 days. The dataset contains ∼41K
articles, ∼3.5M comments posted by ∼650K users. The size
of the vocabulary is ∼60K (i.e., number of unique tokens in
all articles) and ∼9M tokens. The content of the articles is
preprocessed such that all tokens are converted to lower case,
and stop-words, digits, punctuation, short (< 3 characters)
and infrequent (appearing < 3 times) tokens are removed.

Evaluation Metrics. Similar to the previous experiment,
the output of each algorithm is a ranking. In this experi-
ment, however, we do not have an explicit feedback of which
news articles were undesired by the users. While, comment-
ing an article is an evidence of the user’s interest in it, the
absence of a comment is not an indication that the article
was undesired, as not commenting may stem from multiple
different reasons. Therefore, we adopt the average percentile
ranking, a measure proposed in [19] and widely used to eval-
uate ranking based on implicit feedback (e.g., [23, 25]). We
define ranku,i as the percentile ranking of article i in the
ranked list of articles for the user u; if ranku,i = 0%, then
the article i is predicted to be the most interesting for u,
while ranku,i = 100% implies that the article is predicted
to be the least interesting. Our quality measure is then the
total average percentile ranking of an article:

rank =

∑
u,i commentu,i · ranku,i∑

u,i commentu,i
,

where commentu,i is an indicator function that equals to: 1
if the user u commented on article i; and 0 otherwise. The
lower rank, the better the quality of the ranking. For ran-
dom predictions, the expected value of rank is 50%. Thus,
if rank < 50%, then the algorithm is better than random.
To ease illustration, we convert the percentile ranking into
ranking accuracy (RA). That is 1 (best/ideal predictions),
if the percentile ranking is 0%; and it is 0 (random predic-
tions), if the percentile ranking is 50%:

Ranking Accuracy =
50%− rank

50%
.

We evaluate the Ranking Accuracy (RA) at different posi-
tions: 3, 5, 7 and 10.

Evaluation Protocol. We sort the data chronologically and
we produce train/test subsets by shifting a time window.
We train using the past 30 days and we predict comments
on the next day, shifting for one day at a time, resulting
in 10 independent folds. We also restrict our test set to
those users who have commented at least once in the train-
ing period. We tune the hyper-parameters of each method
on an independent validation set, 10% of the training set,
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Figure 2: Comparison of the different methods on
the Yahoo! News dataset.

and we evaluate the statistical significance of the differences
in performance by using Wilcoxon signed rank test [13].

Results. We evaluate the different methods in each of the 10
testing days and we compute the average performance (Fig-
ure 2). All algorithms perform better then random, i.e., RA
> 0%. LCE outperforms all other methods with statistically
significant differences (Wilcoxon signed rank test, p < 0.05).
Imposing locality leads to better ranking accuracy in all po-
sitions, however, the effect diminishes as we consider larger
lists. The difference is statistically significant only for RA@3
and RA@5 (Wilcoxon signed rank test, p < 0.05). This in-
dicates that exploiting the manifold structure of the data
allows the algorithm to push the relevant items towards the
top of the list. As users are usually presented a short list
of recommendations, making accurate recommendations on
the top of the list is crucial for improving the satisfaction of
the users.

5.4 Parameter Analysis
The LCE model has three essential parameters: k, num-

ber of latent variables, i.e., topics/communities; α, weight
of the content versus the collaborative information; and λ,
controlling the smoothness of the solution. Figure 3 shows
a typical behaviour of the algorithm for different values of
the parameters. The results are averaged over 10 runs of all
algorithms on one mailbox from the Enron dataset.

The parameter k controls the complexity of the model.
Small values of k, i.e., simple models under-fit whereas large
values of k over-fit the data and lead to poor performance
(Figure 3, left). Thus, one has to find a balance between
the two that fits best the problem at hand. Furthermore,
balancing the importance of the content versus the collab-
orative information, i.e., α ≈ 0.5 tends to achieve the best
performance. Figure 3 (middle) suggests that giving slightly
more importance to the collaborative information (e.g., α ∈
[0.2, 0.5]) may be helpful. Finally, adding the Tikhonov reg-
ularization helps; however, large values of λ, oversimplify the
model and decrease performance. Setting λ ∈ (0, 1) leads to
stable and high performance (Figure 3, right).

The nearest neighbor graph (A) in LCE may be con-
structed using the content or the collaborative information.
The weights associated with the neighbors may be binary or
the cosine similarity between the documents. We find that
imposing the graph regularization based on the collaborative
information leads to better performance (Figure 4). The bi-
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Figure 3: Behaviour of the LCE hyper-parameters (β = 0.25). Left: k, number of topics; Middle: α, weight
of the content versus the collaborative information; and λ, the smoothness of the solution. The results are
averaged over 10 runs of the methods on Tana Jones’ mailbox from the Enron data set.

nary weighting scheme is more sensitive to the number of
nearest neighbors (p) and works better for small p, while
the cosine weighting scheme, as expected, is less sensitive to
the choice of p.

The parameter β behaves similarly to λ and setting β =
0.25 leads to higher performance (for brevity we do not re-
port results for different values of β).

5.5 Running Time Analysis
In this section, we measure the CPU time required by the

methods under different settings of the model complexity.
All models are comparably fast at inference time, as they
require only simple operations such as projections in the la-
tent space or computing similarities. Hence, we only report
the running times needed to train the models.

For this experiment, we consider one mailbox from the En-
ron dataset (4K messages, 500 recipients, 18K unique terms)
on which we perform 10 runs of each method under different
values of the hyper-parameter k. The averaged CPU times
are reported in Figure 5. Due to the long computation time
required, we test the author-topic model up to k = 500 and
fLDA up for k ∈ {10, 25, 50}. In the case of UP-LSI k is
bounded by 500 due to the rank of the matrix.

The content-based recommender (CB) takes least time for
training as it only requires building the user profiles. Little
time is also required by the UP-LSI method relying on a fast
sparse SVD implementation. ATM and fLDA are computa-
tionally most expensive; ATM requires between 3 and 35
hours to train, and fLDA requires between 5 and 46 hours
to train even for small values of k. The LCE (with β = 0,
i.e., without building kNN graph) and BPR-kNN have sim-
ilar running times. The LCE with β = 0.25, on the other
hand, is slightly slower than other methods, except for ATM
and fLDA. LCE is reasonably fast and requires 25 minutes
to train for the highest values of k, suggesting that frequent
updates of the model are possible.

5.6 Reproducibility of the Experiments
The Matlab implementations of the LCE are made pub-

licly available at: https://github.com/msaveski/LCE. As
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Figure 4: Different ways of constructing the nearest
neighbor graph in LCE. The results are averaged
over 10 runs on Tana Jones’ mailbox.

discussed in Section 5.4, the parameters may be set as: α =
0.5, β = 0.25, and λ = 0.5, while the parameter k depends
on the data and needs to be tuned. A Matlab implementa-
tion of the Author-topic Model is publicly available as part
of the Matlab Topic Modeling Toolbox at: http://psiexp.

ss.uci.edu/research/programs_data/toolbox.htm. An R
and C/C++ implementation of fLDA is available at: https:
//github.com/beechung/Latent-Factor-Models. An im-
plementation of BPR-kNN is available at: https://github.
com/zenogantner/MyMediaLite. Finally, the Enron dataset
is available at: https://www.cs.cmu.edu/~enron/. In the
experiments, we consider the 10 largest mailboxes owned by:
Steven Kean, Vince Kaminski, Jeff Dasovich, Sally Beck,
Tana Jones, Mark Haedicke, Sara Shackleton, Mark Taylor,
John Lavorato, and Louise Kitchen. The parameter and run
time analysis experiments are performed on the mailbox of
Tana Jones.

https://github.com/msaveski/LCE
http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
https://github.com/beechung/Latent-Factor-Models
https://github.com/beechung/Latent-Factor-Models
https://github.com/zenogantner/MyMediaLite
https://github.com/zenogantner/MyMediaLite
https://www.cs.cmu.edu/~enron/
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Figure 5: Running time required to train each
method. We report the CPU times in seconds aver-
aged over 10 runs on Tana Jones’ mailbox.

6. CONCLUSIONS AND FUTURE WORK
To overcome the item cold-start, in this work we have pro-
posed LCE, a recommender system that combines content
and collaborative information in a unified matrix factoriza-
tion framework. Our proposed algorithm outperform exist-
ing item-cold start recommenders. Interestingly, in case of
rich content (e.g., news articles) imposing locality to exploit
the manifold structure of the data improves the ranking ac-
curacy in the top positions of the rankings which is crucial
for improving the user satisfaction on news platforms.

Towards Online Adaptive Models. In some scenarios it is
desired that the models are updated as new data is arriving.
In such context, time plays in important role when modeling
user preferences. In this line of research, recently, McAuley
et al. [22] modeled user tastes evolution and showed an im-
provement in recommendations. To our knowledge none of
the existing “time-aware” approaches have been applied to
the item cold-start recommendations. As a future work we
consider extending our models to close this gap.
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