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a b s t r a c t

We study inventorymanagement problemswhere demands are revealed incrementally and procurement
decisionsmust bemade before the demands are realized. There are no probabilistic distributions nor non-
trivial bounds to characterize demands. We consider two cost minimization problems: (1) perishable
products with lost sales and (2) durable products with backlogged demand. In both problems, costs are
period dependent. These problems are analyzed by utilizing linear-fractional programming and duality
theory. Structural results are proved and then developed into practical strategies.
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1. Introduction

This paper presents a systematic analysis of two general inven-
tory control problems where non-negative demands are revealed
incrementally, after procurement decisions have been made. No
distributions or non-trivial bounds are available to characterize de-
mands. The first problem considers perishable products with lost
sales and the second considers durable products with backlogged
demand. We utilize competitive analysis, a (traditional) computer-
science approach for evaluating algorithms functioning under in-
complete information. Furthermore, competitive analysis is based
on the worst-case competitive ratio metric, which makes the pro-
curement strategies naturally risk averse. For other examples of
risk-averse decisionmaking in inventorymanagement, see [8,9,17,
22] and the references therein.

Inventory management models serve as building blocks for
more sophisticated Material Requirements Planning (MRP) and
Enterprise Resource Planning (ERP) systems, such as those offered
by SAP and Oracle. There is criticism of these systems due
to their ‘‘nervousness’’, or the sensitivity of the solution to
demand. Therefore, studying inventory management models from
a demandless perspective can provide knowledge to improve the
stability of these systems. In particular, our analysis results in
simple strategies, with provable performance guarantees, that do
not require knowledge of current or future demand.

1.1. Related literature

There is limited literature that considers inventory manage-
ment when demand is unknown, without any defining charac-
teristics. Levi [7] considers the well-known Joint Replenishment
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Problem (JRP) when there is no probabilistic distribution or ad-
ditional information to characterize unknown demand. Levi et al.
[18] design a sampling-based procedure to overcome the absence
of distributions and [11] design an algorithm that directly esti-
mates value functions without the need for demand distributions.
Huh, Huh and Janakiraman [14,12] and Huh and Levi [13] study
various inventory management problems where a demand distri-
bution is lacking, but sales data are available. Additionally, [19]
compare distribution-free and stochastic algorithms for the multi-
period Newsvendor Problem. In the related area of revenue man-
agement, Ball and Queyranne [4] consider airfare booking when
there is no distribution for the stream of customers purchasing air-
fare; [16] analyze the case where the lower and upper bounds for
customer demand exist and [10] consider distribution-free meth-
ods for booking control. Lan et al. [15] consider overbooking and
fare-class allocation when there is limited demand information
and [3] consider distribution-free methods in revenue manage-
ment and competition.

Most related to our paper is the recent work of [21], which
builds upon the work of [1,2,5,20]; these latter works all
analyzed approximation algorithms with constant performance
guarantees for variants of the dynamic lot-sizing problem. Van
den Heuvel and Wagelmans [21] specifically consider online
algorithms for a dynamic lot-sizing problem and are able to prove
constant performance bounds. However, these approaches differ
significantly from the approach we take in our paper due to
the following: (1) These references do not allow shortages and
our paper considers product shortages (intentional or not) as a
fundamental characteristic; indeed, we prove lower bounds, on
the performance guarantee of any algorithm for our models, that
depend on the shortage costs. In addition, it is precisely the
addition of shortages that precludes any constant competitive ratio
bound. (2) In the online approach of [21], the period k demand
is available when making a procurement decision for period k; in
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our approach, this demand is not available and is only revealed
after a procurement decision ismade,which implies that shortages
cannot be eliminated. (3) The above approaches do not allow
demand backlogging and allow inventory holding in all periods;
in our approach, we either (a) disallow both backlogging and
inventory carryover (i.e., perishable products) or (b) allow both.
(4) We design and analyze in depth a Make-to-Order strategy that
never maintains positive inventory — this strategy is beyond the
scope of these related references. (5) In contrast to the online
approach of [21], our costs are period dependent and can vary.

1.2. Contributions

The first problem that we study consists of designing the
procurement strategy for a single perishable product over a
finite planning horizon with period-dependent costs. If demand
exceeds product availability in any period, the excess demand
is lost. We characterize the competitive ratio of an arbitrary
(albeit intelligent) procurement strategy. The second problem that
we study consists of designing the procurement and inventory
management strategy for a single durable product, that can be
inventoried, over a finite planning horizon with period-dependent
costs. Additionally, excess demand is backlogged for future
periods. The main result of this part of the paper is a two-part
structural result where we (1) derive a sufficient condition for the
existence of a finite competitive ratio and (2) provide lower and
upper bounds for the competitive ratio. We then provide an in-
depth example of utilizing these structural results to design and
analyze a Make-to-Order strategy that identifies the best times
to fulfill backlogged demand. We characterize the competitive
ratio of this specific strategy through lower and upper bounds;
if ordering and shortage costs are identical over all periods, the
lower and upper bounds coincide and we know the exact value
of the competitive ratio. Finally, we contrast our paper with [23],
which introduces unit revenues to the models analyzed in this
paper. Maximizing profit, rather than minimizing cost, renders
the usual competitive ratio metric ill-posed, since profits can be
positive or negative, and [23] introduces and utilizes a new worst-
casemetric, different from the competitive ratio that is appropriate
for a profit objective. However, simply setting revenues to zero
in [23] will not give results remotely similar to this paper; in
fact, by setting revenues to zero, [23] suggests ordering negative
quantities of products. Therefore, the cost minimization and
profit maximization objectives in the context of online inventory
management are fundamentally different and warrant different
studies.

Outline of the paper
In Section 2 we explain our notation, state our assumptions,

derive the two models we study and discuss competitive analysis.
In Section 3 we analyze the perishable product with lost sales
model and in Section 4 we analyze the durable product with
backlogged demand model, concluding with the analysis of a
specific Make-to-Order strategy.

2. Preliminaries

2.1. Notation

We begin by explaining the notation that we utilize throughout
the paper. Scalar values are represented in regular type and vectors
are represented in boldface type. For example, x = (x1, . . . , xn)
is a column vector of n elements. x′ is the transpose (row) vector
of the (column) vector x. Additionally, we define e = (1, . . . , 1)
as the n-dimensional vector of all ones. Also, δ(x) is the indicator
function; i.e., δ(x) = 1 if x > 0 and δ(x) = 0 if x = 0. Finally,
let x+
= max{x, 0} and x−

= max{−x, 0}, where the max and
min operators are defined component-wise. Next, we provide a
useful result that links a specific linear-fractional program with
linear programming.

Lemma 2.1 (Linear-Fractional Programming). If {x : f′x + g >
0, x ≥ 0} is non-empty, then the optimization problems

max
x

c′x + d
f′x + g

s.t. f′x + g > 0
x ≥ 0

and
max
y,z

c′y + dz

s.t. f′y + gz = 1
y ≥ 0, z ≥ 0

are equivalent.

Proof. A proof can be found in [6] on page 151. �

2.2. Model derivation

We begin by detailing the data for our problems. We consider
the n-period inventory management of a single product where the
objective is tominimize total cost. In period i, di ≥ 0 is the demand
for the product, qi ≥ 0 is the ordering quantity, ci ≥ 0 is the
unit ordering cost, Ki ≥ 0 is the fixed ordering cost for placing
an order, hi ≥ 0 is the unit inventory holding cost and si ≥ 0
is the unit inventory shortage cost, which will either represent a
lost sales cost or a backlogging cost (which will be clear from the
context). In vector notation, the parameters ared, q, c,K,h, s ≥ 0.
Wemake three assumptions that hold throughout and then derive
the models.

Assumption 2.2. c,K,h, s > 0.

Assumption 2.3. d ≠ 0.

Assumption 2.4. There exists a period in which it is optimal to
procure a positive quantity.

2.2.1. Perishable products with lost sales
We begin with the case where the product is perishable

(e.g., certain food products) and cannot be inventoried for future
periods. Additionally, we assume that any unmet demand is
lost forever. The inventory holding costs hi have the managerial
interpretation of a write-off (of perished inventory) cost and the
inventory shortage costs si have the interpretation of quantifying
lost sales (e.g., lost revenues, etc.). In period i, the write-off cost is
hi(qi − di)+, the shortage cost is si(di − qi)+ and the ordering costs
are ciqi + Kiδ(qi). The cost minimization model in this case is

min
q≥0

n−
i=1

(ciqi + hi(qi − di)+ + si(di − qi)+ + Kiδ(qi)). (1)

2.2.2. Durable products with backlogging
The second framework we study is one where the product is

not perishable and can be inventoried to satisfy demand in later
periods. Additionally, if demand exceeds available inventory, it is
backlogged and satisfied in future periods.

We define the inventory Ii at the end of period i, which must
satisfy the inventory balance constraints Ii = Ii−1 + qi − di, for
i = 1, . . . , n, with initial inventory I0 = 0. We next explicitly
define positive and negative inventory as I+i = max{Ii, 0} and I−i =

max{−Ii, 0}, respectively. Clearly, Ii = I+i − I−i and |Ii| = I+i + I−i .
Finally, note that Ii =

∑i
j=1(qj − dj); this identity is utilized in

subsequent proofs.
In period i, the inventory holding cost is hiI+i , the inventory

shortage cost is siI−i and the inventory ordering cost is Kiδ(qi) +
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ciqi, where δ is the indicator function. In summary, the cost
minimization model in this case is

min
n−

i=1

(ciqi + hiI+i + siI−i + Kiδ(qi))

s.t. Ii = Ii−1 + qi − di, i = 1, . . . , n, I0 = 0
qi ≥ 0, i = 1, . . . , n.

(2)

If demands were known deterministically, our model would be
that which was analyzed in [25]. If we add the constraint Ii ≥ 0 for
all i, the model is the well-known Wagner–Whitin Model, which
was originally analyzed in [24].

2.3. Competitive analysis: online and offline problems

In this paper we study inventory management decisions
without knowing customer demands. In particular, in period i, an
online player must decide how much product to order qi without
knowing the demand di. However, this online player does know
the cost structure of all periods j ≤ i, as well as all previous
demands dj and previous decisions qj for j < i. In particular,
in period i, cj, Kj, sj, hj for j ≤ i are known. Additionally, the
online player does not know how many periods n there are in
the planning horizon. The cost that an online player accrues over
n periods will be denoted as Z(d). An offline adversary knows all
demands d a priori and makes optimal decisions. The cost that
an offline adversary accrues over n periods will be denoted as
Z∗(d). In particular, Z∗(d) is defined as the optimal solution of
either Model (1) or Model (2) — the relevant model will be clear
from context. Clearly Z∗(d) ≤ Z(d). It will also be convenient to
write Z(d) =

∑n
i=1 Zi(di) where Zi(di) is the cost contribution in

period i; similarly, Z∗(d) =
∑n

i=1 Z
∗

i (di). Traditionally, the quality
of an online strategy is measured via the competitive ratio. In our
notation, the competitive ratio is defined as the smallest value of
α ≥ 1 such that

Z(d) ≤ αZ∗(d) + β, ∀d ≥ 0, (3)

where β is a demand-independent constant. If β ≤ 0, we say
the competitive ratio α is strict. Finally, Assumptions 2.2–2.4 imply
that Z∗(d) > 0 and an equivalent definition of a strict competitive
ratio would be

α = sup
d≥0
d≠0

Z(d)

Z∗(d)
;

a strict competitive ratio is clearly preferable to one that is not. All
but one of the competitive ratio results in this paper are strict.

3. Perishable products with lost sales

In this section we prove the following theorem by first
considering a single-periodmodel and then extending the analysis
to a finite planning horizon; note that Assumption 2.4 implies that
there exists at least one period i where ci < si (otherwise it is
optimal to never order anything).

Theorem 3.1. In period i, if ci ≥ si, order qi = 0 units and if ci < si,
order qi units. The competitive ratio of this strategy is at most

max
i:ci<si


max


ci + hi

Ki


qi + 1,

si
ci


.

Furthermore, the competitive ratio of any algorithm is at least
maxi:ci<si{si/ci}.

Corollary 3.2. In period i, if ci ≥ si, order qi = 0 units and if ci < si,
order qi = Ki(si − ci)/(ci(ci + hi)). The competitive ratio of this
strategy is exactlymaxi:ci<si{si/ci}.
3.1. A single-period model

In this section we consider the special case of a single period
with unknown demand d. The specific model is

min
q≥0

(cq + h(q − d)+ + s(d − q)+ + Kδ(q)).

Note that Assumption 2.4 implies that c < s; otherwise,
it is optimal for both the online and offline players to order
nothing. We include this observation in the following theorem for
completeness. Finally, note that for a single period, the competitive
ratio is strict and best possible.

Theorem 3.3. (1) If c ≥ s, it is optimal (i.e., the strict competitive
ratio = 1) to order zero units.

(2) If c < s, the strict competitive ratio of ordering q units is equal to

max


c + h
K


q + 1,

s
c


.

Proof. As a function of d, the optimal offline adversarial solution
is to either order q = 0 or q = d, which implies Z∗(d) =

min{sd, cd + K}. If c ≥ s, it is optimal for the offline adversary to
order zero units; since the online player knows the cost structure
(i.e., the values of c and s), it also orders zero units, which implies
that the online and offline costs are identical and the competitive
ratio is one. The remainder of the proof considers the case c < s.
Note that we have the following lower bound on the competitive
ratio

ρ = sup
d≥0


Z(d)
Z∗(d)


≥ sup

d≥0


Z(d)

cd + K


.

Next, we note that Assumption 2.4 implies that cd + K <
sd, which induces the strict lower bound d > K/(s − c). The
competitive ratio is therefore equal to the first term below and
bounded from above by the second term

ρ = sup
d>K/(s−c)


Z(d)

cd + K


≤ sup

d≥0


Z(d)

cd + K


.

Consequently, the competitive ratio is exactly supd≥0(Z(d)/(cd +

K)). We consider two possible cases that determine the structure
of Z(d), where q is now the online player’s procurement quantity.
We assume q > 0 and consider q = 0 subsequently.

Case 1 (q > d). We have that

ρ = sup
d≥0


−hd + (c + h)q + K

cd + K


,

the right-hand side of which is a linear-fractional program, which,
applying Lemma 2.1, can be written as the linear program

max
y,z

−hy + ((c + h)q + K)z

s.t. cy + Kz = 1
y, z ≥ 0.

whose dual is

min
α

α

s.t. αc ≥ −h
αK ≥ (c + h)q + K .

The competitive ratio is equal to the optimal dual solution q(c+
h)/K + 1.

Case 2 (q ≤ d). We have that

ρ = sup
d≥0


sd + (c − s)q + K

cd + K


,
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the right-hand side of which is a linear-fractional program, which
can be written as the linear program

max
y,z

sy + (K − (s − c)q)z

s.t. cy + Kz = 1
y, z ≥ 0.

whose dual is

min
α

α

s.t. αc ≥ s
αK ≥ K − (s − c)q.

The competitive ratio is equal to the optimal dual solution
max{s/c, 1 − q(s − c)/K} = s/c .

Finally, if q = 0, we set K − (s− c)q = 0 and the dual in Case 2
simplifies to min{α : α ≥ s/c}, which implies a competitive ratio
equal to s/c .

Since a priori an online player does not know if Case 1 or Case
2 will occur, the competitive ratio is calculated as the maximum of
the two dual solutions: max{q(c + h)/K + 1, s/c}. �

3.2. Proof of Theorem 3.1

Note that Theorem 3.1 is not an immediate consequence of
Theorem 3.3 since periods with zero demand and periods where
the offline player orders nothing must now be carefully analyzed.
Proof. Recall that Z(d) =

∑n
i=1 Zi(di), Z

∗(d) =
∑n

i=1 Z
∗

i (di) and
define S = {i : ci < si}. Assumption 2.4 implies that S ≠ ∅. We
partition S into S1 = S∩{i : di > Ki/(si −ci)} and S2 = S∩{i : di ≤

Ki/(si−ci)} since the offline adversary orders di units for i ∈ S1 and
orders 0 units for i ∈ S2; Assumption 2.4 also implies that S1 ≠ ∅.
The proof of Theorem 3.3 implies that, for all d = (d1, . . . , dn),

Zi(di) ≤ max


ci + hi

Ki


qi + 1,

si
ci


Z∗

i (di), i ∈ S1 and

Zi(di) = Z∗

i (di), i ∉ S.

For i ∈ S2, we have that Zi(di) = Kiδ(qi) + ciqi + hi(qi − di)+ +

si(di − qi)+; if qi ≥ di,

Zi(di) = Kiδ(qi) + ciqi + hi(qi − di)
≤ Kiδ(qi) + ciqi + hiqi , γi1

and if qi < di,

Zi(di) = Kiδ(qi) + ciqi + si(di − qi)
≤ Kiδ(qi) + ciqi + si(Ki/(si − ci) − qi) , γi2.

Clearly, for i ∈ S2, Zi(di) ≤ max{γi1, γi2} , γi. Defining γ =∑
i∈S2

γi, a demand-independent constant, we have that

Z(d) =

−
i∈S1

Zi(di) +

−
i∉S

Zi(di) +

−
i∈S2

Zi(di)

≤

−
i∈S1

max


ci + hi

Ki


qi + 1,

si
ci


Z∗

i (di)

+

−
i∉S

Z∗

i (di) + γ

≤ max
i∈S


ci + hi

Ki


qi + 1,

si
ci


Z∗(d) + γ .

We next give a lower bound for the competitive ratio.
Arbitrarily choose j ∈ S and let di = 0 for all i ≠ j. Therefore,
Z∗(d) = Z∗

j (dj) and Z(d) ≥ Zj(dj). We only consider dj > Kj/(sj −
cj), so that the offline adversary orders dj, which implies Z∗

j (dj) =

cjdj + Kj. If the online player orders qj in period j, we then consider
dj ≥ qj, which implies Zj(dj) = cjqj+Kj+sj(dj−qj). As dj → ∞, the
ratio of Zj(dj) to Z∗

j (dj) approaches sj/cj. Consequently, as dj → ∞,
Z(d)/Z∗(d) ≥ sj/cj; since j ∈ S was chosen arbitrarily, we have
proven the claimed lower bound. �
4. Durable products with backlogged demand

In this section, we study online procurement strategies for
durable products with backlogged demand. Let P = {i : Ii ≥ 0}
and N = {i : Ii ≤ 0} denote the periods of non-negative and non-
positive inventory, respectively. If inventory is zero in period i, we
can assign i arbitrarily to P or N . Clearly P and N are subsets of
{1, . . . , n}, so if i ∉ {1, . . . , n}, then i ∉ P and i ∉ N . We begin with
the following linear-combination characterization of the cost of an
arbitrary online procurement strategy. Note that a summation over
an empty set is defined as zero.

Lemma 4.1. For an arbitrary online strategy q ≥ 0, we can write the
online cost as

Z(d) = a′d + b′q + K,

where ai =
∑n

j=i
j∈N

sj −
∑n

j=i
j∈P

hj, bi = ci +
∑n

j=i
j∈P

hj −
∑n

j=i
j∈N

sj,

for i = 1, . . . , n and K =
∑n

i=1 Kiδ(qi).
Proof. Decomposing along the partition (P,N) and noting that
I+i = Ii for i ∈ P and I−i = −Ii for i ∈ N , we have that the online
cost

Z(d) = c′q +

−
i∈P

hiIi −
−
i∈N

siIi + K

= c′q +

−
i∈P

hi

i−
j=1

(qj − dj) −

−
i∈N

si
i−

j=1

(qj − dj) + K

= c′q +

n−
i=1

(qi − di)
n−
j=i
j∈P

hj −

n−
i=1

(qi − di)
n−
j=i
j∈N

sj + K,

where the third equality is obtained by inverting the order of the
summations. Letting ai =

∑n
j=i
j∈N

sj−
∑n

j=i
j∈P

hj and bi = ci+
∑n

j=i
j∈P

hj−∑n
j=i
j∈N

sj completes the proof. �

Lower and upper bounds for the optimal offline cost are given
in the next lemma.

Lemma 4.2. The optimal offline cost of Model (2) has the following
lower and upper bounds

α′d ≤ Z∗(d) ≤ c′d + K′e, ∀d ≥ 0,

where α = (α1, . . . , αn) is defined as

αi = min


min

1≤j≤i−1


cj +

i−1−
k=j

hk


, ci,

min
i+1≤j≤n


cj +

j−1−
k=i

sk


,

n−
k=i

sk


, i = 1, . . . , n

and can be interpreted as the minimum marginal cost of satisfying
demand di by considering (1) procuring in period j < i and carrying
the inventory to period i, (2) procuring in period i, (3) backlogging
until period j > i, or (4) the cost of not satisfying the demand.
Proof. Since ordering di in period i is a feasible offline solution,
we have the upper bound Z∗(d) ≤ c′d + K′e. To begin deriving a
valuable lower bound, we remove fixed ordering costs and we see
that

Z∗(d) ≥ min
q≥0

n−
i=1

(ciqi + siI−i + hiI+i )

= min
q≥0

n−
i=1


ciqi + si max


i−

j=1

(dj − qj), 0



+ hi max


i−

j=1

(qj − dj), 0


. (4)
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By introducing additional variables pi, ri ≥ 0, i = 1, . . . , n, and
noting that s, h > 0, we rewrite the Lower Bound (4) as the linear
program

min
p,q,r

s′p + c′q + h′r

s.t. pi +
i−

j=1

qj =

i−
j=1

dj, i = 1, . . . , n

ri −
i−

j=1

qj = −

i−
j=1

dj, i = 1, . . . , n

p, q, r ≥ 0

or equivalently

min
p,q,r

s′p + c′q + h′r

s.t. p1 + q1 = d1
pi − pi−1 + qi = di, i = 2, . . . , n
r1 − q1 = −d1
ri − ri−1 − qi = −di, i = 2, . . . , n
p, q, r ≥ 0.

Letting γi, βi, i = 1, . . . , n, be dual variables, the dual linear
program can be written as

max
γ,β

(γ + β)′d

s.t. γi ≤ si + γi+1, i = 1, . . . , n − 1
γn ≤ sn
βi+1 ≤ hi + βi, i = 1, . . . , n − 1
0 ≤ hn + βn
γi + βi ≤ ci, i = 1, . . . , n.

Now, if β = 0, the recursion γi = min{ci, si + γi+1}, with
base case γn = min{cn, sn}, defines a feasible solution to the dual;
note that γi = min{ci,mini+1≤j≤n{cj +

∑j−1
k=i sk},

∑n
k=i sk}, i =

1, . . . , n − 1 satisfies this recursion. Alternatively, if γ = 0, the
recursion βi+1 = min{ci+1, hi + βi}, with base case β1 = c1,
defines another feasible solution to the dual; note that βi =

min{ci,min1≤j≤i−1{cj+
∑i−1

k=j hk}}, i = 2, . . . , n satisfies this latter
recursion. Therefore, by weak duality, γ′d and β′d (where γ and
β are the solutions to the above recursions) are lower bounds for
Z∗(d). Consequently, defining αi = min{γi, βi}, α′d is also a lower
bound for Z∗(d). �

We next derive the main structural results of this section. The
first is a sufficient condition for the existence of a finite competitive
ratio for an arbitrary online procurement strategy; this condition
is subsequently applied to design a Make-to-Order strategy with
a finite competitive ratio. The second structural result is a set
of lower and upper bounds for the competitive ratio, if it exists.
This result is subsequently applied to characterize the value of the
competitive ratio of the aforementioned Make-to-Order strategy;
whenunit ordering cost and shortage parameters are identical over
all periods, the lower and upper bounds coincide and we know
the exact value of the competitive ratio for the Make-to-Order
strategy. The following theorem is presented using the notation of
Lemma 4.1.

Theorem 4.3. For an arbitrary online strategy q ≥ 0, b′q + K ≤ 0
is a sufficient condition for the existence of a finite strict competitive
ratio. Furthermore, if a strict finite ratio ρ exists, it satisfies

max

max
1≤i≤n


ai
ci


,
b′q + K

K′e


≤ ρ ≤ max

1≤i≤n


ai
αi


.

Proof. Utilizing the lower bound in Lemma 4.2, Lemma 4.1 and
Assumption 2.3, an upper bound for the competitive ratio is

ρ ≤ sup
d≥0
d≠0


a′d + b′q + K

α′d


.

As the supremum in the upper bound is a linear-fractional
program, it is equivalent to the following linear program

max
y,z

a′y + (b′q + K)z

s.t. α′y = 1
y ≥ 0, z ≥ 0,

whose dual is

min
β

β

s.t. βα ≥ a
0 ≥ b′q + K.

Technically, the vectors a and b are functions of the data q and
variables d via the induced partition (P,N), so the optimization
problem is actually not a linear program. However, a formal
Lagrangian (weak) duality analysis arrives at the same conclusion
and, for simplicity, we abuse notation and present the analysis as
if a and bwere constant vectors.

If the dual is feasible, a finite upper bound exists, which implies
that a finite competitive ratio exists. The dual is feasible when
b′q + K ≤ 0, which implies that the competitive ratio is at most
the dual solution max1≤i≤n{ai/αi}. This proves the sufficiency of
b′q + K ≤ 0 for a finite competitive ratio as well as the upper
bound.

We next repeat the above analysis with the upper bound
from Lemma 4.2 and obtain the following lower bound for the
competitive ratio

ρ ≥ sup
d≥0


a′d + b′q + K

c′d + K′e


,

which is equivalent to

max
y,z

a′y + (b′q + K)z

s.t. c′y + K′ez = 1
y ≥ 0, z ≥ 0,

whose dual is

min
β

β

s.t. βc ≥ a
βK′e ≥ b′q + K.

Finally, the optimal dual solution

β = max

max
1≤i≤n


ai
ci


,
b′q + K

K′e


is a lower bound for the competitive ratio. �

4.1. Example: Make-to-Order policy

Next, we utilize the structural result in Theorem 4.3 to design
a Make-to-Order procurement strategy; note that other strategies
may be designed and this section simply serves as an illustration
of how to apply the structural results. In particular, we base our
design on the sufficient condition b′q + K ≤ 0, which leads
naturally to a ‘‘backlog-up-to’’ policy. This strategy will avoid
holding any inventory and will determine the best times to fulfill
backlogged customer orders. For example, in Internet retailing,
this model can determine the best time to fulfill orders received
throughout the day or week.

Note that, since the strategy is online, the traditional offline
constraint In = 0 is impossible to add to the strategy, since n is
unknown. Therefore, it is possible that some demand at the end
of the planning horizon will not be met. However, as can be seen
in a single-period model, it is sometimes optimal to not serve all
demand.

Theorem 4.4. In period i,

(1) If ci ≥ si, order qi = 0 units.
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(2) If ci < si:
(a) If

∑i−1
j=1(cj−

∑i
k=j sk)qj+(ci−si)I−i−1+

∑i−1
j=1 Kjδ(qj)+Ki ≤ 0,

order qi = I−i−1 units.
(b) Otherwise order qi = 0 units.

The strict competitive ratio ρ of this strategy satisfies

max
1≤i≤n


n∑
j=i

sj

ci

 ≤ ρ ≤ max
1≤i≤n


n∑
j=i

sj

αi

 .

If there exist c and s such that ci = c and si = s for all i, then the strict
competitive ratio

ρ = max
 sn

c
, 1


.

Proof. This strategy implies that i ∈ N for all i; consequently,
ai =

∑n
j=i sj and bi = ci −

∑n
j=i sj. If ci ≥ si, it is clearly cheaper

to incur the inventory shortage cost in period i than to procure
any product to satisfy demand; therefore, if ci ≥ si, it is optimal
to procure zero units and wait until the cost structure is more
economical (if ever).

We now consider the periods in which ci < si. If ordering I−i−1
takes place in period i, then the statement of the theorem indicates
that
i−1−
j=1


cj −

i−
k=j

sk


qj + (ci − si)I−i−1 +

i−1−
j=1

Kjδ(qj) + Ki ≤ 0

⇐⇒

i−
j=1


cj −

i−
k=j

sk


qj +

i−
j=1

Kjδ(qj) ≤ 0

H⇒

i−
j=1

bjqj +
i−

j=1

Kjδ(qj) ≤ 0, (5)

where the last implication is due to bj = cj −
∑n

k=j sk ≤

cj −
∑i

k=j sk. Let S index the periods where ordering takes place;
mathematically, S = {i : qi = I−i−1} and let l denote the
largest index in S (i.e., the last period where ordering occurs).
Consequently,

b′q + K =

−
j∈S

(bjqj + Kj) =

l−
j=1

(bjqj + Kjδ(qj)) ≤ 0,

where the last inequality is due to Eq. (5) with i = l. Therefore, the
invariant b′q + K ≤ 0 is maintained. Theorem 4.3 implies that
a finite competitive ratio exists and that the competitive ratio ρ
satisfies

max
1≤i≤n


n∑
j=i

sj

ci

 ≤ ρ ≤ max
1≤i≤n


n∑
j=i

sj

αi

 .

Finally, if there exist c and s such that ci = c and si = s for all i,
then the lower and upper bounds both equal

max
1≤i≤n


(n − i + 1)s

c


=

sn
c

. �
Corollary 4.5. If all fixed ordering costs are zero (Ki = 0, ∀i), then
Statement 2. in Theorem 4.4 can be replaced with

2. If ci < si, order qi = I−i−1 units

with no change in the remainder of the theorem.
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