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The United States Coast Guard (USCG), a part of the U.S. Department of Homeland Security, is the nation’s leading agency
in maritime security, safety, and stewardship. One of the primary USCG resources is a fleet of boats (maritime vessels
less than 65 feet in length) of various types that must be allocated to USCG stations nationwide. This paper describes
the academic-industry collaboration between the authors and the USCG, which resulted in the development of an integer
linear programming model that optimally matches supplies of various types of boats to station demands. The paper also
introduces a model for the optimal sharing of scarce boat resources. In addition, we generalize our model, using value-at-
risk and robust optimization ideas, to manage the risk of boat shortages. The paper reports on the USCG implementation
process and discusses internal resistance issues and eventual adoption. We describe USCG modifications to the model
recommendations due to practicalities not captured by our model. Finally, we present the significant improvements to
USCG quantitative performance metrics that resulted from our model’s recommendations. These include a considerable
reduction of excess capacity and boat shortages at the stations, a decrease in the overall fleet size with a simultaneous
increase in boat utilization, and overall reduction of the fleet operating cost. We also discuss in depth how our model
effected these improvements.
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1. Introduction
The United States Coast Guard (USCG), a part of the U.S.
Department of Homeland Security, is the nation’s lead-
ing agency in maritime security. According to the Depart-
ment of Homeland Security (2010), the USCG are the
first responders to any emergency in U.S. ports and water-
ways; hence its mission is critical to public safety and
international commerce. According to the Commandant of
the Coast Guard, Admiral Thad Allen (2009a) (the high-
est ranking officer of the USCG), “Over the past several
years, the Coast Guard has faced increasing demands for
our services, a deteriorating fleet of operational resources
and the need to streamline, simplify and integrate our com-
mand and control and mission support structures.” Allen
(2009b) shows that the USCG is responsible for the safety
and security of more than 300 ports, 3,700 marine termi-
nals, 25,000 miles of coastal waterway, and 95,000 miles
of combined coastline belonging to the United States. The
agency responds to some 50,000 distress calls a year, sav-
ing many lives.

The USCG missions are carried out by three main
forces: (1) cutters—vessels with a length of more than
65 feet, (2) aircraft (airplanes and helicopters), and (3)
boats—vessels under 65 feet in length. In this paper, we

concentrate on the USCG boats and their allocation among
the USCG stations. The boats operate near shore and on
inland waterways and are organized under the supervision
of the Office of Boat Forces (OBF) into districts in the
Atlantic and Pacific areas of the coastal United States. Each
district is divided into sectors, which cover a total of 178
stations. The USCG maintains approximately 800 boats of
11 different types at those stations.

Each station requires a certain amount of boat-coverage
hours. The individual station demands can range widely,
from 250 to over 5,000 annual hours, with an average
station demanding approximately 2,200 hours. In addition
to the overall demand for hours, the majority of stations
have various demands for specific mission hours such as
heavy weather, tactical, pursuit, shallow water, and ice
rescue hours.

To fulfill the stations’ overall and specific demands for
mission hours, boats of different types are allocated to the
stations. Each boat is budgeted with a standard annual sup-
ply (capacity) of hours. For example, the motor lifeboat
(MLB) and response boat–medium (RB-M) boat types have
a standard supply of 600 hours each annually, whereas the
response boat–small (RB-S) boat type is budgeted for only
500 hours; see Table 1. The total supply of hours for boats
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Table 1. Names, abbreviations, and key parameters for the BAT model (SPC = special purpose craft).

Number of Default hours Fixed cost Variable cost
Boat name Abbreviation Index boats Bt per boat dt per boat ft ($) of one hour vt ($)

Motor lifeboat MLB 0 106 600 361951 120
SPC—Nearshore lifeboat SPC-NLB 1 2 350 151000 60
SPC—Heavy weather SPC-HWX 2 4 350 151000 120
Response boat–medium RB-M 3 167 600 361000 120
Response boat–small RB-S 4 335 500 51657 47
Response boat–small auxiliary RBS-AUX 5 13 500 51657 47
SPC—Law enforcement SPC-LE 6 41 11000 91217 87
SPC—Shallow water SPC-SW 7 47 500 41390 63
SPC—Air SPC-AIR 8 8 100 21000 45
SPC—Ice SPC-ICE 9 24 100 11000 15
SPC—Skiff SPC-SKF 10 56 100 500 15

assigned to a station would need to match the station’s
demand for mission hours and thus provide normal oper-
ational capabilities of the boat station to meet its mission
requirements. However, starting from the early 2000s, the
USCG recognized an existing disparity between the sta-
tions’ demand hours and actual supply of hours provided by
the boats at those stations. Moreover, the growing require-
ment to protect U.S. coastal areas after the September 11
attacks, and the subsequent increase in the number of boats
at the stations, did not resolve this divergence.

We have developed, and the USCG Office of Boat Forces
has applied, an integer linear programming model and
Excel-based software called the boat allocation tool (BAT),
which identifies optimal allocations of boat resources for
the USCG boat stations. This paper presents an overview
of the model, focusing on its unique features and mean-
ingful generalizations. In addition, we discuss in depth the
USCG adoption and application of the BAT model and its
beneficial impact on real boat fleet performance.

1.1. Literature Review

The model and application we are discussing in this paper
belong to a class of resource allocation models. We position
our paper by reviewing three representative groups of liter-
ature sources: (a) general OR papers, (b) military research
articles, and (c) U.S. Coast Guard research papers. We also
discuss sources that apply the value-at-risk technique in
conjunction with resource allocation models.

We identified several research papers in the general OR
literature that employ analogous ideas and formulations to
that which we describe in our paper. Gol’stejn and Dempe
(2002) formulate a resource allocation problem using linear
programming, with an objective function that minimizes
the deviation of realized cost from a predetermined tar-
get cost; this objective is a simpler version of the objec-
tive we develop in our paper. Zhang et al. (2009) present
a finite-horizon integer programming model for allocating
operating room capacity, which minimizes inpatients’ cost
and the mismatch of supply and demand of operating room
hours. In our paper, we also apply integer programming

to minimize the mismatch of supply and demand of boat
hours along with the total fleet operating cost.

A couple of military resource allocation applications
are similar to the USCG project described in this paper.
Billings (2005) formulates and solves an integer linear
program that prescribes a minimum-cost load-and-unload
schedule for U.S. Navy ships homeported in San Diego,
subject to constraints on ship availability and port capa-
bilities. These constraints are similar to the constraints in
our model that describe boat availability and mission clas-
sification of stations. Zarybnisky (2003) allocates aircraft
resources among sites that conduct reconnaissance, take
strike actions, and gather battle damage information; our
model is similar in the sense that stations’ missions strongly
influence which boats are assigned to those stations.

The U.S. Coast Guard has also applied resource alloca-
tion models in a variety of contexts. Brown et al. (1996)
apply an integer programming model to schedule district
cutter assignments for weekly patrol missions; the objective
function either minimizes total assignment costs or mini-
mizes the change from the previous scheduling period. An
important aspect of their model formulation is that its con-
straints represent a variety of USCG Business Rules used
for allocating cutters, such as assurance of patrol cover-
age, enforcement of equitable distribution of patrols, and
restrictions on consecutive cutter assignments. We have
applied a similar approach in our paper to ensure that the
USCG Business Rules for boat allocations are satisfied.
Deshpande et al. (2006) and Everingham et al. (2008) dis-
cuss the design and implementation, respectively, of models
to improve the USCG aircraft service parts supply chain.
These researchers formulate and implement an assignment
model that merges two databases representing the supply of
aircraft parts and the demand for maintenance. The model’s
objective is to minimize the delay between the times air-
craft maintenance was requested and received. We have
designed an objective function that is structurally simi-
lar to that chosen by these authors. It is also notewor-
thy that Everingham et al. (2008) utilize a large-scale LP
solver (from Frontline Systems) to optimize their model in
Microsoft Excel, an implementation choice also employed
in our paper.
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Narrowing the scope of our discussion, to the best of
our knowledge there is only one paper, Radovilsky and
Koermer (2007), that directly addresses the optimal allo-
cation of small boat resources among USCG boat stations.
The authors present an integer programming model that
minimizes the deviation of supply and demand hours at
boat stations, subject to two sets of constraints: (1) A min-
imum number of boats is required at each station, to
ensure readiness, and (2) a maximum number of boat types
is allowed at stations, motivated by minimizing stations’
maintenance costs. The authors, using boat and station data
from the USCG Pacific districts, demonstrated that the for-
mulated model was capable of reducing excess capacity
of boats at stations by 74%, lowering shortages of boats
by 92%, decreasing the fleet size by more than 15%, and
lowering the fleet cost by approximately 21%. Despite the
fact that this model exhibits notable results, it also con-
tains substantial limitations: (1) The model defines boats
(not hours) as a primitive variable, which limits the model’s
ability to match boat supply and station demand hours;
(2) it includes only a subset of the existing USCG boat
types; (3) it does not incorporate a variety of critically
important USCG Business Rules required in managing boat
allocations; and (4) the model does not allow sharing lim-
ited boat resources between neighboring stations. In our
paper we build upon this model to specifically address these
weaknesses.

One of the main contributions of our paper is the value-
at-risk (VAR) measurement and analysis of the effects of
demand uncertainty on USCG allocations. Therefore, we
briefly discuss literature sources on the VAR technique. In
general, VAR is a popular tool for measuring a risk of
loss on a financial portfolio of assets in a given period of
time. As a measure of financial risk, VAR has been exten-
sively discussed in the financial and banking research liter-
ature (e.g., see Hull 2000). However, the VAR approach is
also employed for measuring and analyzing risk manage-
ment decisions in nonfinancial applications. Wu and Olson
(2010) use the VAR technique in assessing supply risks as
a part of an enterprise risk management system. Kauffman
and Sougstad (2007) propose a VAR-based model to advise
vendors on setting optimal parameters for IT service con-
tracts subject to acceptable levels of risk. Ravindran et al.
(2010) develop a supplier selection model that describes
operational disruption risk using VAR constructs. To the
best of our knowledge, our application of VAR, in conjunc-
tion with robust optimization ideas, has not been applied
in any USCG-related resource allocation model nor in any
existing USCG risk management technique. More gener-
ally, Birge and Louveaux (2011) is a good reference for the
probabilistic constraints that we utilize to model the VAR
ideas, especially §3.2 (probabilistic or chance constraints).

1.2. Contributions

On the practical side, we have designed an integer lin-
ear programming model, called the boat allocation tool

(BAT) model, for the USCG allocation problem of match-
ing the supply of boat hours with the demand of stations.
The BAT model is the first USCG boat allocation model
that applies optimization techniques and incorporates new
operational constraints that arose after the tragic events of
September 11, 2001. The BAT model is currently being
used for allocating the entire USCG fleet of boats nation-
wide, and in this paper we describe in detail the USCG’s
process of adopting and using our model and its signifi-
cant performance results. On the modeling side, we have
also provided a number of contributions. We have intro-
duced a model for the optimal geographical sharing of boat
resources. We have defined boat hours, rather than boats,
as a primitive decision variable in our model, which adds
operational flexibility in the sense that each boat can sup-
ply different types and amounts of supply hours and each
station can demand different types and amounts of demand
hours. Finally, we introduce risk management of boat short-
ages into our model, by allowing stations to have uncertain
demand, modeled as a random variable with known sum-
mary statistics but unknown distribution. Applying value-
at-risk (VAR) and robust optimization concepts, we derive
linear inequality constraints for managing risk so that our
generalized model remains a linear (rather than quadratic)
one. To the best of our knowledge, the unique combination
of VAR and robust optimization ideas has not been applied
in any resource allocation model nor in any existing USCG
risk management technique, and their application is one of
the main contributions of our paper.

The paper is organized as follows. In §2 we provide a
complete description of the BAT model, including a gen-
eralized version that models uncertain demand. Section 3
reports on the USCG adoption of the BAT model, the modi-
fication and implementation of the model recommendations,
and the substantial improvements of USCG performance
metrics. Section 4 presents three parametric studies, ana-
lyzing (1) the effect of changing a critical sharing parame-
ter, (2) the trade-offs between the different objectives of the
model, and (3) the trade-off between risk management and
optimality. We provide concluding thoughts in §5.

2. The Boat Allocation Tool (BAT) Model

2.1. Model Formulation

The U.S. Coast Guard application described in this paper
is a resource allocation problem. The task is to allocate a
fleet of approximately 800 boats of 11 different types to
178 Coast Guard stations. The BAT model, an integer linear
program, uses the following sets:

• t ∈ T : Set of boat types.
• s ∈ S: Set of stations.
• m ∈M: Set of specialized station missions.
• s ∈ Sm: Set of stations that are assigned mission

m ∈M.
• t ∈ Tm: Set of boat types that are appropriate for mis-

sion m ∈M.
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• t ∈ Ts: Set of boat types allowed at station s ∈ S.
• t ∈ Tc: Set of critical boat types, whose presence

requires the presence of another boat type.
The BAT model parameters are as follows:

• Bt: Available number of boats of type t.
• dt: Yearly default capacity, in hours, of a type t boat.
• Hs: Yearly demand, in hours, of station s.
• ft: Yearly fixed cost of utilizing one boat of type t.
• vt: Variable cost of utilizing one boat of type t for one

hour.
• bm: Minimum number of boats required to satisfy mis-

sion m at a station.
• HAs: Yearly demand for a class A ⊆ T of boats at

station s, in hours.
• mt: Multiplier (for dt) to provide minimum allowable

hours assigned to a boat of type t.
• Mt: Multiplier (for dt) to provide maximum allowable

hours assigned to a boat of type t.
• ds1 s′ : Distance between stations s and s′.
• �: Distance threshold to allow MLB sharing.
• R = 84s1 s′5 ∈ S × S2 s < s′ ∧ ds1 s′ ¶ �9: Set of pairs

of stations eligible to share MLB boats.
Table 1 summarizes the boat types and key parame-

ters used in our model. We briefly elaborate on how cer-
tain parameters are computed. The yearly demands Hs and
HAs of station s (and boat class A) are calculated using
five-year (2005–2009) averages of historical data; how-
ever, if a change in workload is anticipated, a BAT model
user can easily update the relevant parameter. The yearly
fixed cost ft of using a single boat of type t is calculated
by averaging five years of station-level maintenance costs,
electronic navigational chart (map) updates, and support
overhead. The hourly cost vt of operating boat type t is cal-
culated by averaging five years of parts and materials cost,
fire/flooding/collision repairs, maintenance services trans-
portation costs, and a centralized outboard engine overhaul
program. For each boat type, the default annual boat capac-
ity dt , measured in hours, is derived from the expected
lifespan of boats (e.g., 25 years for the MLB) and their
depreciation over the lifespan, which is mandated by the
USCG budget.

The BAT model’s variables are as follows:
• xst: Integer number of boats of type t allocated to sta-

tion s, ∀ s1 t.
• yst: Binary variable indicating whether or not boat type

t is utilized at station s, ∀ s1 t.
• hst: Number of hours of boat type t assigned to station

s, ∀ s1 t.
• qs1 s′ : Binary variable indicating whether or not stations

s and s′ share an MLB boat that is hosted by station s′

(station s has no MLBs), ∀ 4s1 s′5 ∈R.
• rs′1 s: Binary variable indicating whether or not stations

s′ and s share an MLB boat that is hosted by station s′

(station s has no MLBs), ∀ 4s′1 s5 ∈R.

Finally, we present the BAT model and describe the for-
mulation in detail.

minw1

∑

s∈S

∣

∣

∣

∣

∑

t∈T

hst −Hs

∣

∣

∣

∣

+w2

∑

s∈S

∑

t∈T

yst

+w3

∑

s∈S

∑

t∈T

4ftxst + vthst51 (1)

∑

s∈S

xst ¶ Bt1 ∀ t ∈ T 1 (2)

xst ¶ Btyst1 ∀ s ∈ S1 t ∈ T 1 (3)
∑

t∈Tm

xst ¾ bm1 ∀ s ∈ Sm1 m ∈M1 (4)

∑

t∈T \Ts

xst = 01 ∀ s ∈ S1 (5)

∑

t∈T

xst ¾ 21 ∀ s ∈ S1 (6)

∑

t∈T \Tc

xst ¾ xs�/B�1 ∀ s ∈ S1 � ∈ Tc1 (7)

hst ¶ dtBtxst1 ∀ s ∈ S1 t ∈ T 1
∑

s∈S

hst ¶ dtBt1

∀ t ∈ T 1 (8)

mtdtxst ¶ hst ¶Mtdtxst1 ∀ s ∈ S1 t ∈ T 1 (9)
∑

t∈Ai

hst ¾HAis
1 ∀ s ∈ S1 i = 11 0 0 0 161 (10)

xs0 ¾ 1 −
∑

s′ 2 4s1 s′5∈R

qs1 s′ −
∑

s′ 2 4s′1 s5∈R

rs′1 s1 s ∈ S1 (11)

∑

s′ 2 4s1 s′5∈R

4qs1 s′ + rs1 s′5+
∑

s′ 2 4s′1 s5∈R

4qs′1 s + rs′1 s5¶ 11

s ∈ S1 (12)

xst ∈�1 yst ∈ 801191 hst ¾ 01 ∀ s ∈ S1 t ∈ T 0 (13)

The multiobjective function presented in Expression (1)
contains three terms. The first term represents the devia-
tion of the overall supply of hours from overall demand
of hours. The second term measures the number of types
of boats at each station, as fewer boat types at a station
translate directly into lower boat maintenance costs. The
third term represents total fleet operating cost. To provide
flexibility in assigning importance to the three objectives,
a BAT model user can define inputs w11 w21 w3 ¾ 0, where
w1 + w2 + w3 = 1; §4.2 reports the results of paramet-
ric experiments that provide guidance for choosing these
weights. Finally, the absolute value term is linearized by
the standard technique of adding supplemental variables.

Constraints (2)–(3) model the fact that the number of
boats utilized can be at most the supply of boats and estab-
lishes the relationship between the number of boats x and
respective binary variables y, respectively. The remaining
constraints model USCG Business Rules, which represent
long-standing USCG policy.

Constraint (4) makes sure that stations s ∈ Sm that are
assigned mission m ∈ M are given enough boats bm, of
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qualified types Tm, to satisfy the mission. For example, the
USCG defines certain stations to have a tactical, or law
enforcement, mission. These stations must have at least
two boats capable of performing law enforcement activities,
which are the MLB, RB-M, RB-S, and SPC-LE. Other mis-
sion classifications include pursuit missions, which require
fast boats, and cold weather rescue missions. Note that mis-
sions, of which there are 15, are not necessarily mutually
exclusive, and many stations are responsible for multiple
missions. A related set of business rules state that certain
boat types are not allowed at certain stations. Constraint (5)
makes sure that a station only gets boats that are allowed
at the station.

Next, we present the business rules’ approach to the
management of various risks. Any station must have at least
two boats, of any type, as represented in Constraint (6).
This business rule is motivated by the fact that not all boats
are operational 100% of the time, and having at least two
boats increases the chances that the station has at least
one operational boat at all times. The USCG also intro-
duced business rules designed to diversify the boat alloca-
tion, especially around critical boat types. For example, if
an MLB is used at a station, then another boat type must
also be present at the station. Constraint (7) makes sure
that if a boat of type t ∈ TC is present, then another boat
type t 6∈ Tc must also be present.

The first part of Constraint (8) ensures that the BAT allo-
cation assigns only hst hours of type t to station s if there
are boats of that type at that station. The second part of
Constraint (8) makes sure the BAT model does not assign
more hours overall than there are available, with respect to
the default hours dt . Constraint (9), required by the busi-
ness rules, establishes limits regarding how many hours can
be assigned per boat of type t, as a function of the default
hours per boat dt . The hours per boat of type t at station s,
assuming xst > 0, is hst/xst , which might be much less or
much more than dt . For each boat type t, the USCG pro-
vided two multipliers 0 <mt < 1 and Mt > 1 that preclude
extreme fluctuations. The USCG determined these multipli-
ers by examining historical boat usage data. For example,
historically, an MLB boat would always use at least half
its allocated hours and, with special OBF permission and
additional maintenance, would use at most 50% more than
its allocated hours. Thus, the MLB boat type was assigned
the values m0 = 005 and M0 = 105.

The BAT model also eliminates supply shortages for crit-
ical demands. For all stations s, the USCG provided HAs ,
the number of hours demanded for a class A⊆ T of boats.
In particular, there are six possible values for A:

A1 = “Big boats” = 8MLB, RB-M, SPC-NLB91

A2 = “Tactical” = 8RB-M, RB-S, MLB, SPC-LE91

A3 = “Pursuit” = 8RB-M, SPC-LE91

A4 = “Shallow Water” = 8SPC-SW, SPC-SKF91

A5 = “Ice Rescue Long Haul” = 8SPC-AIR91

A6 = “Ice Rescue Short Haul” = 8SPC-ICE91

where boat supply shortages are precluded, as modeled
in Constraint (10). Note that these special groupings of
demand hours are not collectively exhaustive and shortages
at any station are still possible.

Finally, we describe an intrinsic supply shortage prob-
lem and our novel modeling solution of optimally shar-
ing resources. The U.S. Coast Guard project revealed that
MLB boats, a critical boat type required by many stations,
must be shared, because the supply was not sufficient to
meet demand. The USCG stipulated that if two stations
s1 and s2 each require an MLB boat, then they are eligi-
ble to share one boat, but only if they are close enough
to each other geographically. In particular, if the distance,
defined as the shortest path length that a boat can traverse
(in miles) between two stations s1 and s2, is less than a
user-defined threshold �, then station s1’s MLB boat can
be used to satisfy station s2’s MLB coverage needs (or vice
versa). The USCG determines the distance between two
adjacent stations by using a search-and-rescue map to man-
ually calculate the shortest distance by water between the
two stations. Constraints (11)–(12) represent our modeling
solution.

As the threshold � increases, the responsiveness of the
boats decreases, because they have to travel a longer dis-
tance on average. Therefore, the minimum value of �
that allows a feasible boat allocation was of interest to
the USCG. It is straightforward to verify that the feasible
region of the BAT model increases with �, and we were
able to apply a simple binary search to find that �∗ = 28
miles is the smallest value that still allows a feasible allo-
cation. This concept of optimally sharing the supply of a
scarce resource (MLB boats) was a new and valuable plan-
ning tool for the USCG. Previous to the BAT model, shar-
ing was not a part of the boat allocation process, and the
business rules were consistently violated (specifically, the
rule to have two big boats at stations that experience heavy
weather).

2.1.1. Post Processing. After the BAT model is opti-
mized, supply hours are then evenly assigned to boats as
follows: assuming xst > 0, each boat of type t at station s
will get hst/xst supply hours. Shared MLB boats are allo-
cated hours only at their assigned stations, and an MLB
boat operating at a station that is sharing it will use hours
from another boat at that station.

2.2. BAT Model Generalization:
Risk Management via Value-at-Risk

One main drawback of the BAT model, as requested by
the USCG, is the omission of any measure of demand
variability. The risk of a mismatch between supply and
demand, especially boat shortages, resulting from an inac-
curate demand estimate is not explicitly captured. The busi-
ness rules do incorporate risk management indirectly in
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two ways. First, supply variability is addressed by requir-
ing each station to have at least two boats (Constraint (6)
in the BAT model formulation), motivated by the fact that
boats are not available 100% of the time. Indeed, each boat
type has a capability rate, essentially a likelihood of being
operational, ranging from 76% to 85%; requiring at least
two boats results in a station having an operational boat
at least 94.2% (= 1 − 41 − 007652) of the time. Second,
high demand variability exists at a small number of sta-
tions (to remain unnamed at USCG request), and the USCG
compensates by increasing the point estimate of demand
to induce a “safety stock” of boat hours at the station.
More specifically, the USCG will update the demand esti-
mate Hs according to a trend analysis; i.e., if historical
demand is trending strongly, the demand estimate (an aver-
age) is updated according to the trend analysis. However,
in contrast to the USCG’s approach to modeling supply
uncertainty, this trending method does not utilize any quan-
titative measure of uncertainty and this section presents our
generalization of the BAT model to incorporate demand
uncertainty, as measured by a standard deviation, more
rigorously.

Our approach combines the financial concept of value-
at-risk (VAR) and techniques of robust optimization. Tra-
ditionally, VAR is utilized in financial applications and is
defined as the minimum value �, where the probability of
a loss greater than � is at most a user-defined confidence
level �; see Hull (2000) for further financial details. While
VAR constraints are equivalent to chance constraints (see
Sarykalin et al. 2008), the VAR parameters � and � allow
us to conveniently describe user-defined risk tolerances, in
the form of an acceptable yearly boat shortage � at a station
and a corresponding acceptable likelihood � that the short-
age limit is breached. For example, the manager at a boat
station is willing to accept only at most a probability � =

0005 of a shortage of at least 500 hours (� = 500). Robust
optimization allows us to avoid dependence on specific dis-
tributions of demand, and our user-defined risk tolerances
must be satisfied for all distributions with a given mean and
standard deviation. Finally, the combination of value-at-risk
and robust optimization allows users to incorporate demand
uncertainty without increasing the complexity of the BAT
model—it remains a linear integer program, as opposed to
a quadratic one.

2.2.1. Modeling Approach. Let Suncertain denote the set
of stations that do not have an accurate point forecast. The
choice of Suncertain can reflect actual limitations of forecast-
ing ability or can instead depend on the importance of
avoiding shortages at certain important stations (i.e., near
highly populated cities at risk of terrorist attacks).

We model each Hs , s ∈ Suncertain, as a random variable
with a mean of �s and a standard deviation of �s . How-
ever, we assume that the distribution of Hs is not known.
Indeed, insufficient data at the USCG precluded an accu-
rate estimation of the demand distribution for all stations.

A benefit of our modeling approach is that demand fore-
casting can be accomplished via only two numbers (�s , �s)
rather than a complete probability distribution, the determi-
nation of which is a more daunting task in practice.

The risk of a boat shortage forms the core of USCG
risk management. The shortage (random variable) at station
s ∈ Suncertain is defined as Hs −

∑

t∈T hst . To better man-
age these shortages, our modeling approach utilizes two
user-defined parameters per station. The threshold parame-
ter �s > 0 represents an upper limit of acceptable shortage
hours, and �s ∈ 40115 represents the acceptable likelihood
that the upper limit is breached; in probabilistic terms,
P4Hs −

∑

t∈T hst ¾ �s5 ¶ �s . Because a distribution is not
prescribed, we require that the definitions of �s and �s hold
for all distributions F of Hs that have the given mean and
standard deviation. Mathematically,

max
F∼4�s 1�s5

P
(

Hs −
∑

t∈T

hst ¾ �s

)

¶ �s ∀ s ∈ Suncertain1 (14)

where maxF∼4�s 1�s5
represents the maximum over all distri-

butions F with a mean of �s and a standard deviation of �s .
In other words, a planner can guarantee that the shortage at
station s will be at most �s with at least 41−�s5 probability,
for any valid distribution F . These are robust value-at-risk
(VAR) constraints, where the “value” is the shortage of sup-
ply at a given station and the “risk” is the probability of a
shortage exceeding a predetermined threshold.

The inherent conservatism of this approach is indeed
desirable in today’s society, which is vulnerable to low-
probability, high-impact events. Furthermore, there is no
assumption of independence among the Hs random vari-
ables. Indeed, the worst-case distribution is determined by
considering all distributions with the given mean and stan-
dard deviation, including those marginal distributions that
are dependent on other stations’ random variables.

Finally, note that there are a number of ways to gener-
ate the parameters discussed in this section. The two-point
forecast 4�s1�s5 can be generated using historical data. If
data are limited, �s can represent a qualitative estimate of
demand and �s is chosen to represent the confidence in that
estimate (i.e., low values of �s for high confidence). The
parameter �s will clearly depend on the station s and its
assigned missions. Critical missions, such as law enforce-
ment, would require a lower threshold �s , whereas less crit-
ical missions, such as general patrol, might allow a higher
threshold. The �s parameters depend on the risk tolerances
of a decision maker but are generally equal to 1%–5%; e.g.,
see Pearson (2002).

2.2.2. Linearizing the Constraints. We next show
that Constraint (14) can be represented using linear inequal-
ity constraints, which facilitate their incorporation into the
BAT model. We employ the following one-sided version
of the Chebyshev inequality for a random variable Y with
mean �, variance �2, and constant �> 0:

�4Y ¾ 41 + �5�5¶ �2

�2 +�2�2
0
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Note that this inequality is tight in the sense that for
any � > 0, there exists a distribution F for Y , with the
given mean � and standard deviation � , such that �4Y ¾
41 + �5�5 = �2/4�2 +�2�25. We apply the Chebyshev
inequality to the probability expression in the left-hand side
of Constraint (14) with � = 4�s +

∑

t∈T hst − �s5/�s to
see that

�

(

Hs ¾ �s +
∑

t∈T

hst

)

¶ �2
s

�2
s + 4�s +

∑

t∈T hst −�s5
2
1

s ∈ Suncertain0 (15)

Because the Chebyshev inequality is tight, requiring that
the right-hand side of Constraint (14), namely �s , be greater
than or equal to the right-hand side of Inequality (15)
gives us

�s +
∑

t∈T

hst ¾�s +�s

√

(

1
�s

− 1
)

1 ∀ s ∈ Suncertain1 (16)

a linear inequality that is equivalent to Constraint (14).
Intuitively, this constraint states that the available supply
hours (sum of acceptable shortage and assigned hours) must
be sufficient to cover at least a user-defined standard devi-
ation multiple above the mean demand.

2.2.3. Incorporating Value-at-Risk Constraints Into
the BAT Model. To add the value-at-risk constraints,
some changes to the BAT model are required. First,
objective function (1) must be modified. For s ∈ Suncertain,
the first component of the original objective function is
�
∑

t∈T hst −Hs�, a random variable. In these expressions,
we replace the random variable Hs with its mean �s , which
results in a new objective function:

w1

(

∑

s∈S\Suncertain

∣

∣

∣

∑

t∈T

hst −Hs

∣

∣

∣

+
∑

s∈Suncertain

∣

∣

∣

∑

t∈T

hst −�s

∣

∣

∣

)

+w2

∑

s∈S

∑

t∈T

yst +w3

∑

s∈S

∑

t∈T

(

ftxst + vthst

)

0 (17)

Note that the Hs parameters appear nowhere else in
the deterministic model previously described; the specific
demands in Constraint (10) are still known, as they are
absolute lower bounds on demand. Second, we add the
VAR Constraint (16) to the BAT model; all other Con-
straints (2)–(13) in the formulation remain the same. The
BAT model that incorporates both these changes is denoted
the BAT-VAR model.

3. Implementation and Impact of the
BAT Model

In this section we report on the practical implementation
and impact of the model presented in §2.1. The model
generalization in §2.2 is the subject of a current ongoing
project and has not yet been implemented.

As mentioned previously, the USCG requested that we
implement the BAT model in Excel, which is the Coast
Guard’s standard tool for managing and planning boat
resources and their allocations. In particular, we utilized
Frontline Systems’ Premium Solver Platform for Excel
V9.5 and Standard Large-Scale LP Solver Engine V9.0
Windows as the optimization engine. To streamline and
ease the implementation and utilization of the BAT model
with these software packages, we developed an Excel-based
decision support system (DSS) .

The DSS allows a BAT user to modify all parameters
in Table 1, as well as general and specific demand hours
(Hs and HAs). However, for the duration of the project, these
parameters remained fixed at the values listed in Table 1.
The user can also modify the importance of each optimiza-
tion’s criteria—minimum deviation of demanded and sup-
plied hours, minimum number of boat types per station, and
total allocation cost—by varying their respective weights in
the BAT model objective. Once the BAT model is optimized,
the DSS will display the optimal number of boats of various
types at each station, respective amount of boat hours to be
allocated to each boat and performance metrics.

For training the USCG users on how to apply the BAT
model and its Excel-based DSS, we have developed a
technical manual—the BAT User’s Guide. This guide pro-
vides a detailed description of the BAT model, its input
requirements, and output results. The guide also presents
a step-by-step implementation process and offers in-depth
instruction on using the DSS. With the help of the BAT
User’s Guide, operations research specialists were able to
quickly implement the BAT model and start utilizing it.

3.1. USCG Implementation

The BAT model described in §2.1 is currently being uti-
lized by the platform division (PD) of the USCG’s Office of
Boat Forces (OBF) for optimizing boat allocations among
the boat stations. A PD group, consisting of four civilian
and military personnel with operations research training, is
the primary BAT model user and program manager for all
USCG boats. This PD group directly communicates with
district boat managers, who are in charge of boat alloca-
tions in their own districts. The PD is also responsible for
coordinating the rearrangement of boats, which is accom-
plished through the issuance of formal military messages
to the districts. Finally, each station has a boat office that
communicates directly with its district manager.

The USCG-defined benchmark for evaluating the BAT
model is the original USCG boat allocation for 2010–2015,
which we denote as the original allocation. This allocation
was created in September 2009 to incorporate the replace-
ment of UTB boats, which are over 40 years old, with new
RB-M boats. The USCG has a contract to have 30 new
RB-M boats delivered each year from 2010 through 2015,
which motivates the 2010–2015 time frame. From a mod-
eling perspective, the final 2015 number of RB-M boats
and all other boat numbers are essentially fixed, barring
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another September 11th type event (the USCG significantly
increased their boat numbers after 9/11).

After optimizing the BAT model, we created the rec-
ommendations for the OBF on boat allocations, which we
denote as the BAT allocation. These recommendations were
utilized by the OBF to create a new boat allocation, denoted
the implemented allocation, to replace the original allo-
cation. The reasons for the differences between the BAT
and implemented allocations are discussed below in §3.4.
Boat re-assignments, prescribed by the implemented allo-
cation, started in 2010. The USCG is planning a six-year
implementation, a domino process dictated by the deliv-
eries of new RB-M boats. In 2010, the USCG received
30 new RB-M boats, which were delivered to stations
according to the implemented allocation; when a station
receives a new RB-M, the station’s remaining boat allo-
cation is updated according to the implemented allocation.
The USCG expects 80% of the implemented allocation to
be completed by the end of 2012, 90% by the end of 2013
and 100% by 2015. The large jump in completion percent-
age in 2012 is due to the default hours per boat dt being
relaxed to implement the variable assignment hours hst .
Finally, the major boat reallocation due to the BAT model,
consisting of at least 30 boat changes per year (i.e., deliv-
ery of RB-M boats and corresponding changes), is much
larger than historical reallocations, which occurred due to
station officers’ requests with the OBF and consisted of six
changes per year, on average.

3.2. Internal Resistance

Within the USCG, there was some resistance to the changes
brought about by the BAT model. Occasionally, a station
officer or district manager will desire to allocate boats
differently than the implemented allocation. This situation
usually occurs due to the conflict between centralized and
decentralized decision making. For example, a station man-
ager will want the best boat X to meet his mission while
the central OBF authority states that boat Y , which might
not be the best, is still sufficient for the mission. As another
example, some station officers wanted to have both an MLB
and RB-M at the same station, which is precluded by the
official USCG Business Rules. Another issue is that some
district managers and station officers would prefer to keep
standard hours defined for each boat type as opposed to
the more rigorous variable hours suggested by the BAT
model. According to the OBF, conservatism, resistance to
change and additional workload (i.e., tracking hourly boat-
specific assignments) drive this reluctance. Finally, the OBF
stated that only a small number of stations attempted to
diverge from the official results, and most comply with the
recommendations.

The OBF considers it a responsibility to educate the dis-
trict and station personnel that the allocations must follow
the business rules, as embodied in the BAT model. The
OBF is also willing to listen to these managers and offi-
cers, and incorporate their suggestions, if possible, into the

model. For example, some station managers will argue for
a larger boat type than that assigned to them, because of
“trailer” requirements, which are not incorporated into the
BAT Model. These requirements mean that a small boat
will be hitched as a trailer to a larger boat for transporta-
tion across long distances. Consequently, if some resistance
is well reasoned, the OBF will make minor changes to the
boat allocation.

3.3. Performance Metrics

We developed the following 10 performance metrics to
quantify and compare the boat allocation improvements in
the BAT and implemented allocations over the original allo-
cation. We utilize the notation 1{E} to indicate whether an
expression E is true or not (i.e., 18E9= 1 if E is true and
18E9= 0 if E is false). Also, recall that there are a total of
178 USCG stations. Finally, note that these metrics are gen-
erally designed to measure how well the supply of boats, as
embodied by the xst and hst variables, match the stations’
demand of hours Hs , which are USCG-supplied parame-
ters exogenous to the BAT model. Furthermore, these met-
rics mirror traditional metrics that the USCG utilized to
evaluate their past boat allocations and were created at the
USCG’s request.

P1: Total size of utilized boat fleet

¬
∑

s∈S

∑

t

xst0

P2: Percentage of stations with excess hours

¬
∑

s∈S 18
∑

t∈T hst >Hs9

178
0

P3: Percentage of stations with a shortage of hours

¬
∑

s∈S 18Hs >
∑

t∈T hst9

178
0

P4: Average excess hours per station with an excess

¬
∑

s∈S4
∑

t∈T hst −Hs518
∑

t∈T hst >Hs9
∑

s∈S 18
∑

t∈T hst >Hs9
0

P5: Average shortage hours per station with an shortage

¬
∑

s∈S4Hs −
∑

t∈T hst518Hs >
∑

t∈T hst9
∑

s∈S 18Hs >
∑

t∈T hst9
0

P6: Percentage of stations with more than two boat types

¬
∑

s∈S 18
∑

t∈T yst > 29
178

0

P7: Average number of boat types per station

¬
∑

s∈S

∑

t∈T yst
178

0
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Table 2. Differences between original, BAT, and imple-
mented allocations.

Original Implemented
Boat type allocation BAT allocation allocation

MLB 106 102 102
SPC-NLB 3 2 3
SPC-HWX 4 0 4
RB-M 166 166 158
RB-S 360 208 318
RBS-AUX 10 10 10
SPC-LE 33 26 20
SPC-SW 47 47 47
SPC-AIR 8 8 12
SPC-ICE 0 24 0
SPC-SKF 67 29 42

Totals 804 622 716

P8: Fleet operating cost

¬
∑

s∈S

∑

t∈T

4ftxst + vthst50

P9: Capacityutilization¬(supplyutilized)/(supplyavailable):
—Supply available ¬∑t∈T dtBt .
—Supply utilized ¬ supply available − excess hours:

∗Original USCG allocation, excess hours
¬∑s∈S4

∑

t∈T dtxst −Hs518
∑

t∈T dtxst >Hs9.
∗BAT allocation, excess hours
¬∑s∈S4

∑

t∈T hst −Hs518
∑

t∈T hst >Hs9.
P10: Demand shortfall rate ¬ (shortage hours)/(total

demand hours):
—Total demand hours ¬∑s∈S Hs .

∗Original USCG allocation, shortage hours
¬∑s∈S4Hs −

∑

t∈T dtxst518Hs >
∑

t∈T dtxst9.
∗BAT allocation, shortage hours
¬∑s∈S4Hs −

∑

t∈T hst518Hs >
∑

t∈T hst9.

3.4. Discussion of the BAT Model’s Impact

The practical impact of the model is significant. In Table 2,
we summarize the composition of the boat fleets in the
original allocation, the BAT allocation, using the USCG
defined weights w1 = 0095 and w2 = w3 = 00025, and the
implemented allocation.

Focusing on the original and implemented allocation
columns of Table 2, we see a significant decrease in the
number of many types of boats (e.g., RB-S, SPC-LE, SPC-
SKF) utilized in the field. The reason for these decreases
is primarily the BAT model’s ability to assign optimal sup-
ply hours to boats (hst) rather than using the default hours
(dt). This greater planning flexibility allows many boats to
satisfy more demand hours, reducing the required number
of boats. Therefore, the hourly assignment variables hst not
only allowed a better match of supply and demand, but they
also resulted in a reduction of the number of boats required.
These improvements clearly depend on the values of mt

and Mt , t ∈ T , which determine how far a boat’s allocation

of hours differs from the default hours dt . Decreasing mt

and/or increasing Mt will result in a better match of supply
and demand and an even smaller fleet size. Therefore, mt

should be as small as possible and Mt as large as possi-
ble to maximize the impact of the BAT model. Extending
these parameters beyond their derivation from boat-specific
historical data (c.f., §2.1), which describes suboptimal boat
behavior, will increase planning flexibility and result in a
better match of supply and demand, with fewer boats.

Next, we discuss the discrepancies between the BAT
and implemented allocations in Table 2. The USCG modi-
fied the BAT allocation for approximately 25% of the sta-
tions, which increased the necessary fleet size by 15%.
Many of the changes in the implemented allocation were
minor and resulted from station-specific conditions that the
BAT model did not incorporate. The reasons for many of
these changes were related to the degree of heavy weather
or sea roughness a station receives. In the BAT model,
a station that experiences heavy weather is assigned a
“big boat,” such as an MLB or RB-M (c.f., definition of
set A1, in §2.1). However, the BAT model does not dif-
ferentiate between the degrees of heavy weather a station
experiences, or the different capabilities of the boat types
to handle these degrees. As a result, the USCG replaced
MLBs at certain stations with RB-Ms, and at other stations
the opposite occurred. The overall reduction in RB-M boats
is also a result of the “degree” of heavy weather a station
experiences, where the expensive RB-M is replaced with
a cheaper RB-S, at eligible stations. We suggested to the
USCG to create a new business rule that would address
the degree of heavy weather or sea roughness, incorporate
this rule into the BAT model, and then re-optimize the boat
allocations. However, rather than increase the complexity
of the BAT model, the USCG preferred to tweak the final
allocation using these considerations.

Two major differences between the BAT and imple-
mented allocations are substantial increases in the number
of RB-S boats (53% increase) and SPC-SKF boats (45%
increase). The increase in RB-S boats is mainly due to a
readiness rule that was implemented by the USCG after the
BAT model was delivered. In particular, each RB-S boat is
historically operational 80% of the time (the 20% reflecting
maintenance time), but the USCG stipulated that a large
class of stations must have an operational RB-S boat avail-
able 99.0% of the time. Since this new RB-S constraint
was not incorporated into the BAT model, additional RB-S
boats were required at a multitude of stations, resulting in
this discrepancy between the BAT and implemented allo-
cations. SPC-SKF boats, on the other hand, are primarily
used to respond to flood events, which are unpredictable.
The modification of SPC-SKF assignments reflects real-
time information about flood potential at different areas;
indeed, the allocation of SPC-SKF boats can change at any
time. In fact, due to the unpredictable nature of flooding,
the USCG debated about the inclusion of the SPC-SKF
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Table 3. Performance metrics for BAT model.

Original BAT Implemented
allocation allocation allocation

P1: Total size of utilized boat fleet 804 622 716
P2: Percentage of stations with excess hours (%) 6102 107 4106
P3: Percentage of stations with a shortage of hours (%) 3808 000 101
P4: Average excess hours per station with an excess 55603 10200 20908
P5: Average shortage hours per stations with a shortage 56301 000 7000
P6: Percentage of stations with more than two boat types (%) 3706 3009 3009
P7: Average number of boat types per station 301 203 202
P8: Fleet operating cost ($) 45,648,887 43,379,851 43,541,610
P9: Capacity utilization (%) 8503 9900 9602
P10: Demand shortfall rate (%) 9090 0000 0004

boat type into the BAT model, ultimately favoring inclu-
sion. Finally, the USCG did make one major change to the
BAT model recommendations: the SPC-ICE boat type was
eliminated from the implemented allocation, as the “ice res-
cue short haul” missions (set A6) are now being satisfied
by nonboat resources. Overall, to avoid increasing the com-
plexity of the BAT model, the USCG decided to adjust the
boat allocations rather than incorporate the new changes
into the model and then re-optimize it.

In Table 3, we summarize the performance metrics
P1–P10 obtained from the original, BAT, and implemented
allocations. We first compare the implemented and orig-
inal allocations. Most notably, the implemented alloca-
tion, based heavily on the BAT allocation, substantially
improves the performance metrics when compared with
the original allocation. Because the total required fleet size
decreased by 88 boats in the implemented allocation ver-
sus the original allocation, the performance metrics show
that the boats are now being utilized more effectively, with
respect to the three objectives of the BAT model. First,
the mismatch between supply and demand is significantly
improved. Indeed, there is a substantial reduction in the
percentage of stations with shortage or excess hours, and
the average amount of shortage or excess hours per station
is also extensively reduced; the greatest improvements are
for the shortage Metrics P3 and P5. Second, the percentage
of stations with more than two boat types and the average
number of boat types per station have a healthy reduction in
the implemented allocation as compared with the original
allocation (Metrics P6 and P7). Third, the cost savings are
4.6% (Metric P8), albeit lower than that of the fleet reduc-
tion (10.9%). This was because the fleet operating cost’s
decrease is associated with a reduction in the total fixed
cost

∑

s∈S1 t∈T ftxst , which depends on the number of boats.
At the same time, the fleet operating cost’s reduction is
not affected by the total variable cost

∑

s∈S1 t∈T vthst , which
depends only on the assigned number of supply hours hst ,
and not the fleet size changes.

The increase in capacity utilization (Metric P9) signifies
that the implemented allocation is more effectively using a
smaller fleet of boats; in other words, waste is significantly
reduced. The drastic reduction in the demand shortfall rate

(Metric P10) substantially increases the USCG’s service
level. Almost all, as opposed to 90 out of 100, USCG cus-
tomers will be served. As a result of the BAT model, there
is substantially less need to cancel patrols or operate a
boat longer than its maintenance schedule prescribes, and
there will almost always be a boat ready to assist distressed
swimmers and boaters.

Comparing the performance metrics of the implemented
and BAT allocations, we need to point out that the
USCG modification of the BAT allocation, that substan-
tially increased RB-S and SPC-SKF boat numbers, resulted
in considerably higher excesses of boat hours (c.f., Metrics
P2 and P4). However, the remainder of the metrics stayed
relatively unchanged. Therefore, the USCG changes did not
deteriorate the BAT model’s impact on the boat allocations.

Practically speaking, the USCG can easily reduce the
fleet size by selling unneeded boats through auctions, or
as gifts to other governmental agencies; older boats are
simply turned into scrap. For the few boat types where
an increase is recommended (e.g., SPC-AIR), the USCG
does have funds to purchase additional boats, but must fol-
low specific procedures in the Department of Homeland
Security’s Acquisition Manual and the USCG’s Major Sys-
tem Acquisition Manual, which implement the U.S. Gov-
ernment’s Federal Acquisition Regulations.

Finally, the USCG regards the BAT model as a very
important source of information because it (1) formally
models a set of official USCG Business Rules that dictate
feasible boat allocations, (2) establishes the assignment of
variable hours to boats, especially the ones in high demand
and low supply, (3) provides the optimal number of boats
of each type at each station, and (4) optimally shares the
limited supply of MLB boats. Indeed, comments from sta-
tion officers have indicated that the partial allocation imple-
mented in 2010–2011 has already resulted in the ability to
“achieve the same results using less resources,” as well as
an observed reduction in maintenance costs. Furthermore,
despite the modification of the BAT allocation, the USCG
stated “the spirit of the model is being implemented.” Con-
sequently, the practical impact of this project closely mir-
rors the impact of the BAT allocation solution.



Wagner and Radovilsky: Optimizing Boat Resources at the U.S. Coast Guard
Operations Research 60(5), pp. 1035–1049, © 2012 INFORMS 1045

Table 4. Effect of varying �.

�∗ = 28 � = 40 � = 50 � = 75
∑

s∈S

∣

∣

∣

∑

t∈T

hst −Hs

∣

∣

∣

306 306 308 308

∑

s∈S

∑

t∈T

yst 409 408 409 408

∑

s∈S

∑

t∈T

4ftxst + vthst5 ($) 4313791851 4313601108 4313301395 4313151781

4. Computational Experiments
In this section, we discuss the results of a series of com-
putational experiments to better understand the BAT model
and its BAT-VAR generalization.

4.1. Parametric Analysis of the Effect of �

We begin by studying the effect of �, the threshold in miles
for allowing MLB boats to be shared between two sta-
tions, on the BAT model’s recommendations. As previously
noted, the USCG wanted to know the smallest value of �
that would still allow a feasible allocation, since a small
value of � allows for high responsiveness of the shared
boats. Recall that �∗ = 28 miles, the minimum value for
which there exists a feasible boat allocation. We now vary
� to study its effect on the BAT allocation. We consider � ∈

8401501759 in addition to �∗; higher values are not realistic
as the response time of a shared MLB boat would be unac-
ceptably high. We utilize the USCG prescribed weights of
w1 = 0095, w2 = w3 = 00025 and report, in Table 4, on the
values of the three terms of objective function (1): (1) devi-
ation of the overall supply of hours from overall demand
of hours, (2) the number of types of boats at each station,
and (3) total fleet operating cost.

Despite augmenting the feasible region of the BAT
model, increasing values of � do not significantly affect
any of the three objective values. Not surprisingly, the boat
allocations are essentially the same regardless of the value
of �. Intuitively, MLB sharing achieves model feasibility,
by making sure an MLB is accessible when needed but
does not substantially contribute to optimizing the objective
function, which is primarily driven by the hourly assign-
ments hst . Therefore, increasing � has little quantifiable
value, and thus it is well justified that the USCG is inter-
ested in finding the minimum value of � (for which a fea-
sible solution exists) in order to increase responsiveness.

Next, we study how the optimized parameter �∗ behaves
as we change the available number B0 of the MLB boats.
Recall that the motivation for sharing MLB boats, and the

Table 5. Effect of available number of MLB boats B0

on �∗.

MLB boats B0 96 101 106 111 116 121 126
Sharing Infeasible 31 28 27 21 14 0

threshold �∗

definition of �, stemmed from an intrinsic shortage of MLB
boats. In Table 5 we present values of �∗, determined using
a simple binary search, for increasing values of B0; the
current BAT model values are in bold.

Note that in the vicinity of the currently available num-
ber of MLB boats B0 = 106, i.e., 101 ¶ B0 ¶ 111, the value
of �∗ is rather insensitive to changes in B0. However, as
B0 is increased beyond 116, the threshold �∗ drops very
quickly. While small changes (i.e., ±5 boats) in the avail-
able number of MLB boats do not substantially change �∗,
and consequently the BAT model results, larger changes in
B0 require a new approach to the boat allocation. Indeed,
an increase of 20 MLB boats eliminates the need for shar-
ing, while a decrease of 10 boats renders sharing infeasible.
Overall, the USCG found the results presented in Table 5
to be quite useful for identifying the range of MLB boat
numbers that allow feasible boat sharing.

USCG policy, which dictates maximum tolerable
response times, should be discussed with these results in
mind. A target response time for MLB boats implicitly
determines a target value of �∗, and our results indicate the
number of MLB boats needed. For example, a 25% reduc-
tion in �∗ is achieved by adding 10 more MLB boats to the
existing 106. Note that, for 5 more boats, or a total of 15
additional MLB boats, the response time is reduced 50%.
The nonlinear relationship between the available number
of MLB boats B0 and threshold �∗, namely increasing
marginal returns, should be included in any discussion of
USCG policy on MLB response times.

4.2. Parametric Analysis of Objective
Function Components

Up to this point, we have presented the official improve-
ments with the weights set at w1 = 0095 and w2 = w3 =

00025. In this section we quantify the trade-offs in the
different objective function components as the weights
change. In particular, we compare the components pair-
wise. This analysis was partially motivated by a USCG
request to demonstrate the flexibility of the BAT model. In
addition, this analysis was utilized to identify the weights
(w1 = 0095 and w2 =w3 = 00025) used in previous sections.

In Figure 1, we eliminate the hours
∑

s∈S �
∑

t∈T hst −Hs�

objective by setting w1 = 0 and quantify the trade-
off between the boat-type

∑

s∈S

∑

t∈T yst and cost
∑

s∈S

∑

t∈T 4ftxst + vthst5 objectives. In particular, we vary
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Figure 1. Trade-off between the boat-types objective
∑

s∈S

∑

t∈T yst and the cost objective
∑

s∈S

∑

t∈T 4ftxst + vthst5.
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w2 and w3, subject to w2 +w3 = 1, in increments of 0.05.
We see that there is a rather binary relationship between
the boat-type and cost objectives. In particular, for all com-
binations of weights where w2 > 0 and w3 > 0, these objec-
tives are approximately 377 total types and 34.5 million
dollars, respectively. If w2 = 0, then the boat-type objec-
tive increases to 1,264 and the cost remains practically
unchanged. If w2 = 1, the boat-type objective decreases
to 366 while the cost objective increases to 42.5 million
dollars.

In Figure 2, we quantify the trade-off between the hours
∑

s∈S �
∑

t∈T hst − Hs� and cost
∑

s∈S

∑

t∈T 4ftxst + vthst5
objectives, by varying w1 and w3. Here we see a more
uniform trade-off between the two objectives, which can
be summarized quite practically: You have to pay to bet-
ter match supply and demand of hours. However, there is

Figure 2. Trade-off between the hours objective
∑

s∈S �
∑

t∈T hst −Hs� and the cost objective
∑

s∈S
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t∈T 4ftxst + vthst5.
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Figure 3. Trade-off between the hours objective
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still a somewhat binary relationship; there is essentially no
change in the two objectives for 0015 ¶w1 ¶ 0095.

In Figure 3, we quantify the trade-off between the
hours

∑

s∈S �
∑

t∈T hst − Hs� and boat-type
∑

s∈S

∑

t∈T yst
objectives. Similar to the trade-off between boat-types
and cost, there is a binary relationship. For all combina-
tions of weights where w1 > 0 and w2 > 0, these objec-
tives are approximately 365 hours and 390 boat types.
If w1 = 0, then the values are approximately 168,063 and
367; if w1 = 1, the values are 308 and 632.

These results show that the 20–80 rule is in full effect.
By using (at most) 20% of the total possible objective func-
tion weight, one gets at least 80% of the possible improve-
ment. Therefore, from a practical point of view, the precise
weights input into the model do not matter too much, as
long as all weights are positive and greater than some min-
imum value (e.g., 0.025).

Finally, we mention that boat allocations and objective
function values do not change when passing from the USCG
preference weights (w1 = 0095 and w2 = w3 = 00025) to
a nondominated set of weights (w1 =w2 =w3 = 1/3). This
is consistent with the parametric studies presented above,
which show that as long as extreme weights are not used
(i.e., 0 or 1), the boat allocation and objective function
values are stable. Indeed, further tests show that as long
as all weights are at least 00025, the boat allocation does
not change.

4.3. Parametric Analysis of the BAT-VAR Model

In this section we provide the results of computational
experiments that compare the BAT model with the BAR-
VAR model. We define Suncertain = S to study the effect our
risk management model has on the BAT allocation. We
let �s be the original point estimate of demand, provided
by the USCG, and model the standard deviation �s as a
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percentage of the original point estimate �s . It is conve-
nient to present the following results in terms of a station-
independent coefficient of variation CV = �s/�s , ∀s ∈

Suncertain; we consider CV ∈ 80010100259. The acceptable
shortage threshold �s is defined as a station-independent
percentage p of the point estimate �s2 �s = p�s for all
s ∈ Suncertain; we consider p ∈ 80010100259. Finally, we uti-
lize station-independent confidence � ∈ 80001100059 and
employ the USCG prescribed weights of w1 = 0095, w2 =

w3 = 00025. We report changes in the BAT Allocation,
along with changes in performance metrics, for all combi-
nations of CV , p, and �.

The first lesson we learned from our computational
experiments is that using the range of 4CV 1 p1 �5 param-
eters just defined, the BAT-VAR model was not feasible.
Intuitively, more boats are needed to achieve the different
levels of hedging against underestimated demand forecasts.
Therefore, to learn which types of boats are needed, the
available number of all boat types Bi1 i = 01 0 0 0 1101 are
doubled (and in two cases, quadrupled). In Table 6 we
present the required increases in boat numbers, with respect
to the BAT allocation, for all combinations of values of the
4CV 1 p1 �5 parameters.

General trends are apparent in Table 6. As the user-
defined risk tolerances are tightened (i.e., decreasing p and
�), the total fleet sizes generally increase. The BAT-VAR
Model generally first adds cheaper boats (e.g., SPC-SW,
SPC-AIR, SPC-ICE, SPC-SKF), the one exception being
the relatively more expensive RB-S boat, because it is
the cheapest boat able to handle multiple station missions.
However, the largest relative increases in fleet size are in
moving from CV = 0010 to CV = 0025. For example, hold-
ing CV = 0010 and modifying risk tolerances (p1 �5 result
in fleet size increases, as compared with the BAT alloca-
tion, ranging from 47 to 126 boats. In contrast, holding
CV = 0025 constant results in fleet size increases ranging
from 114 to 768 boats. Therefore, the amount of demand
uncertainty, as measured through the CV parameter, is the
main driver of any robust allocation, and risk tolerances
have second-order effects.

Table 6. Required increases in boat numbers to achieve different levels of risk management.

� = 0005 � = 0005 � = 0005 � = 0005 � = 0001 � = 0001 � = 0001 � = 0001
CV = 0010 CV = 0010 CV = 0025 CV = 0025 CV = 0010 CV = 0010 CV = 0025 CV = 0025

Boat type p = 0025 p = 0010 p = 0025 p = 0010 p = 0025 p = 0010 p = 0025 p = 0010

MLB — — — — — — 4 21
SPC-NLB 2 2 2 2 2 2 6 6
SPC-HWX — — — 2 — 1 6 7
RB-M — — — 51 — 12 62 104
RB-S — 40 41 33 12 47 362 364
RBS-AUX — — — — — — — —
SPC-LE — — 3 6 3 4 42 45
SPC-SW 5 6 29 26 13 33 66 75
SPC-AIR 3 3 5 5 1 4 17 21
SPC-ICE 21 15 18 19 16 14 48 54
SPC-SKF 16 15 16 21 7 9 72 71
Totals 47 81 114 165 54 126 685 768

Examining the role of risk preferences on the fleet
changes, we found that the confidence level � has a stronger
effect than that of the percentage p. When � = 0005, the
cheaper boat types (listed above) must have additional
boats; when � is reduced to the stricter 0001, almost all
boat types require additional boats. The p parameter has a
similar but weaker effect on the resulting allocation.

In addition to the described trends, we want to point
out that not all VAR-related parameters require additional
boats. Extending our study to test the combination CV =

0010, p = 0050, and � = 0005, the BAT-VAR model gave the
exact same allocation as the BAT allocation, thus requiring
no additional boats; consequently, the original BAT allo-
cation was robust to small amounts of demand uncertainty
and relaxed risk preferences. To expand on this observa-
tion, we investigate stations’ shortage violations, where a
violation is defined as a station’s shortage Hs −

∑

t∈T hst

being greater than the station’s acceptable shortage thresh-
old �s (c.f., Constraint (14)). More precisely, we calcu-
late the probability P4Hs −

∑

t∈T hst > �s5 and the expected
violation E6max8Hs −

∑

t∈T hst − �s1097 for all stations
s, when demand is normally distributed with a mean of
�s , and standard deviation of �s , for the BAT allocation.
When the variability is low and the shortage threshold is
high (CV = 00101 p = 0025), the probability of violation
ranges, over all stations, from 0.00% to 0.62% and the
expected violation ranges from 0.00 to 2.33 hours; there-
fore, the BAT allocation is indeed robust to low levels of
variability and relaxed risk preferences. However, at the
other extreme of high variability and low shortage threshold
(CV = 00251 p = 0010), the probability ranges from 13.08%
to 34.46%, and the expected violation ranges from 4.25 to
670.35 hours. Therefore, the chance of a shortage violation
and the expected violation vary considerably, depending on
the underlying demand variability and acceptable shortage
threshold, which further motivates the need for the BAT-
VAR model.

We also perform two rankings of the stations in the
BAT allocation, according to the probability of a shortage
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violation and the expected violation, respectively. These
computational results show that the stations with the “heavy
weather” mission assignments have the highest probability
of violating the acceptable shortage limit. This observa-
tion can be explained by the fact that the heavy-weather
stations require the MLB boat, a limited resource; there-
fore, if demand is variable, it becomes likely that the lim-
ited MLB boats will not be sufficient. In contrast, the sta-
tions that had the highest expected violations were the
stations without any specific mission. Because these sta-
tions are not assigned any hours to satisfy the critical
demands in Constraint (10), they are also more susceptible
to demand variations. Combining these two observations, it
is the stations that require limited resources and those with-
out a specific mission that are most vulnerable to demand
variability.

Next, we present in Table 7 the Performance Metrics
P1–P10, as defined in §3.3, for the different risk manage-
ment parameters described above. We see that reducing the
risk of a boat shortage (c.f., zero values for Metrics P3,
P5, and P10) requires an increase in the hours assigned to
stations, as seen in increased values of Metrics P2 an P4,
driven primarily by the coefficient of variation. For exam-
ple, with � = 0005 and p = 0025, and CV increasing from
0.10 to 0.25, the average excess hours per station increases
5.2 times. Fixing CV and p, and decreasing � from 0.05
to 0.01 also resulted in a multiplicative increase in aver-
age excess hours, ranging from 2.4 to 4.6 (e.g., column 7’s
excess hours (Metric P4) divided by column 3’s give 4.6).

To obtain more practical insights, notice that for a fixed
value of �, increasing CV or lowering p raises the pro-
portion of stations with more than two boat types, as
seen in Metric P6, by 62%–155% over the BAT model.
This implies that increased uncertainty and stricter short-
age preferences result in higher maintenance costs, because
more stations must operate three or more boat types and
corresponding maintenance crews must be present. How-
ever, the average number of boat types per station, as
measured in Metric P7, increases by smaller percentages,
namely 13%–48%, over the BAT model. Therefore, we can
conclude that the BAT-VAR model increases the variability

Table 7. Performance metrics for BAT-VAR model.

� = 0005 � = 0005 � = 0005 � = 0005 � = 0001 � = 0001 � = 0001 � = 0001
BAT CV = 0010 CV = 0010 CV = 0025 CV = 0025 CV = 0010 CV = 0010 CV = 0025 CV = 0025

model p = 0025 p = 0010 p = 0025 p = 0010 p = 0025 p = 0010 p = 0025 p = 0010

P1 622 805 852 902 965 842 922 1,485 1,568
P2 (%) 107 9207 9505 10000 10000 10000 10000 10000 10000
P3 (%) 000 000 000 000 000 000 000 000 000
P4 10200 33509 67202 1175303 2108402 1154404 1187502 4173705 5106803
P5 000 000 000 000 000 000 000 000 000
P6 (%) 3009 6305 5709 5709 6007 5000 5304 7807 6901
P7 203 300 207 207 208 206 207 304 303
P8 ($) 43,379,851 44,741,064 47,784,036 67,046,054 76,287,193 62,461,465 70,342,142 106,666,406 115,720,450
P9 (%) 9900 9102 8400 6001 5300 6406 5705 4608 4303
P10 (%) 0000 0000 0000 0000 0000 0000 0000 0000 0000

of the number of boat types at each station, which will com-
plicate the assignment of maintenance crews to stations.

For a fixed �, the fleet operating cost (Metric P8)
and fleet utilization (Metric P9) uniformly increase and
decrease, respectively, as uncertainty increases or risk tol-
erances tighten. Very simply, a BAT-VAR model user must
pay, both in dollars and utilization, for higher levels of
demand uncertainty, higher levels of confidence, and lower
acceptable thresholds.

Finally, note that the value-at-risk constraints themselves
do not change the value of �∗. As seen in §4.1, the MLB
sharing is based on the number of available MLB boats,
while the VAR constraints are based on the allocation of
hours to stations. However, any necessary increase in the
available number of MLB boats, to make the BAT-VAR
model feasible, will reduce the value of �∗.

These computational studies allow us to make con-
crete policy recommendations for the USCG to enable risk
management through the BAT-VAR Model. Currently, the
Office of Boat Forces (OBF) only maintains the average
demand Hs of hours for all stations s, which is obtained
from the stations. We recommend that the platform division
(PD) of the OBF, the BAT model user, calculate the stan-
dard deviation of demand at each station for the same time
period that the Hs parameters are defined over (i.e., five
years), because our studies show that any allocation that
incorporates risk management is highly dependent on the
level of uncertainty present. If stations do not maintain
demand information for the five-year period that underlies
the BAT model, the OBF also needs to request that those
stations start recording the demand data.

In addition, we recommend introducing new probabilistic
performance measures for the BAT-VAR model, e.g., the
probability of a shortage or excess of capacity hours at a
given station, and the probability of a demand shortfall.
These metrics would better measure the model’s ability to
handle uncertainty than the existing metrics.

We also suggest employing the BAT-VAR model to iden-
tify the additional number and types of boats necessary to
achieve a desired level of risk management. A cost increase
from these additional boats can be, at least partially, offset by
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the savings generated by the implemented allocation (which
is more than $2 million; see Table 3, Performance Metric 10,
implemented versus original allocations).

These recommendations have been submitted to the OBF
for further consideration. The OBF plans to evaluate the
BAT-VAR model for possible implementation after the
completion of the boat reallocation using the BAT model.

5. Conclusion
In this paper we have described the collaboration between
the USCG and the authors. The result is an integer lin-
ear programming model, denoted the BAT model, that is
currently being applied by the USCG for the allocation of
their boat fleet nationwide. The model is a resource alloca-
tion one, with additional capabilities of optimally sharing
a limited supply of boats, making decisions at the hourly
level, and utilizing a high resolution description of supply
and demand. Risk-management capabilities, while not yet
implemented by the USCG, provide additional modeling
and decision making flexibility. The risk-management addi-
tions to the BAT model are linear inequality constraints,
and the model remains a linear one. The USCG adop-
tion of the BAT model and internal resistance are dis-
cussed in detail. We also report on the USCG process
of modifying the BAT model recommendations to obtain
an allocation that is implemented in the field. We present
quantitative performance metrics that show the significant
practical impact of the BAT model. This substantial impact
is based on a decrease of 87.6% of shortage hours as well
as a reduction of 62.3% of the excess hours at the stations,
based on the implemented vs. original allocations. At the
same time, the size of the boat fleet is reduced by 88 boats,
which is 10.9% of the original fleet size, with a simulta-
neous growth in boat utilization. The fleet operating cost
is also lowered by more than $2 million, i.e., 4.6% of the
original operating cost. In addition, we conduct a variety of
computational experiments, whose results support a num-
ber of recommendations presented in this paper.

A direction of possible future research is to consider
dynamic decision making. The model described in this
paper, even with the risk-management capabilities, is static.
From the USCG perspective, boat allocation decisions are
made once a year, or even less frequently. Therefore, incor-
porating real-time data about realized station demands can
result in an even better match of supply and demand.
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