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Wingbeat Time and the Scaling of
Passive Rotational Damping in

252

Flapping Flight

Tyson L. Hedrick,™* Bo Cheng,” Xinyan Deng®*

Flying animals exhibit remarkable capabilities for both generating maneuvers and stabilizing
their course and orientation after perturbation. Here we show that flapping fliers ranging in size
from fruit flies to large birds benefit from substantial damping of angular velocity through a
passive mechanism termed flapping counter-torque (FCT). Our FCT model predicts that
isometrically scaled animals experience similar damping on a per-wingbeat time scale, resulting in
similar turning dynamics in wingbeat time regardless of body size. The model also shows how
animals may simultaneously specialize in both maneuverability and stability (at the cost of
efficiency) and provides a framework for linking morphology, wing kinematics, maneuverability,
and flight dynamics across a wide range of flying animals spanning insects, bats, and birds.

prising degree of maneuverability, and ani-

mals ranging in size from fruit flies (/) to
pigeons (2) have been the subject of detailed
analyses of maneuvering kinematics. Many
studies have also considered stability and control
in animal flight, both from a neural standpoint
(3, 4) and in broader analyses incorporating both
neural and physical inputs (5—7). This body of
work provides the opportunity to examine the
scaling of maneuvering capability with body size
and determine whether animals of different sizes
and phylogenetic groups use similar or different
mechanisms to accomplish maneuvers.

We focus our comparison on a particular
type of maneuver: low-speed yaw turns of 60°
or more (Fig. 1), because these have been most
widely recorded in freely flying animals. Rota-
tional maneuvers such as yaw turns necessarily
include both an angular acceleration phase, where
the animal begins turning, and an angular de-
celeration phase, where the animal slows and
ends the rotation. In the acceleration phase, the
animal must actively produce an aerodynamic
torque through some type of flapping or body
asymmetry. However, the animal might then de-
celerate by either actively producing a torque in
the opposite direction (/) or simply allowing fric-
tion to passively damp out its rotational velocity,
coasting to a halt. Because the moment of inertia
is proportional to mass to the five-thirds power
(mass>?), large animals such as birds are likely
to require active deceleration whereas smaller
animals such as flies are often modeled with
substantial fluid drag (8), which might allow
passive deceleration, although a recent report
emphasizes active deceleration in these animals
as well (/). However, other recent analyses of
yaw turns in insects (9) and banked turns in birds
(10) emphasized the importance of a form of aero-
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dynamic damping related to symmetric wing mo-
tion, raising the possibility that passive damping
is important at many size scales.

Damping from wing motion arises as follows:
Consider an animal engaged in symmetric hover-
ing or low-speed flight (Fig. 2, A and B). Previous
experiments have shown that during downstroke,
net aerodynamic forces are directed upward and
posteriorly; in upstroke, in animals with an aero-
dynamically active upstroke, the forces are di-
rected upward and anteriorly (71, 12). However,
when the animal experiences whole-body rota-
tion (for example, about an axis normal to the
plane of flapping), net wing velocity is enhanced
on the outside wing during downstroke and on

Fig. 1. Asharpyawturn = A )

the inside wing during upstroke (2). This net ve-
locity asymmetry, which arises when the animal
is flapping symmetrically, gives rise to a force
asymmetry (and therefore a torque) that acts to
slow the animal’s rotation (Fig. 2, C and D). We
refer to this form of damping as FCT because it
depends on flapping and acts counter to the direc-
tion of body rotation. Below, we explore the scal-
ing implications of FCT by postulating a simple
equation modeling FCT and a second equation
modeling active torque generation via asymmetric
flapping, the expected deceleration method for
large animals because of the rapid increase in
moment of inertia with body size. We use these
two equations to develop alternative predictions
of the rotational deceleration dynamics for fly-
ing animals and then compare the predictions to
measurements of yaw turning in four species of
insects and three species of vertebrates across six
orders of magnitude in body mass (from 1 x 10~
to 285 g). The results of the comparison are con-
sistent with FCT but not with an active decelera-
tion via asymmetric flapping.

The rotational damping due to FCT arises
from the difference in velocity between the inside
and outside wings (Fig. 2, C and D). Thus, FCT
is the result of (velocity due to flapping — velocity
due to body rotation)* on one wing minus (ve-
locity due to flapping + velocity due to rotation)®
on the other wing, multiplied by the determinants
of aerodynamic force: air density; wing size and
shape; and where flapping velocity is determined
by amplitude, frequency, and trajectory. Angular
deceleration resulting from FCT is therefore
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proportional to angular velocity and inversely
proportional to the animal’s moment of inertia.
These factors may be expressed concisely by the
following ordinary differential equation

pRYTH (S)OnCrsin(a)(dp /d1)
1

DFcT = ~O
(1)

where @pcr is angular deceleration due to FCT, »
is angular velocity, Cris the mean acrodynamic

Fig. 2. FCT arises when overall body ro-
tation interacts with symmetric wing mo-
tion. (A) and (B) show the aerodynamic
forces experienced by a flying animal in
upstroke (A) and downstroke (B). (C) and
(D) show how wing motion and aerody-
namic forces are modified by overall body
rotation. The now asymmetric aerodynamic
forces provide a torque counter to the body
rotation.

Table 1. Morphological data and predictions from the active and passive
deceleration hypotheses along with the measurements. / ’,,, moment of
inertia of the animal in the stroke plane frame yaw axis; t,,,(N), half-life
as a function of number of wingbeats. See (14) for details of the FCT and
active deceleration predictions as well as the sources of the morphological

resultant force coefficient, o is the spanwise rota-
tion angle of the wing, p is air density, R is wing
length, ¢ is the average wing chord, 73(S)is the
nondimensional third moment of area, ® is wing
stroke amplitude, n is wingbeat frequency,
(d$/df) is the nondimensional wing angular
velocity, and / is the animal’s moment of inertia.
All symbols are as per Ellington (/3). See ap-
pendix A in (/4) for background on this equation.

An alternative to deceleration by FCT, active
torque generation by asymmetric flapping, depends
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on the degree of functional asymmetry between
the two wings; deceleration due to asymmetric
flapping may be written as

PR TP, (8)®2n Crsin(a1) (d p/di)?

@, = (y—1)

81
(2)

where vy is the magnitude of the asymmetry,
ranging from 0 to 1, with 1 indicating no asym-
metry. Unlike FCT, active deceleration is not re-
lated to body angular velocity. See appendix B in
(14) for additional details on this formulation.

It is known that the dimensions of flying ani-
mals scale at near isometry, with wing length and
chord proportional to mass'”> and moment of
inertia proportional to mass> 3 (15). Wingbeat fre-
quency is known to scale as mass *>* for insects
and hummingbirds, but the fit is poor and there is
substantial variation within a given size range
(16). Therefore, after assuming isometric scaling
and eliminating nonvarying and nondimensional
terms from Eqs. 1 and 2, we are left with the fol-
lowing proportionalities

OpcT ¢ —0dn

(3)

@, o< (v~ 1)@’ (4)

required to decelerate to one-half of peak velocity, making them directly
comparable to the FCT predictions. We used a y of 0.944, based on an
arithmetic solution of Eq. 2 to the fruit fly data. See (14) for results
scaling y to body size or other factors. For both sets of predictions, we

assume that Cpsin(a)(d&)/df) is equal to 6.0 and CFsin(a)(qu/df)z is

and kinematic data. Active deceleration predictions are for the time equal to 31.3 for all species.

Species Morphology FCT passive Active Measurements
deceleration deceleration
predictions predictions
Mass 1 ,ZZ R c n [} fg (S) tl/Z(t) tl/z(N) t1/2(t) tl/z(N) t1/2(t) tl/z(N)
(g) (Nems®) (mm) (mm) (H2) (°) =) (ms)  (wingbeats) (ms)  (wingbeats) (ms) (wingbeats)
Fruit fly 9.6 £ 2.7 x 272x 239+ 080+ 218+ 140+ 0.59 9.2 £ 2.00 + 104 + 2.22 + 10.36 2.2
(Drosophila 107 10723 0.08  0.02 7 10 1.5 0.32 2.3 0.48
melanogaster) -
Stalk-eyed fly 7.0 £ 1.0 x 1.60 x 446+ 094+ 170+ 140*+ 0.64 38.0+ 6.47 + 55.1 + 9.35 + 35.68 5.6
(Cyrtodiopsis 103 1071 0.14  0.08 8 10 11.1 1.85 11.8 1.82
dalmanni) -
Bluebottle fly 6.2x102+ 2.81x 9.2+ 314+ 143+ 138+ 059 17.2+ 2.43 + 30.8 + 432 + 14.31 2.1
(Calliphora 50x 107 107 0.5 0.5 9 15 11.7 1.63 15.0 2.01
vicina) -
Hawkmoth 1.62 = 243 x 488+ 186+ 26t 98+ 056 284 = 0.74 + 166.1 431+ 19 0.5t
(Manduca 0.33 1077 2.1 1.6 2 4 6.6 0.16 46.3 1.02
sexta) -
Hummingbird 3.17 358x 450+ 118+ 487+ 134+ 057 33.8+= 1.64 £+ 184.1 =+ 8.86 + 45 2.01
(Archilochus 0.15 1077 4.7 2.0 9.1 7.2 26.1 1.13 180.2 6.12
colubris) -
Fruit bat 351+ 412 x 150 + 83+ 11.1+ 141+ 0.54 22.0+ 0.24 + 4154 + 4.60 = 17 0.21
(Cynopterus 1.8 10° 14 14 0.6 14 12.3 0.14 256.5 2.77
brachyotis) -
Cockatoo 285.9 + 1.29 x 347+ 118+ 7.1+ 99+ 0.58 303+ 0.22+ 9454 + 6.72 + 40 0.31
(Eolophus 14.4 1073 8 4 1.1 16.4 6.4 0.02 392.5 1.37
roseicapillus) -

*A wingbeat amplitude measure was not available for the stalk-eyed fly; Drosophila kinematics were substituted.
wingbeat frequency when available.

1The measurement of half-life in wingbeats uses the animal’s exact

www.sciencemag.org SCIENCE VOL 324 10 APRIL 2009 253


http://www.sciencemag.org

REPORTS

where @ is body angular deceleration due to FCT
or active (a) means, o is body angular velocity, ®
is wingbeat amplitude, » is wingbeat frequency,
and v is the magnitude of asymmetry in flapping.
Wingbeat amplitude is not known to vary widely or
systematically among species, whereas wingbeat
frequency varies over two orders of magnitude (15)
and from 218 to 7.1 Hz in the species examined
here. Thus, variation in these equations among dif-
ferent species is dominated by variation in wingbeat
frequency.

These equations summarize two distinct modes
by which flying animals might reduce their an-
gular velocity at the end of a maneuver. Yaw
deceleration dominated by FCT would exhibit
exponential decay (Egs. 1 and 3 and egs. S19 to
S23), a pattern observed in early studies of fruit
fly turning (17, 18) and ascribed to body friction.
For animals of approximately isometric dimen-
sional scaling, similar wingbeat amplitudes, and
similar aerodynamic force coefficients, Eq. 3
also implies that normalizing time by wingbeat
frequency should result in similar wingbeat time
dynamics regardless of body size (eq. S23).
Deceleration due to the simple model of asym-
metric flapping (Eqs. 2 and 4) is linear and
occurs at a rate that varies with the square of
flapping frequency.

We tested predictions of turning dynamics
arising from these two modes against data from
seven different animals executing low-speed yaw
turns (Fig. 1 and Table 1). See appendix C in (/4)
for a description of the various sources of these
data, both in the literature and from previously
unreported experiments.

Unsurprisingly, given the considerable range
of species examined, the different animals ex-
hibited widely divergent yaw turning performance
(Fig. 3A and Table 1), slowing down at very
different rates. However, in contrast to their dif-
ferences in deceleration rate, the fruit fly, stalk-
eyed fly, bluebottle fly, and hummingbird all
exhibited similar peak yaw rates of approxi-
mately 1600° s '. This does not appear to re-
flect a mechanical limitation, because Eq. 2
indicates that these animals should have greatly
different capabilities for active torque genera-
tion and even different ratios of active torque to
FCT (Eq. 5). It may reflect neurophysiological
limitations on the rate at which flying animals
can acquire and process sensory information for
flight control (79).

The measured duration of yaw rate half-life
during deceleration was similar to that predicted
by the FCT passive deceleration model (Eq. 1,
Table 1, and Fig. 3D). The deceleration rate,
measured as the time to decelerate to one-half the
peak yaw rate, was not similar to that predicted
for active torque generation (Eq. 2 and Table 1).
Furthermore, the prediction that approximately
isometric animals should have similar rotational
deceleration dynamics in wingbeat time was also
supported (Fig. 2B). This prediction is specific to
isometrically scaled animals; the data reveal two
such groups with similar dynamics. Fruit flies,

bluebottle flies, and hummingbirds have similar
scaling of wing and body dimensions (table S1)
and all exhibited a deceleration half-life of about
two wingbeats. Hawkmoths, bats, and cockatoos
all have wings approximately twice as large rela-
tive to body weight as those of the aforementioned
group and all exhibited half-lives of less than a
wingbeat. The stalk-eyed fly has a moment of
inertia out of proportion to body size due to its
unusual eye position (20) and had a half-life of
about six wingbeats.

Our FCT model predicts yaw turn decelera-
tion dynamics across seven phylogenetically and
morphologically dissimilar flying animals spanning
six orders of magnitude in body mass (Fig. 3),
using only morphological and kinematic inputs,
supporting FCT as a unifying principle central to
the dynamics of flying animals across a large size
range. Our results do not agree with a model
based on deceleration via torque generation by

asymmetric flapping. However, interspecific or
temporal variation in asymmetry () could produce
the observed results—a perfectly valid although
less parsimonious possibility. However, the ap-
propriate variation in y cannot be produced by
scaling it from any of the measured morpholog-
ical parameters [appendix D in (/4) and fig. S3].

In addition to providing a framework for as-
sessing animal flight dynamics, FCT also pro-
vides insights into form/function relationships.
For example, maneuverability and stability are
often cast in opposition to one another, but some
factors that enhance maneuverability would also
enhance FCT, a form of passive stability. The
scaling of rotational maneuverability may be ap-
proximated by the same equation we use to esti-
mate the scaling of deceleration via active torque
generation (Eq. 2). Thus, increases in wingbeat
frequency (n) in particular improve both an ani-
mal’s aecrodynamic capacity for torque generation
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= 1500t Bluebottle fly - P=37) y = 0.97x-0.01
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for hummingbirds, stalk-eyed flies, blue-
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mingbird, fruit bat, and cockatoo are
, from a single recording each; bluebottle
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fly results are an average from 10 ani-
mals (677 turns), and stalk-eyed fly data
are an average of 48 turns. In (B), yaw
rate was normalized by dividing by the
initial rate; time is shown in wingbeats
for each species. This demonstrates the
close agreement between these results
and the FCT-based passive deceleration
model, which predicts that deceleration
half-life is constant across species on a per-
wingbeat time scale, assuming isometric

10 15 2.0
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30 dimensional scaling, a property approx-
" imately satisfied by two different groups:
(i) the small-winged fliers: fruit flies, blue-

bottle flies, and hummingbirds; and (ii) the large-winged fliers: hawk moths, bats, and cockatoos. See table
S1 for a comparison of wing and body scaling among these species. In (C), yaw rate is normalized as in (B)
and time is normalized to the predicted half-life of each species (Table 1). Ideal exponential decay (FCT) and
linear decay (asymmetric flapping) curves are also shown. (D) compares the predicted and measured yaw
deceleration half-life across the seven species. t1,,(\), half-life as a function of number of wingbeats. As
expected, there was a strong relationship between predicted and measured values, and the least-squares
regression slope is similar to 1.0 and the regression intercept close to 0, showing that the FCT model
accurately predicts deceleration half-life for this group of species, despite the wide range of body sizes,
differences in body and wing morphology, and phylogenetic distance.
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and the magnitude of FCT. Because active torque
is proportional to 7* and passive torque to 1, the
ratio of active to passive torque increases as n
increases (Eq. 5), even while both quantities in-
crease individually

®n (dp/df)
e O

2 -

DFcT

The increase in the ratio indicates an enhanced
capability for active maneuvers and active stabili-
zation, whereas the increase in FCT adds to pas-
sive stability. Thus, increasing wingbeat frequency
enhances both maneuverability and stability. Hum-
mingbirds provide an interesting example; males
typically have greater wingbeat frequencies (27)
and smaller body sizes as compared to females of
the same species, potentially conferring a benefit
in maneuverability and therefore an advantage
in display flights (22) as well as greater stability
when experiencing an external perturbation. These
benefits are not without cost, because increasing
wingbeat frequency increases the inertial and pro-
file power requirements of flapping flight.

Finally, the success of our FCT model in pre-
dicting yaw deceleration dynamics implies that
passive damping may be important to flight con-
trol in flying animals across a wide range of body
sizes. For example, if a steadily flapping animal
experiences a brief perturbation in midstroke, by
the time it is prepared to execute a cotrective
wingbeat, FCT will have eroded much of the ef-
fect of the perturbation, regardless of the wingbeat
frequency employed by the animal. Thus, FCT
provides open loop stability for some aspects
of animal flight, reducing its neuromuscular and

neurosensory requirements. These are not elim-
inated, because FCT results in asymmetric forces
from symmetric flapping, implying that the ani-
mal’s muscles must generate asymmetric forces
and suggesting neural regulation to enforce sym-
metry. Furthermore, FCT does not address all the
stability problems faced by flying animals. This
study is limited to yaw dynamics in hovering or
slow-speed flight; FCT is likely to be influential
in fast forward flight, but no data are available to
test such predictions. More important, a full de-
scription of body dynamics involves many factors
beyond FCT and includes modes such as pitching
and longitudinal dynamics known to be inherently
unstable in open loop conditions (23, 24) and
subject to active control (25, 26). Finally, yaw
damping due to FCT is a feature of flapping flight
that is not found in human-made fixed-wing or
rotary-wing flyers and may lead to improvements
in the stability and maneuverability of biomimetic
micro—air vehicles.
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Coding-Sequence Determinants of
Gene Expression in Escherichia coli

Grzegorz Kudla,** Andrew W. Murray,2 David Tollervey,3 Joshua B. Plotkin™t

Synonymous mutations do not alter the encoded protein, but they can influence gene expression.

To investigate how, we engineered a synthetic library of 154 genes that varied randomly at synonymous
sites, but all encoded the same green fluorescent protein (GFP). When expressed in Escherichia coli,
GFP protein levels varied 250-fold across the library. GFP messenger RNA (mRNA) levels, mRNA
degradation patterns, and bacterial growth rates also varied, but codon bias did not correlate with gene
expression. Rather, the stability of mRNA folding near the ribosomal binding site explained more
than half the variation in protein levels. In our analysis, mRNA folding and associated rates of
translation initiation play a predominant role in shaping expression levels of individual genes,
whereas codon bias influences global translation efficiency and cellular fitness.

codons correlate with the abundances of

iso-accepting tRNAs (7, 2) and thereby
increase translational efficiency (3) and accuracy
(4). Recent experiments have revealed other effects
of silent mutations (5—7). We synthesized a library
of green fluorescent protein (GFP) genes that varied
randomly in their codon usage, but encoded the
same amino acid sequence (8). By placing these

The theory of codon bias posits that preferred
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constructs in identical regulatory contexts and mea-
suring their expression, we isolated the effects of
synonymous variation on gene expression.

The GFP gene consists of 240 codons. For
226 of these codons, we introduced random silent
mutations in the third base position, while keep-
ing the first and second positions constant (Fig.
1A). The resulting synthetic GFP constructs dif-
fered by up to 180 silent substitutions, with an

average of 114 substitutions between pairs of
constructs (Fig. 1B and figs. S1 and S2). The
range of third-position GC content (GC3) across
the library of constructs encompassed virtually
all (99%) of the GC3 values among endogenous
Escherichia coli genes, and the variation in the
codon adaptation index (CAI) (9) contained most
(96%) of the CAl values of E. coli genes (Fig. 1).

We expressed the GFP genes in E. coli using
a T7-promoter vector, and we quantified expres-
sion by spectrofluorometry. Fluorescence levels
varied 250-fold across the library, and they were
highly reproducible for each GFP construct (Spearman
7= 0.98 between biological replicates) (fig. S3).
Fluorescence variation was consistent across a
broad range of experimental conditions (fig. S4).
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Moment of inertia matrix (wings)

Moment of inertia in the body yaw axis

Moment of inertia of the animal in the stroke plane frame yaw axis

Torque about the X axis

Torque about the Y axis

Wingbeat frequency

Torgue about the Z axis; Number of wingbeats

Non-dimensional second moment of wing area
Non-dimensional third moment of wing area

Roll velocity

Pitch velocity

Yaw velocity

Wing length

Half life as a function of number of wingbeats

Half life as a function of time

Torque
Torque due to aerodynamic forces
Torque due to friction

Non-dimensional time

Wing spanwise rotation angle

Wing angular position (deviation from stroke plane)
Wing angular position (in the stroke plane)

Non-dimensional wing angular position (in the stroke plane)

Wing stroke amplitude (in the stroke plane)
Wing stroke asymmetry factor

Air density

Angular velocity
Angular acceleration
Angular acceleration due to FCT

Angular acceleration due to asymmetric flapping

Angular velocity of body in the stroke plane frame
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Q, Angular velocity of the wing in the body frame

(d¢ / df) Non-dimensional wing angular velocity
. Derivative with respect to time

Figure S1 Xb

A sketch of an insect with one wing showing the global reference frame axes X Y Z, body
reference frame axes X, Y, Z,, wing stroke plane frame axes X’ Y’ Z’, wing stroke position
angle ¢, wing stroke deviation angle 8 and wing spanwise rotation angle o.. In the analysis
presented here, the global and wing stroke plane frame Z axes are assumed to remain
parallel throughout the turn, such that yaw in the wing stroke plane frame is also yaw in the
global reference frame. Amplitude in 6 was small compared to amplitude in ¢ over the
course of the wingbeat cycle. The wing spanwise rotation angle o is zero when the wing
surface is in the horiztonal plane; a was assumed to vary between 45 and -45 degrees.
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Appendix A: Flapping counter-torque derivation
First consider the equations of motion for the angular dynamics in three dimensions of a

flying animal:

lLhotoxlo=T,+T, +T +T; (s1)

where T, and Tj are torques (at the animal’s center of mass) due to inertia of the left and right
wing, and |, is the body moment of inertia. Because the net inertial torque T + Tj is small
compared to aerodynamic torque during turning, we approximate the net inertial torque by

adding the wing moments of inertia | to the body moment of inertia |, to get a total

wings
moment of inertia | . Net inertial torque is small because for symmetric wing motion in
hovering, net inertial torque has a half-wingbeat mean of zero in the pitch axis and an
instantaneous mean of zero in the roll and yaw axes. Note that all variables are expressed with

respect to the stroke plane coordinates (Fig. S1).

I = Ib + IWings (SZ)

and Eqgn. S1 becomes:

lo+oxlo=T, +T, (S3)

where | is the moment of inertia matrix:

L 01
I={0 1, 0 (s4)
e 0 15

continuing the expansion of Eqn. S3, @ is body angular velocity and @ its derivative, angular

acceleration:

w=[p,qr] (s5)

T, and T, are torque due to aerodynamic forces and to body friction, respectively and p, g, r

are the body angular velocities with respect to the wing frame axes (Fig. S1). Torque due to

body friction has been shown to be negligible (S1) for animals as small as fruit flies. Larger
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animals, with a smaller surface area to volume ratio, will be even less affected; T, is not

considered further. Aerodynamic torque may be written as:
T,=[L.M,NT (S6)

where L, M, N are the torque in the roll, pitch and yaw axes. We then extract the term for yaw

rotation from Eqgn. S3 as:
b= 1, p =1, 1}, )pg—1,0ar+ N (s7)

Terms |..p, (I o~ 1y )pq and |/, Qr are negligible due to the small roll (p) and pitch velocities

(g) and accelerations exhibited by animals engaged in yaw turns (see Fig. 1 and fruit fly data in

S1), leaving:
17f=N (s8)

This equation, relating yaw acceleration to yaw moment of inertia and yaw torque, no longer
includes any coupling terms between different axes of rotation and allows us to consider yaw
angular dynamics independent of the other rotations. From this point forward, @ refers to

scalar yaw angular velocity and T to yaw torque.

We now proceed with a standard blade-element model for aerodynamic force
generation from a single flapping wing at a particular instant in the wing stroke cycle (52-4),

following the wing position and motion description in Figure S1:

()= c:F(t‘),oRSEF;(S,B)cpznz(dgz?/olf)z

(S9)

where CF (f) is the mean aerodynamic resultant force coefficient at non-dimensional timef,

p is air density, R is wing length, C is the average wing chord, fzz (S)is the square of the non-
dimensional second moment of area, @ is wing stroke amplitude, n is wingbeat frequency,

and (d¢?/ df) is the non-dimensional wing angular velocity.

We then convert this force to a torque in the stroke plane by introducing the moment

arm of the center of pressure and assuming that aerodynamic force acts normal to the wing,
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giving a horizontal projection ofSin(a), where & of zero indicates that the wing lies in the

horizontal plane:

)= C. ()sin(a(t ))pR468f33(s)q>2n2(d¢3/df f

(s10)

where a(f)is the wing’s spanwise rotation angle and f;’(S) is the cube of the non-dimensional

third moment of area.

We then separate equation S10, torque from a single wing, into non-kinematic and

kinematic terms; Cand Q, respectively:

o _ Cosin(aff)RcE ()

5 (s11)
Q, :%cbn(d([s/df) (512)
T(f)=ca,’ (513)

We then add angular velocity due to body motion and write the yaw torques on both

wings using the right hand rule to denote the positive direction of yaw:

T(f)left = C(Qw - Qb)z
~ 2 (S14)
T( )right = _C(QW +Qb)

where T('[A)left is torque on the left wing and (2 is the magnitude of instantaneous wing

angular velocity due to body angular velocity, given by:
Q =w (515)

where @ is yaw angular velocity, with a sign determined by the right hand rule. Note
that Eqn. S14 as presented is for downstroke; during upstroke the torque formula for the two

wings switches (Fig. 2).
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We then arrive at the total torque by summing the torques from the individual:
T (t )total =T (t )Ieft +T (t )rlght 4CQ Q (516)

We then substitute the appropriate kinematic and non-kinematic terms, resulting in:

T (f)total =—4 ACe (f)Si n(az(f))R 46?33 (S ) % ch(dé/ df)a) (517)

This result for a particular instant in non-dimensional time may be converted to a
whole-wingbeat mean value by substituting the appropriate whole stroke mean for the

production of the time-varying parameters, indicated by the over-bar, and simplifying:

T = —pC, (f)sin(a ))(dqﬁ/dt)? crl(S)onw (518)

Converting the total torque to an angular acceleration by dividing by the moment of

inertia results in Egn. 1 from the manuscript:

(S)CDnC )sin(c )(d¢/dt)

Opcr = —a) (519)

This equation is an ordinary differential equation for exponential decay where:

0= —Aw (S20)
From which we can extract a decay half-life:

In(2)

t,, =— S21

1 (S21)
and restore A to get expressions of half-life in time:

In(2)1

t y (t)= ( ) (S22)

2" pRAer3(S)nC, (f)sin(a ))(d¢/dt)

and in wingbeats by eliminating wingbeat frequency (n) from the denominator:
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B |n(2)|
t%(N) pRCE3(S)oC, (f)sin(e ))(d;é/dt) 2

In Eqn. S18 we introduced the whole stroke mean for a number of parameters:

K = Cq (f)sin(c(t)ld b/ df ) (524)

Computation of numerical predictions from this model requires a value for K, which we
calculated by assuming that wing movement is determined by simple harmonic motion and that
wing orientation to incoming flow varied between 0 and 45 degrees during the wing stroke as

given by:
a(f): %‘tanh(Z.Zsin(Z;zq;)] (S25)

We then calculated C. (f) using the equation for Drosophila force coefficients reported

by Dickinson et al. (55) and restated here:
C. (f)=((0.225+1.58sin(2.13a(f) - 7.20)

+(1.92-1.55¢c0(2.04a(f)- 9.82))2)y2 (s26)

Following Eqn. S24, we then combined the force coefficient, angle of attack, and non-

dimensional angular velocity inputs to give:

Ce (£)sin((f)\d g/ df )= 6 (527)

This value was used for all species, implicitly assuming that all flying animals have force
coefficients similar to those of Drosophila, an assumption supported by comparison of force
coefficients during constant rotation for a range of animal wings (S6). Furthermore, although
there may be variation among species in wing force coefficients, the variation is likely to be
slight when compared to the range of variation in body size and even wing morphology

exhibited among the species examined here.

Limitations and assumptions of the Flapping Counter Torque Model
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As described at the beginning of this section, the FCT model presented here is a
simplification made possible by the assumption that the coupling terms in Eqn. S6-7 are small
relative to the other terms and that roll and pitch velocities are small in comparison to yaw
velocity, as shown in the hummingbird recording (Fig. 1) and published fruit fly data (S1). We
also treat flapping animals as a rigid body, assuming that wing inertial forces play no role in
stabilizing flapping flight. Such stabilization is unlikely as net angular momentum from flapping
is zero for every half-wingbeat in a symmetrically flapping animal. Our model also includes no
forward or indeed any linear velocity terms; the animals are modeled as if they were in hovering
flight. This is generally accurate for the data used here, where the largest advance ratio is 0.26
and the mean advance ratio is 0.09, but extension of FCT to forward flight will require
incorporation of the effects of forward velocity on the direction and magnitude of aerodynamic
torques as well as any adjustments the animals make to wing trajectory, flapping amplitude and
other factors. Additionally, the FCT model as constructed here assumes that all flapping animals
have identical aerodynamic force coefficients and flap their wings following simple harmonic
motion with identical changes in wing orientation and angle of attack. These are unlikely
assumptions, but in the absence of detailed information on all species we are left to use a single,
fixed set values for all species. Furthermore, we note that the recent recording of a leading
edge vortex attached to the wing of a flying bat (57) and measurement of high force coefficients
for rotating bird wings (S6, 8) suggest that birds and bats may have aerodynamic force
coefficients similar to those of insects, at least when flying slowly. More fundamentally, the FCT
model is an integrated quasi-steady formulation that derives average flight forces and torques
for a complete wingbeat cycle and includes only aerodynamic forces related to wing translation,
not those from other sources such as wake capture (S5), spanwise wing rotation (S5) and clap
and fling (59). The quasi-steady nature of the model also suggests that events that happen
within a single wingbeat cycle, such as deceleration by a single half life in the hawkmoth, fruit
bat and cockatoo examined here, will be less well predicted than events that occur over several
wingbeats. Finally, the FCT model assumes symmetric wing motion and force generation during
upstroke and downstroke. This is generally accepted for small insects, but does not appear to
be the case for hawkmoths (S10) and hummingbirds (S11) and is certainly not true for larger
birds and bats. As long as the mean aerodynamic force over a complete cycle is similar to that
predicted by the FCT model and the timescale of events is more than a wingbeat, there is little

effect on the model; the hummingbird appears to fall in this category. However, in cases such
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as birds and bats where timescales are less than a wingbeat, better predictions could be made if
information was available on when in the wingstroke the animal reverted to symmetric motion
and began slowing down. Such information is not available so no adjustments were made in this

case.

Appendix B: Derivation of deceleration via active torque generation

Active torque generation via flapping amplitude asymmetry may be modeled by
beginning with equation S10, the torque generated by a single wing and introducing a factor

¥ representing the asymmetry in some portion of the wing properties or kinematics. This is a
gross simplification, as asymmetry may take many forms and the type of asymmetry may vary
between species. For instance, birds and bats may use asymmetries in wing geometry that
cannot be replicated by insects. Nevertheless, we begin with a simple asymmetry and assume
that y represents a temporary reduction in the aerodynamic torque generated by the wing
without specifying the underlying mechanism of asymmetry. Inspection of the resulting
equations shows that all types of asymmetry that do not vary with time will result in a similar
solution, one that predicts linear rather than exponential decay.

1, (£)sin(e ()R “c72 (5 Jo2n2(d g/ o

T(f)= . (528)

This instantaneous torque may be reduced to a half-stroke mean by introducing mean
stroke values for the several time varying constants and combining all non-asymmetric terms in

a single constant, L:
T=1 (529)

We then assume that the animal generates a net torque over the entire wingbeat cycle
by applying the asymmetry during downstroke on the left wing and upstroke on the right wing,

giving rise to the following set of per-wing, half-stroke torques:
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(S30)

Note that use of the asymmetry pattern described above, switching the asymmetric wing from
left to right between upstroke and downstroke, allows generation of a net torque. Maintaining
asymmetry on the same wing during both stroke phases would have no net effect. Summing the

guantities in S30 to get total torque due to asymmetry gives:

Ttotal—up = Tl—up +Tr—up =-L+ 7L = (7/ _l)L

Ttotal—down = Tl—down +Tr—down = 7’L -L= (7/ _1)L (S31)
Toa—u +Toa— own

Tmean: R 2”Id :(7_1)L

Expanding L, and dividing by moment of inertia converts this relationship to a mean

angular acceleration over a complete wingbeat cycle:

(REE S C, sin(e)dg/ df |
)

T (S32)

o, =(y
Finally, an average measure for the non-dimensional wing parameters was required to
calculate actual values for deceleration due to wing asymmetry. Following an analysis similar to

that in Eqns. S17 —S20, we arrived at:

C, sin(a)dg/di) =313 (533)

Equation S32 expresses the torque that might be expected for a generalized, non-
specific aerodynamic force asymmetry. However, all types of morphological or kinematic
asymmetry result in a similar overall form: a differential equation for angular acceleration which
is independent of angular velocity. Given the absence of experimental data reporting

asymmetry, we selected a  of 0.944, which results in close match to the measured rate of

deceleration in Drosophila when that rate is measured as the time required to decelerate to one

half of peak velocity. A number of different scaling factors could be applied to y to extend Eqn.

2 to different species. For instance, y could be varied to increase with wing length, body mass,
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or even wingbeat duration?, preserving @, across changes in wingbeat frequency for

isometrically scaled animals. However, in the absence of a theory predicting @, or y among

species we leave it fixed, exploring the results of scaling by different factors in Appendix D

(below).

Finally, we note that the ratio of Equations $S32 and S19, describes the balance of active
to passive torques at a given rotational velocity and may be used to explore how an animal’s

capacity to generate accelerative torques changes with the various flapping parameters.

@ _ ~(y - 1) (534)

Drcr 8w
Limitations and assumptions of the asymmetric flapping model

This model shares many features of the FCT model presented above and incorporates
similar assumptions with attendant limitations. It is also limited, in the practical sense, by the
absence of experimental data providing measurement of different types of wing or aerodynamic
asymmetry during maneuvers. Thus, we use an asymmetry factor computed to give an accurate
result for the fruit fly data and extend it to other species. Therefore the asymmetric flapping
predictions are nearly perfect for fruit flies and also quite accurate for other small flying insects,

but a poor fit to measurements made on larger flying animals (Table 1).

Appendix C: Yaw turn and morphological data sources
Fruit fly

We used recently published recording of a single yaw (saccade) turn and wingbeat
recording for a fruit fly (Drosophila melanogaster) (S1). Morphological data for the fly were
gathered from Fry et al. (S12). Fruit fly moment of inertia was estimated using the same
cylinder model as Fry et al. (S1), tilted to a 50 degree angle to accommodate typical fruit fly
flight posture and with the addition of the two wings (see below). The total yaw amplitude of
the fly was 90 degrees, mean linear velocity was 0.07 m/s and advance ratio, computed as per

(513) was 0.03.
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Stalk-eyed fly

We used recently published yaw (saccade) turn and morphological data for male stalk-
eyed flies (Cyrtodiopsis dalmanni) (S14). We selected the yaw velocity profile reported for
saccade turns of the 4™ quartile of those recorded for incorporation into this analysis; these
turns had a mean amplitude of 86 degrees and an average linear velocity of 0.06 m/s. Advance
ratio for the stalk-eyed flies was 0.02. Due to their unusual eye position, stalk-eyed flies have a

larger moment of inertia than would otherwise be expected for an animal of their size (S14).
Bluebottle fly

We used published yaw (saccade) turn and wingbeat data compiled from 121 saccade
turns in bluebottle flies (Calliphora vicina) (S15). Morphological data and some wingbeat
kinematic data for this species were gathered from a second source (516). Yaw turn amplitude
in these recordings ranged from 60 to 90 degrees; linear velocity was estimated to be 0.5 m/s,
the peak of the probability density function reported for all recorded flights. Combined with the

wing kinematic data from Table 1, this resulted in an advance ratio of 0.08.
Hawkmoth

Turning dynamics in hawkmoths (Manduca sexta) were recorded via filming with three
calibrated high speed video cameras. Three male hawkmoths were gathered from the
laboratory colony maintained at the University of North Carolina at Chapel Hill. The moths were
placed in a flight chamber in the presence of a single artificial flower. The chamber was dimly lit
in the visible spectrum by a single fluorescent light positioned 6m from the chamber and
brightly illuminated in the near-infrared (680 nm), below the moth’s visual threshold, by eight
infra-red LEDs (Roithner LaserTechnik GmBH, Austria). The moths were filmed as they
approached and departed from the flower using three 1000 Hz video cameras (two Phantom
v7.1 and one Phantom v5.1; Vision Research, Wayne, NJ). The cameras were calibrated using
direct linear transformation (DLT) (517, 18) and three points on the body digitized to allow
recovery of rigid body motion. The moths exhibited only slight (less than 5 degrees) flexion
between the abdomen and thorax during these turns. A total of six recordings were collected
(Fig. S2). Given the variety of yaw turn profiles recorded, rather than averaging or otherwise
combining turns we used the data selection parameters applied to the hummingbird recordings

(below) and included only the single most rapid and largest amplitude yaw turn in the
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interspecific analysis, although this particular event is not as close a match to the model
predictions as some of the other recordings (Fig. S2). In this trial the mean reprojection error for
the body points was 0.82 pixels with a standard deviation of 0.60 pixels. Total yaw amplitude
was 87.8 degrees; the turn was performed at a mean linear velocity of 0.29 m/s for an advance
ratio of 0.07. Morphological data were measured from a population of eight male hawkmoths

from the UNC colony.

Figure S2
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Here we show the six yaw turns recorded from Manduca sexta as part
of this analysis, normalized to their maximum angular velocity and
plotted against the exponential decay curve predicted for a hawkmoth
by the FCT model. The turn selected for incorporation in the interspe-
cific analysis (in red) matches the model prediction less well than other
recordings but better satisfies other requirements including high maxi-
mum yaw rate, low advance ratio and absence of provocation or pertur-
bation by the researcher. The average half-life of all six recordings was
28.7 ms, the predicted half-life from the FCT model is 28.4 ms.

Ruby-throated hummingbird

Turning dynamics in hummingbirds were measured by filming them with four
synchronized high-speed video cameras, two of which were coupled with X-ray C-arm imaging
systems, permitting simultaneous light and x-ray recording. Yaw turns occurred incidentally as

the hummingbirds approached or departed from a feeder positioned within the recording
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volume. Two female and one male Ruby-throated hummingbirds (Archilochus colubris) were
captured at Harvard University’s Concord Field Station in Bedford, Massachusetts and filmed at
1000 frames per second using two x-ray videograpy systems (Photron 1024pci, Photron USA
Inc., San Diego, CA, coupled to an x-ray C-arm system [Model 9400, OEC-Diasonics Inc., Salt Lake
City, UT remanufactured by Radiological Imaging Services, Hamburg, PA]) and two visible light
video cameras (Phantom v7.1, Vision Research, Wayne, NJ). During the three days of flight
recording following capture, the birds were maintained in individual 0.4 x 0.3 x 0.45 m cages
with food and water provided ad libitum. Prior to recording, the birds were each implanted with
three subdermal x-ray opaque markers which provided the three fixed body points required to
compute yaw, pitch and roll orientation. The x-ray and light video cameras were calibrated
using DLT with pre-processing of the x-ray images to remove all optical distortion introduced by
the multiple lenses and image intensifier (S19). The single most rapid yaw and largest amplitude
turn was selected for analysis, in this trial the mean reprojection error for the three points was
1.34 pixels with a standard deviation of 0.47 pixels. Total yaw amplitude during the turn was
149.6 degrees, the mean forward velocity during the turn was 0.15 m/s, resulting an in advance
ratio of 0.01. Hummingbird data were provided by Dr. Andrew A. Biewener of Harvard
University; the experiments were performed in accordance with Harvard University Institutional
Animal Care and Use guidelines. Morphological data were measured from a group of three

hummingbirds, two females and one male. The turn analyzed was performed by a female.
Lesser Short-nosed Fruit bat

Turning dynamics in the Lesser Short-nosed Fruit bat (Cynopterus brachyotis) were
measured by filming the bat with three synchronized high-speed video cameras (Photron
1024pci, Photron USA Inc., San Diego, CA). The cameras were calibrated using DLT. Body
orientation was measured using three fixed points on the body as the bat flew up and out of an
enclosed space, an open box of dimensions 0.6 x 0.6 x 0.6 m in width x length x height. Only a
single recording of bat turning was available for analysis; mean reprojection error for the body
points used to determine orientation was 1.05 pixels with a standard deviation of 0.44 pixels.
Total yaw amplitude during the recorded turn was 165 degrees and the bat’s mean linear
velocity was 1.5 m/s, resulting in an advance ratio of 0.18. The bat was part of a colony
maintained indefinitely at Brown University; animal care procedures and experimental

recordings were in accordance with Brown University Institutional Animal Care and Use

S-14



guidelines. The bat data were provided by Drs. Sharon Swartz and Kenneth Breuer of Brown

University. Morphological data were measured from a group of two bats.
Rose-breasted cockatoo

Previously unpublished data from the cockatoo (Eolophus roseicapillus) turning
experiments described in (S20) were analyzed to provide the yaw turn data for this species. The
experimental, animal care, and analysis protocol were those previously described in (S20),
except that the cockatoos were forced to reverse course in mid-flight, executing a 180 degree
turn rather than the 90 degree turn they were trained to perform. Morphological data were
measured from a group of six cockatoos. In the turn analyzed for this manuscript, the total yaw
rotation was 186 degrees performed at an average linear velocity of 2.2 m/s, resulting in an

advance ratio of 0.26.

Analysis of measurement error

Measurements of angular velocity in freely behaving animals are potentially subject to
substantial error. Furthermore, due to the diversity of sources and recording methods used to
acquire the data incorporated in this manuscript, measurement error likely varies between
species. Finally, kinematic data and especially differentiated kinematic data are typically
subjected to a low pass filter of some type and this filtering might alter some of the parameters
reported here such as peak yaw velocity and duration of the first half life. Exact measurement
of peak velocities is not important to our analysis, but measurement of half life duration is
critical. Any low pass filter leads to a slight increase in the measured half life of an ideal
exponential decay curve, but the error does not exceed 10% of the actual value as long as the
low-pass filter cutoff frequency is greater than one divided by the half life in seconds. This was
not the case for any of the data examined here (see below). Nevertheless, any amount of low
pass filtering will change the shape of an exponential decay curve, making it more sinusoidal at
the beginning of decay and preventing accurate measurement of half life from the initial decay
trajectory. This effect is apparent to a greater or lesser degree in all the recordings used here,
where the trajectory match to exponential decay is initially poor (Fig. 2D) but improves
thereafter. Of the data sources noted above, the fruit fly data were not accompanied by any
information on possible measurement error, but Fourier analysis of the published recordings

suggests that a low-pass filter with a cutoff frequency of approximately 200 Hz. This cut-off
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frequency is greater than the predicted half-life frequency of 109 Hz and should not prevent
accurate measurement of the duration of the first half life. The stalk-eyed fly data were filtered
at 60 Hz, again well above the expected half life frequency, as were the bluebottle fly data which
were filtered at 250 Hz. The resolution of the recordings systems used with the hawkmoth,
hummingbird, fruit bat and cockatoo data result in a measurement uncertainty of approximately
1.0, 0.5, 2.0 and 2.0 degrees, respectively and the recordings were filtered using a smoothing
spline with the above noted error tolerance. This, combined with the different recording rates,
resulted in effective cutoff frequencies of approximately 64, 110, 48 and 44 Hz, all of which are
greater than the predicted half-life frequencies of 35, 45, 35 and 33 Hz. Thus, although there
may be a systematic trend toward measurement of greater than actual half-lives due to low-
pass filtering, it should be less than 10% in the worst case and less than 5% in most cases. Some
deviation from exponential decay is expected at the start of all deceleration recordings;

deviation will take the form of a shallower initial slope.
Calculation of moment of inertia

For the above species, moment of inertia about the global yaw axis was estimated by
modeling the animal as a cylinder with attached wings, with the further assumption that each
species pitched up at an angle of 50 degrees during these hovering or low speed maneuvers.
Thus, for the cylinder body we first computed /,, and I,,, moments about the body frame yaw

and roll axes as:

|, = mass%(height2 +3radiusz) (S35)

I, = mass(% radiuszj (S36)

We then applied the 50 degree pitch angle to the cylinder to calculate | ., the moment

7zt ’
of inertia for the body about the inertial yaw axis, which is coincident with the stroke plane yaw

axis in this analysis (Fig. S1):

|, = cos(pitch)*1_ +sin(pitch)’1 (537)
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The wings of each species were modeled as a rectangular plate rotated about the center
of mass of the animal; total wing mass was assumed to be 1% of body mass for Calliphora and
smaller animals (S16) and 10% of body mass for the fruit bat. Actual wing moments of inertia

were available for the hawk moth, hummingbird and cockatoo.

wings

= MASS g6 lpe,le (538)
3 12

The wings stroke plane was assumed to be in the global horizontal regardless of body

tilt. Thus, the final estimated moment of inertia, |;Z was calculated as the sum of | the

7t

moment of inertia of the body about the stroke plane frame yaw axis, and | In cases

wings *
where intermediate values in our moment of inertia scheme such as |,, or |, were available

from direct measurements, these were substituted for the estimated values.

Appendix D: Scaling flapping asymmetry ( )

As described above in Appendix B, we used a ¥ of 0.944 in all species for predicting the
dynamics of deceleration by flapping asymmetry. This value for y was arrived at by measuring
the deceleration dynamics of the fruit fly and solving for an appropriate y to match the

measured dynamics. Clearly, as indicated in Eqn. 4, this results in a prediction of deteriorating
maneuvering performance for animals with a lower wingbeat frequency, an attribute typical of
larger animals. In the absence of an accepted theory for varying asymmetry with size and the

assumption that maneuvering performance does decrease with size, we did not apply a scaling

factor to y. However, the data collected for this paper might reveal a scaling trend for y if

such a trend exists. With this goal, we recalculated our predictions for active deceleration after

applying a variety of scaling rules to y : scaling based on moment of inertia, body mass,

characteristic length, and the inverse of frequency? (Fig. S2). None of these scaling attempts
matched the observed trends and none of them was a better predictor of the observed

dynamics than the FCT predictors or even the original, unscaled y .

Scaling was applied as:
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7' =(y-1)SF +1 (539)

where SF is the scale factor between Drosophila and the animal in question along the dimension
of interest. For example, if the animal in question has three times the body mass of Drosophila,

scaling by body mass would result in a 7' of 0.832 for the animal in question.
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Figure S3
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Here we show a scatterplot and least-squares regression results for log-transformed data of all
predictions and measurements, including predictions using a scaled y. In this context, an accu-
rate predictor will have an R near 1.0, a regression slope near 1.0 and a regression intercept near
0.0 as exemplified by the results in (A), the FCT prediction of deceleration half-life in wingbeats
and (B) the FCT prediction of deceleration half-life in milliseconds, (C) deceleration time with y
of 0.944 for all species. Neither the R? nor regression slope indicates a good fit. (D) decelera-
tion time with y scaled by wing length. (E) deceleration time with y scaled by body mass. (F)
deceleration time with y scaled by the square of wingbeat duration, a factor that results in similar
deceleration rates in all species in the active deceleration model.
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Table S1: Here we compute the scaling of body and wing dimensions relative to the fruit fly for

all other animals examined here. All values were reduced to a scaling of a characteristic length.

For example, the characteristic length scale of an animal with a body mass 10 times greater than
that of a fruit fly is (10/1)™*.

Species

Fruit fly

(Drosophila melanogaster)
Stalk-eyed fly
(Cyrtodiopsis dalmanni)
Bluebottle fly
(Calliphora vicina)
Hawkmoth

(Manduca sexta)
Hummingbird
(Archilochus colubris)
Fruit bat

(Cynopterus brachyaotis)
Cockatoo

(Eolophus roseicapillus)

Morphology Averages

mass I’, R C  Average Average \ing

body wing Body

1 1 1 1 1 1 1

19 23 19 1.2 2.1 1.6 0.76
40 40 38 39 4.0 39 0.98
119 155 204 233 13.7 21.9 1.60
149 16.7 188 1438 15.8 16.8 1.06
332 433 627 103 38.3 82.9 2.16
66.8 86.1 1452 1475 76.5 146.4 191
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