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Recursive Problem Solving

Question
Certain bacteria divide into two bacteria every second. It was
noticed that when one bacterium is placed in a bottle, it fills it up
in 3 minutes. How long will it take to fill half the bottle?

Discussion
Many processes lend themselves to recursive handling. Many
sequences are determined by previous members of the
sequence.

How many got the bacteria process right?
If we denote the number of bacteria at second number k by bk
then we have: bk+1 = 2bk , b1 = 1.
This is a recurrence relation.
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The Towers of Hanoi

Another example of a problem that lends itself to a recurrence
relation is a famous puzzle: The towers of Hanoi

  

The famous Towers of Hanoi PuzzleRecurrence Relations and Generating Functions



Recurrence Realtions

This puzzle asks you to move the disks from the left tower to
the right tower, one disk at a time so that a larger disk is never
placed on a smaller disk. The goal is to use the smallest
number of moves.

Clearly, before we move the large disk from the left to the right,
all but the bottom disk, have to be on the middle tower. So if we
denote the smallest number of moves by hn then we have:

hn+1 = 2hn + 1

A simple technic for solving recurrence relation is called
telescoping.

Start from the first term and sequntially produce the next terms
until a clear pattern emerges. If you want to be mathematically
rigoruous you may use induction.
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Example

Solving bn+1 = 2bn, b1 = 1.

b1 = 1, b2 = 2, b3 = 4, . . . bn = 2n−1.
Solving the Towers of Hanoi recurrence relation:

h1 = 1, h2 = 3, h3 = 7, h4 = 15, . . . hn = 2n − 1

Proof by induction:

1 h1 = 1 = 21 − 1
2 Assume hn = 2n − 1
3 Prove: hn+1 = 2n+1 − 1.
4 hn+1 = 2hn + 1 = 2(2n − 1) + 1 = 2n+1 − 1.
5 Solve: an = 1

1+an−1
, a1 = 1.

6 Telescoping yields: 1, 1
2 ,

2
3 ,

3
5 ,

5
8 ,

8
13
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1, 1
2 ,

2
3 ,

3
5 ,

5
8 ,

8
13

Do we see a pattern?

Looks like an =
fn−1

fn where fn are the Fibonacci numbers.

Can we prove it?

Chứng minh.

1 By induction: a1 = 1 = f0
f1 .

2 Induction hypothesis: assume an =
fn−1

fn
3

an+1 =
1

1 + an
=

1

1 +
fn−1

fn

=
fn

fn + fn−1
=

fn
fn+1
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Recurrence Relations Terminology

Definition
A recurrence relation for a sequence an is a relation of the form
an+1 = f (a1,a2, . . . ,an).

We do not expect to have a useful method to solve all
recurrence relations. This definition actually applies to any
sequence! We shall break down the functions for which we do
have effective methods to “solve” the recurrence relation. By
solving we mean obtaining an explicit expression of the form
an = g(n). To accomplish this we need some terminology.

Definition
A recurrence relation is linear if:

f (a1,a2, . . . ,an) =
n∑

i=1

hi · ai + h(n) Where h(n) is a function of n.
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Definition

1 A recurrence relation is:
2 homogeneous if h(n) = 0
3 With constant coefficients: if all hi are constants.
4 Of order k if f (a1,a2, . . . ,an) =

∑n
i=n−k hi · ai

Example

1 fn = fn−1 + fn−2 is a linear, homogeneous recurrence
relation of order 2 with constant coefficients.

2 an = an−1 + n is a linear, non-homogeneous recurrence
relation of order 1 and constant coefficients.

3 dn = (n − 1)dn−1 + (n − 1)dn−2 is a linear, homogeneous
recurrence relation of order 2. It does not have constant
coefficients.

4 an = an−1 + 2an−2 + 4an−5 + 2n is a non-homogeneous,
linear recurrence relation with constant coefficients of order
5.

5 a=
1

1+an−1
is a non-linear recurrence relation.
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Recurrence Relations

A few more examples coming from verbal problems.

Question

1 In how many ways can you write the integer n as a sum of
k distinct positive integers?

2 In how many ways can you write n as a sum of 5 distinct
positive integers?

Answer

1 To answer the first question we split the set of answers into
two sets:

First set contains all solutions that include the number 1.
The second is the set of solutions for which every integer is
> 1.

2 If we denote the number of solutions by an,k then we get:

an,k = an−1,k−1 + an−k,k

3 This is a linear, homogeneous recurrence relation with
constant coefficients, but not of finite order.
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Answer (continued)

1 For the second equation we have:
2

bn,5 = bn,4 + bn−5,5

3 Again, this is a linear, homogeneous recurrence relation
with constant coefficients, of order ?.

Remark
Linear, homogeneous recurrence relations have many
solutions. Indeed if f (n) and g(n) are solutions then so is
αf (n) + βg(n).

If f (n) and g(n) are solutions to a non homgeneous recurrence
relation then f (n)− g(n) is a solution to the associated
homogeneous recurrence relation.
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Remark
This means that in order to solve a non homogeneous linear
recurrence relation all we need to do is find the general solution
g(n) to the homogeneous part and a particular solution p(n) to
the non homogenesous equation.
The general solution will be: g(n) + p(n).
The following example demonstrates this:

Example

Solve: an = 2an−1 + 3n − 1.

1 The homogeneous part is: bn = 2bn−1.
2 The general solution is: bn = α2n.
3 To find a particular solution we try pn = cn + d.
4 Substituting in the original recurrence relation we get:

cn + d = 2(c(n − 1) + d) + 3n − 1.
5 Solving for c and d we get: an = α2n − 3n − 5
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Solving Linear Homogeneous Recurrence Relations

Remark
To simplify notation we shall limit our discussion to second
order recurrence relations. The extension to higher order is
straight forward.

Theorem (observation)

Let an = b · an−1 + c · an−2 + g(n), a1 = α, a2 = β.
For each k ≥ 3,ak is uniquely determined.

Definition
a1 = α, a2 = β are called the initial conditions.

Corolary
Any solution that satisfies the recurrence relation and initial
conditions is THE ONLY solution.
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Definition
Let an = ban−1 + can−2.
The quadratic equation x2 − bx − c = 0 is called the
characteritic equation of the recurrence relation.

Theorem (Solving Linear Homogeneous RR with Constant
Coefficients)

1 Let an = b · an−1 + c · an−2.
2 Let r1, r2 be the roots of the characteristic equation.
3 Then the general solution of this recurrence relation is

an = αrn
1 + βrn

2 .
4 If r1 = r2 then the general solution is an = αrn + βnrn
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Chứng minh.
We need to show two things:

1 an = brn
1 + crn

2 is a solution (or an = brn + cnrn is a
solution in case r1 = r2).

2 Every other solution is of this form.

We note that since the recurrence relation is linear it is enough
to prove that rn

i = brn−1
i + crn−2

i

1 brn−1
i + crn−2

i = rn−2
i (bri + c)

2 Since ri are roots of the characteristic equation we have:
r2
i = bri + c.

3 Substituting we get: brn−1
i + crn−2

i = rn
i

4 Thus αrn
1 + βrn

2 solves the recurrence relation.
5 As previously proved, rn = brn−1 + crn−2. Taking the

derivative we get: nrn−1 = b(n− 1)rn−2 + c(n− 2)rn−3 and
if we multiply both sides by r we get:
nrn = b(n − 1)rn−1 + c(n − 2)rn−2
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continued.
It remains to show that these are the general solutions.

It is enough to show that if for any choice of a0,a1 there is a
solution of these forms for which a0,a1 will be matched.

1 Let a0 = m, a1 = k . We need to show that we can choose
α and β so that αr0

1 + βr0
2 = m and αr1 + βr2 = k .

2 This is a set of two linear equations in two unknowns. Its
determinant is r1 − r2 6= 0 hence it has a solution.

3 In the second case we have: α = m and α+ β = k which
obviously has a solution.
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Particular solutions

It remains to deal with identifying particular solutions. The best
approach is an “intelligent” guess.

If f(n) is a polynomial, try a polynomial of same degree, or
higher.
If it is an try an exponential function if a is not a root of the
characteristic equation.
If it is, try cnan.
In general, try a function “similar” to f (n). The following
examples will demonstrate the general approach.
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Example

1 Solve: an = 3an−1 + 2n.

Try: p(n) = c2n.
Substitute we get: c · 2n = 3 · c · 2n−1 + 2n

Solution: an = k · 3n − 2n+1.

2 Solve an = 3an−1 + 3n.

Try cn3n.
Substitute: cn3n = 3c(n − 1)3n−1 + 3n.
Solve for c: c = 1
General solution: an = α3n + n · 3n

3 Solve: an = 2an−1 − an−2 + 2n.

2n is a solution of the homogeneous equation, so we try
p(n) = cn2 a polynomial of degree 2.
Substitute: cn2 = 2c(n − 1)2 − c(n − 2)2 + 2n. Does not
produce a solution.
So we try a polynomial of degree 3 : p(n) = cn2 + dn3.
Substitute and solve for c,d we find that 1

3 n3 + n2 is a
particular solution.
So the general solution is: an = α+ βn + n2 + 1

3 n3.
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Generating Functions

With every sequence an we can associate a power series:

f (x) =
∞∑

i=0

anxn

and vice versa, every power series expansion of a function f (x)
gives rise to a sequence an. Are there any uses of this
relationship in counting?

In this section we shall explore the interaction among
polynomials, power series and counting.

Definition
The function

f (x) =
∞∑

i=0

anxn

is the genrating function of the sequence an.
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Examples

1 Let us start with an example we visited before: how many
different solutions in non-negative integers does the
equation x + y + z + t = 27 have?

2 Consider the function f (x) = (1 + x + x2 + . . . x27)4.
3 It is not difficult to see that the coefficient of x27 is the

answer, but how easy is it to calculate it?
4 Well, if you have a nice math program, it will be very easy.
5 But we can do better, Consider the function

g(x) = (
∑∞

i=0 x i)4.
6 Again, the coefficient of x27 in the Taylor expansion of this

function is the answer.
7 We notice that

∑∞
i=0 x i = 1

1−x .
8 So the answer will be the coefficient of x27 in the

expansion of (1− x)−4.
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function is the answer.

7 We notice that
∑∞

i=0 x i = 1
1−x .

8 So the answer will be the coefficient of x27 in the
expansion of (1− x)−4.
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Examples, continued

Would it be nice if we could use an extended Binomial
Coefficient and write the answer:(

−4
27

)
or in general

(
−4
k

)
.

Example

1 A box contains 30 red, 40 blue and 50 white balls. In how
many ways can you select 70 balls?

2 The coefficient of x70 in the product
(1 + x + . . .+ x30)(1 + x + . . .+ x40)(1 + x + . . .+ x50)

is the answer.
3 Note that:

(1+ x + . . .+ x30)(1+ x + . . .+ x40)(1+ x + . . .+ x50 . . .) =
1−x31

1−x
1−x41

1−x
1−x51

1−x = (1− x)−3(1− x31)(1− x41)(1− x51).
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Examples

All we need is to find the coefficient of x70 in:( ∞∑
i=0

(
−3
i

)
x i

)
(1− x31 − x41 − x51 + . . .)

which turns out to be 1061 once we understand the meaning of(
−3
i

)
.

Drill
Use this technique to find the number of distinct solution to:

x1 + x2 + x3 + x4 = 50

10 ≤ x1 ≤ 25, 15 ≤ x2 ≤ 30, 10 ≤ x3, 15 ≤ x4 ≤ 25.
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The Generalized Binomial Theorem

Theorem (The generalized binomial theorem)

(1 + x)r =
∞∑

i=0

(
r
i

)
x i

(
r
i

)
=

r(r − 1) . . . (r − i + 1)
i!

Chứng minh.

Follows directly from Taylor’s expansion of (1 + x)r .

For negative integers we get:(
r
i

)
=

r(r − 1) . . . (r − i + 1)
i! = (−1)i

(
−r + i − 1
−r − 1

)

Drill
Show that: (1

2
k

)
=

(−1)k

4k

(
2k
k

)
.
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Catalan Numbers

Question
You need to calculate the product of n matrices
A1 × A2 × . . .× An. How do we parenthesize the expression to
do it in the most economical way?

In how many ways can you parethesize the product?
Why does it matter?

Drill
Let A[m,n] denote an m × n matrix (m rows and n columns).
For each possible multiplication of the following product
calculate the number of multiplications of real numbers needed
to calculate the product.

A[10,20]A[20,40]A[40,50]A[50,10]
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Catalan Numbers

Example

1 A× B × C can be parethesized in two different ways.
2 A× B × C × D can be parethesized in 5 different ways.
3 Let mn be the number of ways to properly parenthesize the

product of n + 1 matrices.
4 m1 = 1, m2 = 2, m3 = 5, mn =? (for convenience, we set

m0 = 0).
5

mn =
n∑

i=0

mi ·mn−i
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Catalan Numbers

1 The generating function of the sequence mn is:

A(x) =
∞∑

i=0

mix i

2

A2(x) =
∞∑

k=0

bixk bk =
k∑

j=0

mj ·mk−j

3 For n = 0,1
∑n

i=0 mi ·mn−i = 0. Since m1 = 1 this means
that:

A2(x) =
∞∑

i=0

bix i =
∞∑

i=0

mix i − x = A(x)− x
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Catalan Numbers

Or: A(x) = 1
2x (1±

√
1− 4x).

Substituting the initial condition m0 = A(0) = 0 we get:

A(x) = 1
2x (1−

√
1− 4x)

.

(1− 4x)
1
2 =

∞∑
k=0

(
1/2
k

)
(−4)kxk =

∞∑
k=0

(
2k
k

)
xk

(
Using :

(1/2
k
)
= (−1/4)k(2k

k
))

.

mn is the coefficient of xn in the expansion of:
(1−

√
1− 4x)/(1/2x)

A simple calculation yields:

mn =
1

n + 1

(
2n
n

)
.

Recurrence Relations and Generating Functions



Catalan Numbers

Or: A(x) = 1
2x (1±

√
1− 4x).

Substituting the initial condition m0 = A(0) = 0 we get:

A(x) = 1
2x (1−

√
1− 4x)

.

(1− 4x)
1
2 =

∞∑
k=0

(
1/2
k

)
(−4)kxk =

∞∑
k=0

(
2k
k

)
xk

(
Using :

(1/2
k
)
= (−1/4)k(2k

k
))

.

mn is the coefficient of xn in the expansion of:
(1−

√
1− 4x)/(1/2x)

A simple calculation yields:

mn =
1

n + 1

(
2n
n

)
.

Recurrence Relations and Generating Functions



Catalan Numbers

Or: A(x) = 1
2x (1±

√
1− 4x).

Substituting the initial condition m0 = A(0) = 0 we get:

A(x) = 1
2x (1−

√
1− 4x)

.

(1− 4x)
1
2 =

∞∑
k=0

(
1/2
k

)
(−4)kxk =

∞∑
k=0

(
2k
k

)
xk

(
Using :

(1/2
k
)
= (−1/4)k(2k

k
))

.

mn is the coefficient of xn in the expansion of:
(1−

√
1− 4x)/(1/2x)

A simple calculation yields:

mn =
1

n + 1

(
2n
n

)
. Recurrence Relations and Generating Functions



Summary

These are the Catalan Numbers. They count many other
objects, for instance the number of binary trees, the number bof
grid paths from (0,0) to (0,2n) that stay above the x-axis, the
number of binary sequences of length 2n with n 1′s such that
when scanning from left to right the number of 1’s is never less
than the number of 0’s and more.

In most of these cases, we show that these sequences satisfy
the same recurrence relation and initial conditions.

Recurrence relations are a powerful tool for solving many
problems. There are many types of generating function, we
only scratched the surface of this beautiful theory.

Some more challenging problems will be posted in our
assignments folder.
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