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Advanced problems on finite sets: Set Systems

Theorem

The number of different subsets of an n-set A is 2n

(or |P(A)| = 2|A|).

Proof.

Here are three different proofs:

1 A decision tree: a full binary tree of height n has 2n leaves.
each leaf corresponds to a different subset.

2 Let an denote the number of subsets.
Then an = 2an−1, a1 = 1.
It now follows easily by induction that an = 2n.

3 The first 2n integers {0, 1, . . . 2n − 1} in binary are:
{02, 12, 102, 112, . . . , 111 . . . 12}.
Associate with every integer n = b1b2 . . . bn the subset
{k if bk = 1}.
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Extremal Set Systems

A typical question we shall try to investigate is how large can a set
of subsets F of a finite set with n elements be if it satisfies given
intersection, union or inclusion conditions.

We studied a couple of examples previously. We shall add more
examples in this section.
Let us start with a very simple example:

Question

How large can be F, a set of subsets of an n-set A, if any two sets
intersect?

Answer

We first observe that if we select a fixed member a0 ∈ A and form
all 2n−1 subsets of A \ {a0} and add a0 to each subset we obtain
2n−1 subsets such that any two intersect.
Also, if B ∈ F then B 6∈ F therefore F can contain at most half the
subsets of A.
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Observation

The last example is a common technique for solving many
problems dealing with finite sets. We first construct an example
that may look optimal and then try to prove that indeed it is.

Here is an example of this approach:

Question

How many subsets can F ⊂ P(A) have if any two subsets have
exactly 1 member in common.

Answer

We start by a construction.
Let A = {a1, a2, . . . , an} and let
F = {{a1, a2}, {a1, a3}, . . . {a1, an}, {a2, a3, . . . , an}}.
Clearly, F contains n = |A| subsets and any two subsets have
exactly one member in common.
But can we have more than n subsets?
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The proof

Proof.

Once again, we use linear algebra.

Let F = {B1,B2, . . . ,Bk}, Bi ⊂ A, |Bi ∩ Bj | = 1, i 6= j .
We may assume that |Bi | = βi > 1.
Once again we consider the incidence (characteristic) vectors
v1, v2, . . . , vk of the subsets Bi .
We shall prove that they are linearly independent.

1 < vi , vj >= 1 if i 6= j , < vi , vi >= βi > 1.

2 Assume that
∑k

i=1 αivi = 0.
We need to prove that αi = 0.

3 < vj ,
∑k

i=1 αivi >=
∑k

i=1 αi < vi , vj >= 0.

4
∑k

i=1 αi < vi , vj >= (βj − 1)αj +
∑k

i=1 αi = 0

5 αj = 1
1−βj

∑k
i=1 αi .
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continued.

1 If
∑k

i=1 αi = 0, then αj = 0. and we are done.

If not, we have (summing over j):

2
∑k

j=1 αj =
∑k

j=1
1

1−βj

∑k
i=1 αi .

3 (1 +
∑k

j=1
1

βj−1)
∑k

j=1 αj = 0.

4 But this is a contradiction since 1 +
∑k

j=1
1

βj−1 > 1.

5 This proves that v1, v2, . . . , vk are linearly independent and
therefore k ≤ n.

Remark

As ususal, a closer look reveals that we can prove more. The same
proof will work if we assume that all subset pairs have m members
in common for some fixed m.
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Many other questions come to mind.

1 What if we require all subsets to have the same size?

2 What if we allow more intersection sizes? Say three different
sizes?

3 Can we construct a system of subset of A such that every
point belongs to k subsets and every subset has k points?

4 Here is a famous example of 7 triples, subsets of
{1, 2, 3, 4, 5, 6, 7} such that:

Every number is in 3 triples.
Every pair of triples have exactly one number in common.
Every pair of points are contained in one triple.

Welcome to the wonderful world of Finite Projective Geometries.
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Fano’s plane, a finite projective geometry of order 2.
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Finite Projective Planes

Definition

A finite projective plane is a set of points P and a set of subsets
of P called “lines” that satisfy the following rules:

1 Given any two distinct points, there is exactly one line
incident with both of them.

2 Given any two distinct lines, there is exactly one point
incident with both of them.

3 There are four points such that no line is incident with more
than two of them.

Finite projective planes have the following properties:

1 |P| = n2 + n + 1.

2 There are also n2 + n + 1 lines.

3 Any point lies on n + 1 lines.

4 Any line contains n + 1 points.
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Finite Projective Planes

Notice the duality between “points” and “lines.”.

The number n is called the order of the finite projective plane P.
The Fano plane is a finite projective geometry of order 2.

Question

For which integers n there is a finite projective plane of order n?

Answer

We can construct finite projective geometries of orders n = pk , p
prime.

There is no finite projective plane of order 6.
There is no finite projective plane of order 10.
For all other integers:
No one knows! 12 is the smallest unknown.
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Construction of finite projective planes of order pn

We start by defining the “points” of our projective geometry.

1 Let S = {(x , y , z)| x , y , z ∈ GF (q), (x , y , z) 6= (0, 0, 0)}.
2 We define on S a relation ∝ as follows:

(x , y , z) ∝ α(x , y , z), α ∈ GF (q), α 6= 0.

3 It is easy to check that ∝ is an equivalence relation.

4 The set of points is the equivalence classes of the relation ∝.

5 A line of this projective plane is:
L = {(x , y , z)|ax + by + cz = 0, (a, b, c) 6= (0, 0, 0)}.

First notice the duality between “points” and “lines” in this
definition.
The proof that these points and lines satisfy the definition of a
finite projective plane will be included in the exercises following an
example.

Finite sets



Construction of finite projective planes of order pn

We start by defining the “points” of our projective geometry.

1 Let S = {(x , y , z)| x , y , z ∈ GF (q), (x , y , z) 6= (0, 0, 0)}.
2 We define on S a relation ∝ as follows:

(x , y , z) ∝ α(x , y , z), α ∈ GF (q), α 6= 0.

3 It is easy to check that ∝ is an equivalence relation.

4 The set of points is the equivalence classes of the relation ∝.

5 A line of this projective plane is:
L = {(x , y , z)|ax + by + cz = 0, (a, b, c) 6= (0, 0, 0)}.

First notice the duality between “points” and “lines” in this
definition.
The proof that these points and lines satisfy the definition of a
finite projective plane will be included in the exercises following an
example.

Finite sets



Construction of finite projective planes of order pn

We start by defining the “points” of our projective geometry.

1 Let S = {(x , y , z)| x , y , z ∈ GF (q), (x , y , z) 6= (0, 0, 0)}.

2 We define on S a relation ∝ as follows:
(x , y , z) ∝ α(x , y , z), α ∈ GF (q), α 6= 0.

3 It is easy to check that ∝ is an equivalence relation.

4 The set of points is the equivalence classes of the relation ∝.

5 A line of this projective plane is:
L = {(x , y , z)|ax + by + cz = 0, (a, b, c) 6= (0, 0, 0)}.

First notice the duality between “points” and “lines” in this
definition.
The proof that these points and lines satisfy the definition of a
finite projective plane will be included in the exercises following an
example.

Finite sets



Construction of finite projective planes of order pn

We start by defining the “points” of our projective geometry.

1 Let S = {(x , y , z)| x , y , z ∈ GF (q), (x , y , z) 6= (0, 0, 0)}.
2 We define on S a relation ∝ as follows:

(x , y , z) ∝ α(x , y , z), α ∈ GF (q), α 6= 0.

3 It is easy to check that ∝ is an equivalence relation.

4 The set of points is the equivalence classes of the relation ∝.

5 A line of this projective plane is:
L = {(x , y , z)|ax + by + cz = 0, (a, b, c) 6= (0, 0, 0)}.

First notice the duality between “points” and “lines” in this
definition.
The proof that these points and lines satisfy the definition of a
finite projective plane will be included in the exercises following an
example.

Finite sets



Construction of finite projective planes of order pn

We start by defining the “points” of our projective geometry.

1 Let S = {(x , y , z)| x , y , z ∈ GF (q), (x , y , z) 6= (0, 0, 0)}.
2 We define on S a relation ∝ as follows:

(x , y , z) ∝ α(x , y , z), α ∈ GF (q), α 6= 0.

3 It is easy to check that ∝ is an equivalence relation.

4 The set of points is the equivalence classes of the relation ∝.

5 A line of this projective plane is:
L = {(x , y , z)|ax + by + cz = 0, (a, b, c) 6= (0, 0, 0)}.

First notice the duality between “points” and “lines” in this
definition.
The proof that these points and lines satisfy the definition of a
finite projective plane will be included in the exercises following an
example.

Finite sets



Construction of finite projective planes of order pn

We start by defining the “points” of our projective geometry.

1 Let S = {(x , y , z)| x , y , z ∈ GF (q), (x , y , z) 6= (0, 0, 0)}.
2 We define on S a relation ∝ as follows:

(x , y , z) ∝ α(x , y , z), α ∈ GF (q), α 6= 0.

3 It is easy to check that ∝ is an equivalence relation.

4 The set of points is the equivalence classes of the relation ∝.

5 A line of this projective plane is:
L = {(x , y , z)|ax + by + cz = 0, (a, b, c) 6= (0, 0, 0)}.

First notice the duality between “points” and “lines” in this
definition.
The proof that these points and lines satisfy the definition of a
finite projective plane will be included in the exercises following an
example.

Finite sets



Construction of finite projective planes of order pn

We start by defining the “points” of our projective geometry.

1 Let S = {(x , y , z)| x , y , z ∈ GF (q), (x , y , z) 6= (0, 0, 0)}.
2 We define on S a relation ∝ as follows:

(x , y , z) ∝ α(x , y , z), α ∈ GF (q), α 6= 0.

3 It is easy to check that ∝ is an equivalence relation.

4 The set of points is the equivalence classes of the relation ∝.

5 A line of this projective plane is:
L = {(x , y , z)|ax + by + cz = 0, (a, b, c) 6= (0, 0, 0)}.

First notice the duality between “points” and “lines” in this
definition.
The proof that these points and lines satisfy the definition of a
finite projective plane will be included in the exercises following an
example.

Finite sets



Construction of finite projective planes of order pn

We start by defining the “points” of our projective geometry.

1 Let S = {(x , y , z)| x , y , z ∈ GF (q), (x , y , z) 6= (0, 0, 0)}.
2 We define on S a relation ∝ as follows:

(x , y , z) ∝ α(x , y , z), α ∈ GF (q), α 6= 0.

3 It is easy to check that ∝ is an equivalence relation.

4 The set of points is the equivalence classes of the relation ∝.

5 A line of this projective plane is:
L = {(x , y , z)|ax + by + cz = 0, (a, b, c) 6= (0, 0, 0)}.

First notice the duality between “points” and “lines” in this
definition.

The proof that these points and lines satisfy the definition of a
finite projective plane will be included in the exercises following an
example.

Finite sets



Construction of finite projective planes of order pn

We start by defining the “points” of our projective geometry.

1 Let S = {(x , y , z)| x , y , z ∈ GF (q), (x , y , z) 6= (0, 0, 0)}.
2 We define on S a relation ∝ as follows:

(x , y , z) ∝ α(x , y , z), α ∈ GF (q), α 6= 0.

3 It is easy to check that ∝ is an equivalence relation.

4 The set of points is the equivalence classes of the relation ∝.

5 A line of this projective plane is:
L = {(x , y , z)|ax + by + cz = 0, (a, b, c) 6= (0, 0, 0)}.

First notice the duality between “points” and “lines” in this
definition.
The proof that these points and lines satisfy the definition of a
finite projective plane will be included in the exercises following an
example.

Finite sets



Constructing PG(2)

Points:
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}
(Note: each equivalence class contains only one point).
Lines:

1 L1 = {(x , y , z)|x = 0 = {(0, 0, 1), (0, 1, 0), (0, 1, 1)}
2 L2 = {(x , y , z)|y = 0 = {(0, 0, 1), (1, 0, 0), (1, 0, 1)}
3 L3 = {(x , y , z)|z = 0 = {(1, 0, 0), (0, 1, 0), (1, 1, 0)}
4 L4 = {(x , y , z)|x + y = 0 = {(0, 0, 1), (1, 1, 0), (1, 1, 1)}
5 L5 = {(x , y , z)|x + z = 0 = {(1, 0, 1), (0, 1, 0), (1, 1, 1)}
6 L6 = {(x , y , z)|y + z = 0 = {(0, 1, 1), (1, 0, 0), (1, 1, 1)}
7 L7 = {(x , y , z)|x + y + z = 0 = {(1, 0, 1), (1, 1, 0), (0, 1, 1)}

It is now a simple matter to check that this set system satisfies the
definition of a finite projective plane.
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Finite sets



We conclude this short journey into extremal set systems with a
final example:

Sperner’s Lemma.

Theorem

Let A be a set with n members. The maximum number of subsets
of A such that no subset is included in another subset is

( n
b n
2
c
)

Proof.

1 Observation: if F is a family of subsets all of the same size,
then no subset is contained in another subset.

2 Since
(n
k

)
is maximized when k = bn2c we can have as many

subsets as claimed.

3 It remains to prove that we cannot have more subsets.
Let F be a family of k subsets satisfying the non-inclusion
condition.
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Continued.

1 For a given subset A ∈ F let PA be the set of all
n-permutations such that the first |A| entries in π ∈ PA are
the elements of A.

2 Clearly, |PA| = |A|!× (n − |A|)!

3 The non-inclusion condition implies that if A 6= B then
PA ∩ PB = ∅.

4 This means that
∪A∈FPA ⊂ Sn →

∑
A∈F |A|!× (n − |A|)! ≤ n!.

5 We note that |A|!×(n−|A|)!n! = 1

( n
|A|!)

6 Also 1

( n
|A|!)
≥ 1

( n
b n
2 c

)

7 Hence |F|
( n
b n
2 c

)
≤
∑

A∈F
|A|!×(n−|A|)!

n! ≤ 1→ |F| ≤
( n
b n
2
c
)
.
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Summary

This concludes our short journey to the world of sets.

1 We learned:

2 How to describe sets.

3 Binary operations on sets.

4 Simple applications using the built-in set objects in computing
systems.

5 Infinite sets, countable and non-countable.

6 Existence of non programmable functions f : N → {0, 1}.
7 Set systems.

8 The use of linear algebra to prove properties of set systems.

We hope you enjoyed the journey.
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