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A curious example

Question (Even teams)

How many different teams can be formed from students in a class
with 2n students subject to the following two conditions:

1 Each team must have an even number of students.

2 Each two teams must have an even number of students in
common.

Question (Odd teams)

Let us modify this question slightly:

1 Each team must have an odd number of students.

2 Each two teams must have an even number of students in
common.
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Answer

Answer

1 We can form n pairs of students. Each subset of the n pairs
can form a team. Clearly, each team will have an even
number of students and each two teams will have an even
number of students in common. The total number of teams is
2n, so if for instance, there are only 40 students in the class,
we can form 220 teams which is more than 1, 000, 000 teams.

2 For the ”odd” case, we can form 2n teams (each team will
have 1 student). Another way, each team has 2n− 1 students,
again we can form 2n teams. In case we have 40 students in
class, we can form ”only” 40 teams subject to the ”odd”
condition.

3 Is 2n the maximum number of teams that can be formed?
How about 2n teams? Is this the largest number of teams?

4 Is there an explanation for the discrepancy between the
”even” and ”odd” class?
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Linear Algebra to the recsue

Theorem (Odd teams)

The maximum number of odd teams from a class with 2n
students, such that every pair of teams have an even number of
students in common is 2n.

Before we give a proof of this theorem we recall some fundamental
facts about matrices.

1 The rank of an m × n matrix is the number of linearly
independent rows (columns).

2 M ×Mtr is a square matrix.

3 rank(M × N) ≤ min{rank(M), rank(N)}
4 If M is an n× n matrix (a square matrix) then rank(M) = n if

and only if Det(M) 6= 0.
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The Proof

Proof.

Let T1,T2, . . . ,Tk be k teams each with an odd number of
students. Let ti be the incidence vector coresponding to team
Ti that is ti ∈ R2n.

We form the k × 2n matrix M as follows: Mi = ti .

We note that rank(M) ≤ 2n.

Hence M ×Mtr is a square matrix of order k and
rank(M ×Mtr ) ≤ 2n.

If k > 2n then Det(M ×Mtr ) = 0.

If Det(A) = 0 then Det(A) (mod 2) = 0.

We note that < ti , tj >= 0 (mod 2) if
i 6= j and < ti , ti >= 1 (mod 2).

But this means that Det(M ×Mtr ) (mod 2) = 1 a
contradiction. Conclusion: k ≤ 2n.
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Fields

Definition

A field {F ,+, ·} is a set together with two operations, usually
called addition and multiplication, and denoted by + and ·
respectively, such that the following axioms hold:

1 {F ,+} is a commutative group, 0 is the additive identity.

2 {F \ {0}, ·} is a commutative group, 1 is the multiplicative
identity.

3 The ditributive law holds: a · (b + c) = a · b + a · c.

Example

The four most common fields are:

1 R, the real numbers.

2 Q, the rational numbers.

3 C , the complex numbers.

4 GF (q) finite fields of order q.
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Finite Fields

Finite fields play a very central role in communication security.
Finite fields have the following properties:

1 The order of a finite field is pn for some prime p.

2 For every prime p and positive integer n there is a unique
(upto isomorphism) finite field of order q = pn, denoted by
GF (q) named after the French mathematician Everist Galois.

Example

GF (2) = {0, 1} with 1 + 1 = 0.

GF (p) = {0, 1, . . . , p − 1}, where all arithmetic operations
are done mod p.

GF (22) = {0, 1, α, 1 + α}, where
α + α = 0, 1 + 1 = 0, α · α = α + 1.
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Vector spaces over fields

Definition

A vector space of dimension k over the field F , denoted by F k is
the set: {(x1, x2, . . . , xk)} where xi ∈ F together with the
following two operations:

1 (x1, x2, . . . , xk)+(y1, y2, . . . , yk) = (x1+y1, x2+y2, . . . , xk+yk)

2 α(x1, x2, . . . , xk) = (α · x1, α · x2, . . . , α · xk)

We shall make use of the inner product (also called scalar or
Cartesian product of vectors) defined by:
< (x1, x2, . . . , xn), (y1, y2, . . . , yn) >=

∑n
i=1 xiyi .

Example

The 2-dimensional vector space GF 2(5) = {(i , j)|0 ≤ i , j ≤ 4}.
L = {(x , y)|ax + by = c , {a, b, c , x , y} ∈ GF (5) a or b or both
6= 0} is a line in GF 2(5)

Two lines are parallel if they do not have a point in common.
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Some basic facts about vector spaces

A set of vectors {v1, v2, . . . vm} ⊂ F k is linearly independent
if:

∑m
i=1 αivi = 0→ αi = 0.

A set of vectors {v1, v2, . . . vm} ⊂ F k is a basis if every vector
u ∈ F k can be expressed uniquely as a linear combination of

{v1, v2, . . . vm} ⊂ F k : u =
∑m

i=1 αivi

Let W = {w1, v2, . . .wj} ⊂ F k . The subspace spanned by W
is the set of all linear combinations of {w1, v2, . . .wj}.
If {v1, v2, . . . vm} ⊂W ⊂ F k is a basis then it is linearly
independent.

All bases have the same number of vectors (the dimension of
the space).
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The odd teams, revisited

Recall: if there are n students in a class and we wish to form teams
such that every team has an odd number of students and each two
teams have an even number of students in common then we
cannot form more than n teams.

Proof.

Let {T1,T2, . . . ,Tk} be k teams satisfying both conditions. Let
v1, v2, . . . , vk be their characteristic vectors.
Claim: v1, v2, . . . , vk is an independent set over GF n(2).
Indeed, assume that

∑k
i=1 αivi = 0. Note that αi = 0 or 1.

Consider the inner product < vj ,
∑k

i=1 αivi > = 0.
Since Ti ∩ Tj is even if i 6= j < vi , vj > = 0

Therefore < vj ,
∑k

i=1 αivi >= αj < vj , vj > = 0 But
< vj , vj > = 1 so αj = 0 or k ≤ n.
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Why give multiple proofs?

Question

Why did we give two proofs for the odd teams problem?

A theorem is true or false. If it is true, one proof should suffice, so
why bother with a second proof?

Answer

It frequently happens that a proof may show connections with
other mathematical objects not mentioned in the statement of the
theorem.
For instance, the first proof shows how matrices can be used in this
and potentially other similar situations.
The second proof introduces vector spaces. It may suggest a tool
to solve other related problems.
For instance, how to add more teams if possible (see exercise).
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Some more set problems...

Theorem

Assume you formed 23 teams in our class, each team having an
odd number of students and any two teams have an even number
of students in common. Prove that you can add 3 more teams
each with an odd number of students such that any two different
teams will have an even number of students in common.

Proof.

Left to you...
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Parallel lines in GF 2(3)

We have 9 school girls. They walk daily in 3 rows, each row has 3
girls. We wish to design a “walk” so that each girl will walk with
every other girl exactly once.

Question

How many days are needed?

Answer

Each girl walks with two other girls every day. So to walk with 8
other girls we need at least four days.
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Let us design a solution:

We identify each girl with a “point” in GF 2(3). Every line in
GF 2(3) is a triple of girls. So each day we will schedule a set of
three parallel lines.

The “girls” dressed as “points”:
{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}
A line thorugh the origin:

L1 : {(0, 0), (0, 1), (0, 2)} equation : x = 0
Two parallel lines:

L2 : {(1, 0), (1, 1), (1, 2)} equation : x = 1
L3 : {(2, 0), (2, 1), (2, 2)} equation : x = 2

This is the schedule for day 1. Note that all nine girls are walking.

Day two: Start with another line through the origin, say x + y = 0.
Now do the rest.
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Theorem

16 students meet every morning to play Badminton (Za cau).
They have four courts so they form 4 teams. Can you schedule the
teams so that in five days every student will play with every other
srtudent exactly once? (play with another student means be on
court with him, not necessarily as a pair. For instance if 1 3 6 13
are playing then 1 will not play again with 3, 6, or 13).

YES WE CAN!

Theorem

a. 25 friends meet for dinner at a restaurant. The restaurant has
five tables. each table seats five persons. What is the smallest
number of dinner parties needed so that each person will dine with
every other person?
b. Can you schedule these dinners so that every person will dine
with every other person exactly once.

Should be easy now!
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