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How ”big” can a set be?



The cardinality of sets

Question

What is the ”size” of a set?

Question

Can we ”compare” any two sets?

Observation

In this section we shall develop the tools that will enable us to
compare sets. We will also prove that there are many non
computable functions.
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Functions

Definition

Let A and B be sets. A function f from A to B is an assignment of
exactly one element of B to elements of A. Notation: f : A→ B.

Alternatively, f ⊂ A× B such that
((a, b) ∈ f ) ∧ ((a, c) ∈ f )→ b = c .

In other words, a function f : A→ B is a restricted binary relation
between A and B.

How ”big” can a set be?



Functions, basic definitions

Definition

D = {a|(a, b) ∈ f } is the Domain of definition of the function f .

Definition

If D = A then f is called a Total function.

Definition

B is the Codomain of f.
The range of f is: {b|f (a) = b}

Definition

Let f : A→ B,S ⊂ A, f (S) = {b ∈ B|b = f (s) for some s ∈ S}.
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Examples

Example

1. f assigns to a bit string the number of 1s in the string.
Domain: {b| All bit strings} Range = {0, 1, 2, . . .} = N.

Example

2. f assigns to each positive integer the smallest prime greater or
equal to this integer.
(f (5) = 5, f (25) = 29, f (69) = 71 . . .
Domain: Z+, Range the set of prime numbers.

Example

3. f (x) = bxc Domain: R, Range: Z .
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Classification of functions

Definition

1 f : A→ B is one to one, 1− 1, ( injective) if
f (x) = f (y)→ x = y

2 f : A→ B is onto or surjective if ∀b ∈ B,∃a ∈ A such that
f (a) = b

3 f : A→ B which is both 1− 1 and onto is called a one-to-one
correspondence or a bijection.

Observation

The function f (n) = 2n is a bijection between the integers and the
even integers.
This means that there is a bijection between a set and ”half” its
size!
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The inverse function

We need a few more definitions to be ready for our goal.

Definition

A set B is finite if there is a bijection between B and Nk .

Observation

If f : A→ B is a bijection then we can define a new function
f −1 : B → A, the inverse of f , as follows: to find how f −1 maps
the element b ∈B find the unique a ∈ A such that: f (a) = b and
define f −1(b) = a.

Example

f (x) = 3x + 1, x ∈ R.
f −1(x) =?
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Definition

Let g : A→B and f : B → C . The composition of the functions
f and g , denoted by f ◦ g is a function f ◦ g : A→ C defined by
f ◦ g(a) = f (g(a)).

Observation

Observation: If f : A→ B and g : B → C are bijections then
g ◦ f : A→ C and f −1 ◦ g−1 : C → A are also a bijections..

Definition

The function f : A→ A defined by f (a) = a ∀a ∈ A is called the
Identity function. We denote it by I .

Observation

If f is a function on the set A, then f ◦ I (a) = I ◦ f (a) = f (a).
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Example

1. Let f (x) = x
1+x and g(x) = x

1+3x

f ◦ g(1) = f (14) =?

g ◦ f (1) = g(12) =?

Coincidence???
2. Let h(x) = x2 + 1.
f ◦ h(1) =? h ◦ f (1) =?.

f ◦ g(x) and g ◦ f (x) can be distinct functions, or the composition
is not commutative.
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The bijections on a set A form a group.

Theorem

If f , g , h are bijections on the set A then (f ◦ g) ◦ h = f ◦ (g ◦ h)

Proof.

Follows easily from the definitions.

Observation

The bijections on a set A are closed under composition, have an
identity, an inverse and they are associative thus they form a
group, a non-commutative group.

Question

You have seen compositions before, where?

How ”big” can a set be?
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Infinities...

Definition

If there is a bijection between A and B we say that they have the
same cardinality denoted by |A| = |B|

Question

Naturally, we would like to say that |A| > |B| if there is an
injection f : B → A.

Question

Is this a proper comparison function? Can any two sets be
compared? Can we decide which is ”bigger?” Easy for finite sets,
but what about infinite sets?

Question

In particular, if |A| ≥ |B| ∧ |B| ≥ |A| does it imply that |A| = |B|?

How ”big” can a set be?
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Countable sets

Countable sets play a central role in discrete mathematics.

Definition

A set B is countable if |B| = |N|. We say that the cardinality of
B is ℵ0.

Observation

If A ⊂ N, A 6= ∅ then A has a smallest member.

(The axiom of mathematical induction).
If 1 ∈ A, ∧ ((n ∈ A)→ n + 1 ∈ A) then A = Z+.

Observation

There are other equivalent forms of the principle of mathematical
induction:
1. 1 ∈ A, (∀k < n, k ∈ A→ n ∈ A) then A = Z+.

2. If ∃an ∈ A, an →∞→ (an − 1) ∈ A then A = Z+.

How ”big” can a set be?
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Countable sets

Theorem

A subset of a countable set is either finite or countable.

Theorem

|N x N| = ℵ0.

Corollary

The set of rational numbers is countable (|Q| = ℵ0).

Theorem

If Ai , i = 1, 2, . . . are countable sets then so is ∪∞i=1Ai .

How ”big” can a set be?
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Theorem (1)

∀A, |P(A)| > |A|.

Theorem (2)

The set {x |0 < x < 1, x ∈ R} is not countable.

Theorem (3)

The set of functions f : N → {0, 1} is not countable.

Corollary

There are functions f : N → {0, 1} (decision problems) that are
not programmable.

Theorem (4)

If |A| ≤ |B| and |B| ≤ |A| then |A| = |B|

How ”big” can a set be?
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Proofs

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 1)

We will prove that there is no onto function f : A→ P(A) .
Indeed given any function f : A→ P(A). Let
S = {a ∈ A|a 6∈ f (a)}. (Recall that f (a) ⊂ A, or f (a) ∈ P(A)).
Assume that S = f (s) for some s ∈ A.
Whether s ∈ f (s) or s 6∈ f (s) we reach a contradicion.
Fill in the details.
Conclusion: since there is an injection g : A→ P(A) and there is
no otno function f : A→ P(A) we conclude that |A| < |P(A)|.

How ”big” can a set be?
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Proofs

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 2)

For every countable set A ⊂ {x |0 < x < 1, x ∈ R} we shall find a
real number y 6∈ A.
Let {x1, x2, . . . , xn, . . .} be a countable set of real numbers. Let
xn = 0.xn,1xn,2 . . . xn,nxn,n+1 . . . be the decimal expansion of xn.

Let y = 0.y1y2 . . . yn . . . be defined as follows:

Let yn = xn,n + 5 (mod 10). We want to make sure that
∀n, yn 6= xn,n.

Fill in the details, that is prove that y 6∈ A.

Remark

This proof technique is called the Diagonal Method. It is used on
many occaisons. For instance Theorem 1 is an abstract form of
this method.
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Proofs

Here we go again.

Proof (Theorem 3, proof sketch)

It is enough to show that there is a bijection between the set of
functions: {f : N → {0, 1}} and P(N).

Let F (f ) = {i |f (i) = 1}.
Show that this is a bijection between P(n) and the functions.

Proof (of the corollary)

Each program that implements a decision problem is stored in
memory as a finite binary sequence. There are only countably many
finite binary sequences. Hence there are non computable functions.
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Proofs

Proof ( of theorem 4)

The theorem says that if there is a 1− 1 functions
f : A→ B and g : B → A then there is a bijection between
A and B.

Consider the following chains, (directed paths): . . .→a
→ f (a)→ g(f (a) . . .
Verify: Each chain is one of the following four types:

1 A finite cycle with 2n ”nodes” n, members of A interlaced
with n members of .

2 A doubly infinite chain of interlaced nodes from A and B.

3 An infinite chain a→ b → a′ → b′ → . . .

4 An infinite chain b → a→ b′ → a′ → . . .
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Proof of theorem 4, continued

We note that each a ∈ A, and b ∈ B is included in exactly one
chain.

Each a ∈ A has a succsessor in B
Each a ∈ A has a predecessor in B except for the head of the
chains in (3).
Each b ∈ B has a successor in A.
Each b ∈ B has a predecessor in A except for the head of the
chains in (4).
The mapping F (a) = b where a→ b, if a belongs to chains in (1),
(2) or (3) and F (a) = b where b → a if a is in a chain of (4) is a
bijection between A and B.

Verify this assertion.
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Surprise

Remark

There is a surprising consequence of this famous lemma. If you
take two sets of points A and B in the plane, and if each set
contains a disk, then each set can be disected into two sets
A1,A2,B1,B2 such that Ai and Bi are similar.

For example: these two sets can be disected into a pair of similar
sets!
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