How "big" can a set be?

September 30, 2010

The cardinality of sets

Question

What is the "size" of a set?

The cardinality of sets

Question

What is the "size" of a set?

Question

Can we "compare" any two sets?

The cardinality of sets

Question

What is the "size" of a set?

Question

Can we "compare" any two sets?

Observation

In this section we shall develop the tools that will enable us to compare sets. We will also prove that there are many non computable functions.

Functions

Definition

Let A and B be sets. A **function f** from A to B is an assignment of exactly one element of B to elements of A. Notation: $f : A \rightarrow B$.

Alternatively, $f \subset A \times B$ such that $((a,b) \in f) \wedge ((a,c) \in f) \rightarrow b = c$.

In other words, a function $f:A\to B$ is a restricted binary relation between A and B.

Definition

 $D = \{a | (a, b) \in f\}$ is the **Domain** of definition of the function f.

Definition

 $D = \{a | (a, b) \in f\}$ is the **Domain** of definition of the function f.

Definition

If D = A then f is called a **Total** function.

Definition

 $D = \{a | (a, b) \in f\}$ is the **Domain** of definition of the function f.

Definition

If D = A then f is called a **Total** function.

Definition

B is the **Codomain** of f.

The **range** of f is: $\{b|f(a)=b\}$

Definition

 $D = \{a | (a, b) \in f\}$ is the **Domain** of definition of the function f.

Definition

If D = A then f is called a **Total** function.

Definition

B is the Codomain of f.

The **range** of f is: $\{b|f(a)=b\}$

Definition

Let $f: A \rightarrow B, S \subset A$, $f(S) = \{b \in B | b = f(s) \text{ for some } s \in S\}$.

Example

1. f assigns to a bit string the number of 1s in the string.

Domain: $\{b | All \text{ bit strings} \}$ Range $= \{0, 1, 2, \ldots\} = N$.

Example

2. f assigns to each positive integer the smallest prime greater or equal to this integer.

$$(f(5) = 5, f(25) = 29, f(69) = 71...$$

Domain: Z^+ , Range the set of prime numbers.

Example

1. f assigns to a bit string the number of 1s in the string.

Domain: $\{b | All \text{ bit strings} \}$ Range $= \{0, 1, 2, \ldots\} = N$.

Example

2. f assigns to each positive integer the smallest prime greater or equal to this integer.

$$(f(5) = 5, f(25) = 29, f(69) = 71...$$

Domain: Z^+ , Range the set of prime numbers.

Example

3. f(x) = |x| Domain: R, Range: Z.

Example

1. f assigns to a bit string the number of 1s in the string.

Domain: $\{b | All \text{ bit strings} \}$ Range $= \{0, 1, 2, \ldots\} = N$.

Example

2. f assigns to each positive integer the smallest prime greater or equal to this integer.

$$(f(5) = 5, f(25) = 29, f(69) = 71...$$

Domain: Z^+ , Range the set of prime numbers.

Example

3. f(x) = |x| Domain: R, Range: Z.

Definition

• $f: A \to B$ is **one to one**, 1-1, (injective) if $f(x) = f(y) \to x = y$

Definition

- $f: A \to B$ is **one to one**, 1-1, (injective) if $f(x) = f(y) \to x = y$
- ② $f: A \rightarrow B$ is **onto** or surjective if $\forall b \in B, \exists a \in A$ such that f(a) = b

Definition

- $f: A \rightarrow B$ is **one to one**, 1-1, (injective) if $f(x) = f(y) \rightarrow x = y$
- ② $f: A \to B$ is **onto** or surjective if $\forall b \in B, \exists a \in A$ such that f(a) = b
- **3** $f: A \rightarrow B$ which is both 1-1 and onto is called a one-to-one correspondence or a **bijection**.

Definition

- $f: A \to B$ is **one to one**, 1-1, (injective) if $f(x) = f(y) \to x = y$
- ② $f: A \to B$ is **onto** or surjective if $\forall b \in B, \exists a \in A$ such that f(a) = b
- **3** $f: A \rightarrow B$ which is both 1-1 and onto is called a one-to-one correspondence or a **bijection**.

Observation

The function f(n) = 2n is a bijection between the integers and the even integers.

This means that there is a bijection between a set and "half" its size!

The inverse function

We need a few more definitions to be ready for our goal.

Definition

A set B is finite if there is a bijection between B and N_k .

Observation

If $f:A\to B$ is a bijection then we can define a new function $f^{-1}:B\to A$, the inverse of f, as follows: to find how f^{-1} maps the element $b\in B$ find the unique $a\in A$ such that: f(a)=b and define $f^{-1}(b)=a$.

Example

$$f(x) = 3x + 1, x \in R.$$

 $f^{-1}(x) = ?$

Definition

Let $g: A \to B$ and $f: B \to C$. The **composition** of the functions f and g, denoted by $f \circ g$ is a function $f \circ g: A \to C$ defined by $f \circ g(a) = f(g(a))$.

Observation

Observation: If $f: A \to B$ and $g: B \to C$ are bijections then $g \circ f: A \to C$ and $f^{-1} \circ g^{-1}: C \to A$ are also a bijections..

Definition

Let $g:A\to B$ and $f:B\to C$. The **composition** of the functions f and g, denoted by $f\circ g$ is a function $f\circ g:A\to C$ defined by $f\circ g(a)=f(g(a))$.

Observation

Observation: If $f: A \to B$ and $g: B \to C$ are bijections then $g \circ f: A \to C$ and $f^{-1} \circ g^{-1}: C \to A$ are also a bijections..

Definition

The function $f: A \to A$ defined by $f(a) = a \ \forall a \in A$ is called the **Identity** function. We denote it by I.

Definition

Let $g: A \to B$ and $f: B \to C$. The **composition** of the functions f and g, denoted by $f \circ g$ is a function $f \circ g: A \to C$ defined by $f \circ g(a) = f(g(a))$.

Observation

Observation: If $f: A \to B$ and $g: B \to C$ are bijections then $g \circ f: A \to C$ and $f^{-1} \circ g^{-1}: C \to A$ are also a bijections..

Definition

The function $f: A \to A$ defined by $f(a) = a \ \forall a \in A$ is called the **Identity** function. We denote it by I.

Observation

If f is a function on the set A, then $f \circ I(a) = I \circ f(a) = f(a)$.

1. Let
$$f(x) = \frac{x}{1+x}$$
 and $g(x) = \frac{x}{1+3x}$
 $f \circ g(1) = f(\frac{1}{4}) = ?$

1. Let
$$f(x) = \frac{x}{1+x}$$
 and $g(x) = \frac{x}{1+3x}$
 $f \circ g(1) = f(\frac{1}{4}) = ?$
 $g \circ f(1) = g(\frac{1}{2}) = ?$

1. Let
$$f(x) = \frac{x}{1+x}$$
 and $g(x) = \frac{x}{1+3x}$
 $f \circ g(1) = f(\frac{1}{4}) = ?$
 $g \circ f(1) = g(\frac{1}{2}) = ?$

Coincidence???

1. Let
$$f(x) = \frac{x}{1+x}$$
 and $g(x) = \frac{x}{1+3x}$
 $f \circ g(1) = f(\frac{1}{4}) = ?$

$$g\circ f(1)=g(\tfrac{1}{2})=?$$

Coincidence???

2. Let $h(x) = x^2 + 1$.

$$f \circ h(1) = ?$$
 $h \circ f(1) = ?$.

1. Let
$$f(x) = \frac{x}{1+x}$$
 and $g(x) = \frac{x}{1+3x}$
 $f \circ g(1) = f(\frac{1}{4}) = ?$
 $g \circ f(1) = g(\frac{1}{2}) = ?$

Coincidence???

2. Let $h(x) = x^2 + 1$.

$$f \circ h(1) = ?$$
 $h \circ f(1) = ?$.

 $f \circ g(x)$ and $g \circ f(x)$ can be distinct functions, or the composition is not commutative.

Theorem

If f, g, h are bijections on the set A then $(f \circ g) \circ h = f \circ (g \circ h)$

Theorem

If f, g, h are bijections on the set A then $(f \circ g) \circ h = f \circ (g \circ h)$

Proof.

Follows easily from the definitions.

Theorem

If f, g, h are bijections on the set A then $(f \circ g) \circ h = f \circ (g \circ h)$

Proof.

Follows easily from the definitions.

Observation

The bijections on a set A are closed under composition, have an identity, an inverse and they are associative thus they form a group, a non-commutative group.

$\mathsf{Theorem}$

If f, g, h are bijections on the set A then $(f \circ g) \circ h = f \circ (g \circ h)$

Proof.

Follows easily from the definitions.

Observation

The bijections on a set A are closed under composition, have an identity, an inverse and they are associative thus they form a group, a non-commutative group.

Question

You have seen compositions before, where?

$\mathsf{Theorem}$

If f, g, h are bijections on the set A then $(f \circ g) \circ h = f \circ (g \circ h)$

Proof.

Follows easily from the definitions.

Observation

The bijections on a set A are closed under composition, have an identity, an inverse and they are associative thus they form a group, a non-commutative group.

Question

You have seen compositions before, where?

Infinities...

Definition

If there is a bijection between A and B we say that they have the same **cardinality** denoted by |A|=|B|

Infinities...

Definition

If there is a bijection between A and B we say that they have the same **cardinality** denoted by |A|=|B|

Question

Naturally, we would like to say that |A| > |B| if there is an injection $f : B \to A$.

Infinities...

Definition

If there is a bijection between A and B we say that they have the same **cardinality** denoted by |A|=|B|

Question

Naturally, we would like to say that |A| > |B| if there is an injection $f : B \to A$.

Question

Is this a proper comparison function? Can any two sets be compared? Can we decide which is "bigger?" Easy for finite sets, but what about infinite sets?

Infinities...

Definition

If there is a bijection between A and B we say that they have the same **cardinality** denoted by |A|=|B|

Question

Naturally, we would like to say that |A| > |B| if there is an injection $f : B \to A$.

Question

Is this a proper comparison function? Can any two sets be compared? Can we decide which is "bigger?" Easy for finite sets, but what about infinite sets?

Question

In particular, if $|A| \ge |B| \land |B| \ge |A|$ does it imply that |A| = |B|?

Countable sets play a central role in discrete mathematics.

Definition

A set B is **countable** if |B| = |N|. We say that the cardinality of B is \aleph_0 .

Countable sets play a central role in discrete mathematics.

Definition

A set B is **countable** if |B| = |N|. We say that the cardinality of B is \aleph_0 .

Observation

- If $A \subset N$, $A \neq \emptyset$ then A has a smallest member.
- (The axiom of mathematical induction). If $1 \in A$, \land ($(n \in A) \rightarrow n + 1 \in A$) then $A = Z^+$.

Countable sets play a central role in discrete mathematics.

Definition

A set B is **countable** if |B| = |N|. We say that the cardinality of B is \aleph_0 .

Observation

- If $A \subset N$, $A \neq \emptyset$ then A has a smallest member.
- (The axiom of mathematical induction). If $1 \in A$, \land ($(n \in A) \rightarrow n + 1 \in A$) then $A = Z^+$.

Observation

There are other equivalent forms of the principle of mathematical induction:

1.
$$1 \in A$$
, $(\forall k < n, k \in A \rightarrow n \in A)$ then $A = Z^+$.

Theorem

A subset of a countable set is either finite or countable.

Theorem

A subset of a countable set is either finite or countable.

Theorem

$$|N \times N| = \aleph_0.$$

Theorem 1

A subset of a countable set is either finite or countable.

Theorem

 $|N \times N| = \aleph_0.$

Corollary

The set of rational numbers is countable ($|Q| = \aleph_0$).

Theorem

A subset of a countable set is either finite or countable.

Theorem

 $|N \times N| = \aleph_0.$

Corollary

The set of rational numbers is countable ($|Q| = \aleph_0$).

Theorem

If A_i , i = 1, 2, ... are countable sets then so is $\bigcup_{i=1}^{\infty} A_i$.

 $\forall A, |P(A)| > |A|.$

 $\forall A, |P(A)| > |A|.$

Theorem (2)

The set $\{x|0 < x < 1, x \in R\}$ is not countable.

 $\forall A, |P(A)| > |A|.$

Theorem (2)

The set $\{x|0 < x < 1, x \in R\}$ is not countable.

Theorem (3)

The set of functions $f: N \to \{0,1\}$ is not countable.

 $\forall A, |P(A)| > |A|.$

Theorem (2)

The set $\{x | 0 < x < 1, x \in R\}$ is not countable.

Theorem (3)

The set of functions $f: N \to \{0,1\}$ is not countable.

Corollary

There are functions $f: \mathbb{N} \to \{0,1\}$ (decision problems) that are not programmable.

Theorem (4)

If
$$|A| \leq |B|$$
 and $|B| \leq |A|$ then $|A| = |B|$

Here are some brief hints for the proofs.

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 1)

We will prove that there is no onto function $f:A\to P(A)$. Indeed given any function $f:A\to P(A)$. Let $S=\{a\in A|a\not\in f(a)\}$. (Recall that $f(a)\subset A$, or $f(a)\in P(A)$).

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 1)

We will prove that there is no onto function $f:A\to P(A)$.

Indeed given any function $f: A \rightarrow P(A)$. Let

$$S = \{a \in A | a \notin f(a)\}.$$
 (Recall that $f(a) \subset A$, or $f(a) \in P(A)$).

Assume that S = f(s) for some $s \in A$.

Whether $s \in f(s)$ or $s \notin f(s)$ we reach a contradicion.

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 1)

We will prove that there is no onto function $f:A\to P(A)$.

Indeed given any function $f: A \rightarrow P(A)$. Let

$$S = \{a \in A | a \notin f(a)\}.$$
 (Recall that $f(a) \subset A$, or $f(a) \in P(A)$).

Assume that S = f(s) for some $s \in A$.

Whether $s \in f(s)$ or $s \notin f(s)$ we reach a contradicion.

Fill in the details.

Conclusion: since there is an injection $g: A \to P(A)$ and there is no otno function $f: A \to P(A)$ we conclude that |A| < |P(A)|.

Here are some brief hints for the proofs.

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset \{x | 0 < x < 1, \ x \in R\}$ we shall find a real number $y \notin A$.

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset \{x | 0 < x < 1, \ x \in R\}$ we shall find a real number $y \notin A$.

Let $\{x_1, x_2, \dots, x_n, \dots\}$ be a countable set of real numbers. Let $x_n = 0.x_{n,1}x_{n,2}\dots x_{n,n}x_{n,n+1}\dots$ be the decimal expansion of x_n .

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset \{x | 0 < x < 1, \ x \in R\}$ we shall find a real number $y \notin A$.

Let $\{x_1, x_2, \dots, x_n, \dots\}$ be a countable set of real numbers. Let $x_n = 0.x_{n,1}x_{n,2}\dots x_{n,n}x_{n,n+1}\dots$ be the decimal expansion of x_n .

Let $y = 0.y_1y_2...y_n...$ be defined as follows:

Let $y_n = x_{n,n} + 5 \pmod{10}$. We want to make sure that $\forall n, \ y_n \neq x_{n,n}$.

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset \{x | 0 < x < 1, \ x \in R\}$ we shall find a real number $y \notin A$.

Let $\{x_1, x_2, \dots, x_n, \dots\}$ be a countable set of real numbers. Let $x_n = 0.x_{n,1}x_{n,2}\dots x_{n,n}x_{n,n+1}\dots$ be the decimal expansion of x_n .

Let $y = 0.y_1y_2...y_n...$ be defined as follows:

Let $y_n = x_{n,n} + 5 \pmod{10}$. We want to make sure that $\forall n, \ y_n \neq x_{n,n}$.

Fill in the details, that is prove that $y \notin A$.

Here are some brief hints for the proofs.

Proof (Sketch of a proof for theorem 2)

For every countable set $A \subset \{x | 0 < x < 1, \ x \in R\}$ we shall find a real number $y \notin A$.

Let $\{x_1, x_2, \dots, x_n, \dots\}$ be a countable set of real numbers. Let $x_n = 0.x_{n,1}x_{n,2}\dots x_{n,n}x_{n,n+1}\dots$ be the decimal expansion of x_n .

Let $y = 0.y_1y_2...y_n...$ be defined as follows:

Let $y_n = x_{n,n} + 5 \pmod{10}$. We want to make sure that $\forall n, \ y_n \neq x_{n,n}$.

Fill in the details, that is prove that $y \notin A$.

Remark

This proof technique is called the Diagonal Method. It is used on many occaisons. For instance Theorem 1 is an abstract form of this method.

Here we go again.

Proof (Theorem 3, proof sketch)

It is enough to show that there is a bijection between the set of functions: $\{f: N \to \{0,1\}\}$ and P(N).

Here we go again.

Proof (Theorem 3, proof sketch)

It is enough to show that there is a bijection between the set of functions: $\{f : N \to \{0,1\}\}\$ and P(N).

Let $F(f) = \{i | f(i) = 1\}.$

Show that this is a bijection between P(n) and the functions.

Here we go again.

Proof (Theorem 3, proof sketch)

It is enough to show that there is a bijection between the set of functions: $\{f: N \to \{0,1\}\}$ and P(N).

Let $F(f) = \{i | f(i) = 1\}.$

Show that this is a bijection between P(n) and the functions.

Proof (of the corollary)

Each program that implements a decision problem is stored in memory as a finite binary sequence. There are only countably many finite binary sequences. Hence there are non computable functions.

Proof (of theorem 4)

The theorem says that if there is a 1-1 functions $f:A\to B$ and $g:B\to A$ then there is a bijection between A and B.

Proof (of theorem 4)

The theorem says that if there is a 1-1 functions $f:A\to B$ and $g:B\to A$ then there is a bijection between A and B.

Consider the following chains, (directed paths): ... \rightarrow a \rightarrow f(a) \rightarrow g(f(a)...

Proof (of theorem 4)

The theorem says that if there is a 1-1 functions $f:A\to B$ and $g:B\to A$ then there is a bijection between A and B.

Consider the following chains, (directed paths): ... \rightarrow a \rightarrow f(a) \rightarrow g(f(a)...

Verify: Each chain is one of the following four types:

A finite cycle with 2n "nodes" n, members of A interlaced with n members of .

Proof (of theorem 4)

The theorem says that if there is a 1-1 functions $f:A\to B$ and $g:B\to A$ then there is a bijection between A and B.

Consider the following chains, (directed paths): ... \rightarrow a \rightarrow f(a) \rightarrow g(f(a)...

Verify: Each chain is one of the following four types:

- A finite cycle with 2n "nodes" n, members of A interlaced with n members of .
- A doubly infinite chain of interlaced nodes from A and B.

Proof (of theorem 4)

The theorem says that if there is a 1-1 functions $f:A\to B$ and $g:B\to A$ then there is a bijection between A and B.

Consider the following chains, (directed paths): $\ldots \rightarrow a$ $\rightarrow f(a) \rightarrow g(f(a) \ldots$

Verify: Each chain is one of the following four types:

- A finite cycle with 2n "nodes" n, members of A interlaced with n members of .
- A doubly infinite chain of interlaced nodes from A and B.
- **3** An infinite chain $a \rightarrow b \rightarrow a' \rightarrow b' \rightarrow \dots$

Proof (of theorem 4)

The theorem says that if there is a 1-1 functions $f:A\to B$ and $g:B\to A$ then there is a bijection between A and B.

Consider the following chains, (directed paths): ... \rightarrow a \rightarrow f(a) \rightarrow g(f(a)...

Verify: Each chain is one of the following four types:

- A finite cycle with 2n "nodes" n, members of A interlaced with n members of .
- A doubly infinite chain of interlaced nodes from A and B.
- **3** An infinite chain $a \rightarrow b \rightarrow a' \rightarrow b' \rightarrow \dots$
- **4** An infinite chain $b \rightarrow a \rightarrow b' \rightarrow a' \rightarrow \dots$

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

Each $a \in A$ has a successor in B

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

Each $a \in A$ has a successor in B

Each $a \in A$ has a predecessor in B except for the head of the chains in (3).

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

Each $a \in A$ has a successor in B

Each $a \in A$ has a predecessor in B except for the head of the chains in (3).

Each $b \in B$ has a successor in A.

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

Each $a \in A$ has a successor in B

Each $a \in A$ has a predecessor in B except for the head of the chains in (3).

Each $b \in B$ has a successor in A.

Each $b \in B$ has a predecessor in A except for the head of the chains in (4).

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

Each $a \in A$ has a successor in B

Each $a \in A$ has a predecessor in B except for the head of the chains in (3).

Each $b \in B$ has a successor in A.

Each $b \in B$ has a predecessor in A except for the head of the chains in (4).

The mapping F(a) = b where $a \to b$, if a belongs to chains in (1), (2) or (3) and F(a) = b where $b \to a$ if a is in a chain of (4) is a bijection between A and B.

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

Each $a \in A$ has a successor in B

Each $a \in A$ has a predecessor in B except for the head of the chains in (3).

Each $b \in B$ has a successor in A.

Each $b \in B$ has a predecessor in A except for the head of the chains in (4).

The mapping F(a) = b where $a \to b$, if a belongs to chains in (1), (2) or (3) and F(a) = b where $b \to a$ if a is in a chain of (4) is a bijection between A and B.

Verify this assertion.

Surprise

Remark

There is a surprising consequence of this famous lemma. If you take two sets of points A and B in the plane, and if each set contains a disk, then each set can be disected into two sets A_1, A_2, B_1, B_2 such that A_i and B_i are similar.

Surprise

Remark

There is a surprising consequence of this famous lemma. If you take two sets of points A and B in the plane, and if each set contains a disk, then each set can be disected into two sets A_1, A_2, B_1, B_2 such that A_i and B_i are similar.

For example: these two sets can be disected into a pair of similar sets!



