Discrete Mathematics Drill

Moshe Rosenfeld

Hanoi 2011 moishe@u.washington.edu

Tuesday Nov. 29

1 Named Numbers

- 1. Show all partitions of $\{1, 2, 3, 4, 5, 6, 7\}$ into three sets.
- 2. Use a combinatorial argument to show that $S(n,2) = 2^{n-1} 1, n > 2$.
- 3. List all permutation of order 7 which are the product of two cycles.
- 4. What is $\sum_{k=0}^{\infty} (-1)^k c(n,k)$ (c(n,k) the Stirling numbers of the first kind).
- 5. Solve: $a_n = 5a_{n-1} 6a_{n-2} + 2^n$, $a_0 = 2$, $a_1 = 3$.
- 6. Let $F(x) = \sum_{k=0}^{\infty} f_{2k}x^k$, f_{2k} are the Fibonacci numbers $f_0, f_2, f_4 \dots$ can you find F(x)?
- 7. Solve the recurrence relation $a_n = a_{n-1} + 1 + \sum_{k=1}^{n-1} a_k$, , $a_1 = 1$, n > 1