Discrete Mathematics Drill

Moshe Rosenfeld

Hanoi 2011 moishe@u.washington.edu

Tuesday Nov. 29

1 Recurrence Relations

- 1. Solve: $a_n = a_{n-1} + 30a_{n-2}, a_0 = 1, a_1 = 1.$
- 2. Solve: $a_n = 2a_{n-1} a_{n-3}$, $a_0 = 1$, $a_2 = 0$, $a_3 = 2$.
- 3. Find the general solution to: $a_n = 4a_{n-1} 4a_{n-2} + 3n$
- 4. Solve: $a_n = 5a_{n-1} 6a_{n-2} + 2^n$, $a_0 = 2, a_1 = 3$.
- 5. Solve $a_n = \sqrt{a_{n-1} \cdot a_{n-2}}$, $a_0 = 2, a_1 = 1$. What is $\lim_{n \to \infty} a_n$.
- 6. A domino is a 2×1 tile. In how many different ways can you arrange n dominoes to form a $2 \times n$ strip?
- 7. List all binary sequences $b_1 b_2 \dots b_8$ such that $\sum_{n=1}^8 = 4$ and for each $1 \le j \le 8$ $\sum_{j=1}^j b_j \ge \frac{j}{2}$
- 8. * How many binary sequences of length 2n containing exactly n 1's such that $\sum_{i=1}^{j} b_j \ge \frac{j}{2}$ are there?
- 9. * Prove that for every positive integer n there is a an integer m such that $(\sqrt{2}) 1)^n = \sqrt{m+1} \sqrt{m}$
- 10. * Prove that $(\sqrt{50}+7)^n$ has at least n zeros after the decimal point.