# Discrete Mathematics Drill 

Moshe Rosenfeld

Hanoi 2011
moishe@u.washington.edu

Tuesday Nov. 29

## 1 Recurrence Relations

1. Solve: $a_{n}=a_{n-1}+30 a_{n-2}, a_{0}=1, a_{1}=1$.
2. Solve: $a_{n}=2 a_{n-1}-a_{n-3}, a_{0}=1, a_{2}=0, a_{3}=2$.
3. Find the general solution to: $a_{n}=4 a_{n-1}-4 a_{n-2}+3 n$
4. Solve: $a_{n}=5 a_{n-1}-6 a_{n-2}+2^{n}$, $a_{0}=2, a_{1}=3$.
5. Solve $a_{n}=\sqrt{a_{n-1} \cdot a_{n-2}}, \quad a_{0}=2, a_{1}=1$. What is $\lim _{n \rightarrow \infty} a_{n}$.
6. A domino is a $2 \times 1$ tile. In how many different ways can you arrange $n$ dominoes to form a $2 \times n$ strip?
7. List all binary sequences $b_{1} b_{2} \ldots b_{8}$ such that $\sum_{n=1}^{8}=4$ and for each $1 \leq j \leq 8 \quad \sum_{i=1}^{j} b_{j} \geq \frac{j}{2}$
8.     * How many binary sequences of length $2 n$ containing exactly $n 1^{\prime} s$ such that $\sum_{i=1}^{j} b_{j} \geq \frac{j}{2}$ are there?
9.     * Prove that for every positive integer $n$ there is a an integer $m$ such that $(\sqrt{(2)}-1)^{n}=\sqrt{m+1}-\sqrt{m}$
10.     * Prove that $(\sqrt{50}+7)^{n}$ has at least $n$ zeros after the decimal point.
