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Eulerian Cycles

The birth of graph theory is attributed to Leonard Euler. Euler was
asked to solve a puzzle that preoccupied the citizens of Königsberg.
The people wondered if they could start at some region, cross all
bridges exactly once and end up where they started.

 

The seven bridges on the Pregel river
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The Königsberg graph

Answer
Euler constructed a multi-graph whose vertices are the four regions
determined by the river and added edges between two regions for
every bridge connecting them.
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The Königsberg graph

Comment
If a graph has an Eulerian cycle, every time we visit a vertex we exit on
a different edge. This means that the degree of every vertex must be
even. Euler’s graph has four vertices, seven edges. The degrees of the
vertices are (5,3,3,3). So clearly it is not possible to walk through all
edges exactly once even if you do not insist to return to your starting
region.

Theorem
A multi-graph G(V ,E) is Eulerian if and only if it is connected and
every vertex has even degree.

Theorem
A digraph D(V ,E) is Eulerian if and only if it is strongly connected and
∀v ∈ V din(v) = dout(v).
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Notation

Comment
Note that it can be efficiently checked and actually construct an
Eulerian cycle if it exists. As we shall see later, detecting a hamiltonian
cycle in a graph is one of the most algorithmically difficult problems.

Once we develop more tools, we shall see some interesting uses of
Eulerian cycles.

(Notation)
In a graph G let:

α(G) = max{| A | A is an independent set in G}
ν(G) = max{| M | M is a matching in G} (ν(G) = α(L(G))).
τ(G) = min{|W | W is a vertex cover in G}.
ρ(G) = min{| F | F is an edge cover in G}.
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Matchings

Theorem (Gallai)

If G is a graph with no isolated vertices then:

α(G) + τ(G) = ν(G) + ρ(G) =| V (G) |

Chứng minh.

On board

Remark
A perfect matching in a graph G(V ,E) is also a vertex cover so
ν(G) = ρ(G) = |V (G)|

2 .
For an odd cycle C2k+1, ν(C2k+1) = k , ρ(C2k+1) = k + 1.
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M-Augmenting paths

Definition
Given a matching M ⊂ E(G) an M-augmenting path is a path
P = (v0, v1, . . . , v2k+1) such that:

{v0, v2k} ∩ V (M) = ∅
(v2i−1, v2i) ∈ M , i = 1,2, . . . , k.
(v2i , v2i+1) ∈ E(G) \M i = 0,1 . . . , k

Remark
Clearly, if P is an M−augmenting path then M∆E(P) is a matching
with | M | +1 edges. That is M is not a matching of largest size.
Augmenting paths are essential tools in studying matchings in graphs.
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Matchings fundamentals

Theorem
A matching M in a graph G is of maximum size if and only if there is no
M− augmenting path in G.

Chứng minh.

As noted previously, if G has an M− augmenting path then there is a
bigger matching.

To prove the opposite, assume that there is a bigger matching N. We
look at the subgraph spanned by M ∪ N. It is 2-edge colorable and the
degrees of its vertices are 1 or 2. So its connected components are
even cycles containing the same number of edges from M and N and
paths. Since | N |>| M | there must be a path starting and ending in
edges from N and this is an M-augmenting path.
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Bipartite graphs

Definition
A graph G(V ,E) is bipartite if its chromatic number is 2.

Comment
Bipartite graphs appear very frequently in applications. The nurses
graph, the assignment problem, matching workers with jobs, airplanes
with flights are such examples.

Theorem
A graph G(V ,E) is bipartite if and only if it does not contain odd cycles
as subgraphs.

Corollary

Trees are bipartite graphs.
G is bipartite iff every connected component of G is bipartite.

() Discrete Optimization Lecture-8 Ngày 3 tháng 10 năm 2011 8 / 11



Bipartite graphs

Definition
A graph G(V ,E) is bipartite if its chromatic number is 2.

Comment
Bipartite graphs appear very frequently in applications. The nurses
graph, the assignment problem, matching workers with jobs, airplanes
with flights are such examples.

Theorem
A graph G(V ,E) is bipartite if and only if it does not contain odd cycles
as subgraphs.

Corollary

Trees are bipartite graphs.
G is bipartite iff every connected component of G is bipartite.

() Discrete Optimization Lecture-8 Ngày 3 tháng 10 năm 2011 8 / 11



Bipartite graphs

Definition
A graph G(V ,E) is bipartite if its chromatic number is 2.

Comment
Bipartite graphs appear very frequently in applications. The nurses
graph, the assignment problem, matching workers with jobs, airplanes
with flights are such examples.

Theorem
A graph G(V ,E) is bipartite if and only if it does not contain odd cycles
as subgraphs.

Corollary

Trees are bipartite graphs.
G is bipartite iff every connected component of G is bipartite.

() Discrete Optimization Lecture-8 Ngày 3 tháng 10 năm 2011 8 / 11



Bipartite graphs

Definition
A graph G(V ,E) is bipartite if its chromatic number is 2.

Comment
Bipartite graphs appear very frequently in applications. The nurses
graph, the assignment problem, matching workers with jobs, airplanes
with flights are such examples.

Theorem
A graph G(V ,E) is bipartite if and only if it does not contain odd cycles
as subgraphs.

Corollary

Trees are bipartite graphs.
G is bipartite iff every connected component of G is bipartite.

() Discrete Optimization Lecture-8 Ngày 3 tháng 10 năm 2011 8 / 11



Bipartite graphs

Definition
A graph G(V ,E) is bipartite if its chromatic number is 2.

Comment
Bipartite graphs appear very frequently in applications. The nurses
graph, the assignment problem, matching workers with jobs, airplanes
with flights are such examples.

Theorem
A graph G(V ,E) is bipartite if and only if it does not contain odd cycles
as subgraphs.

Corollary
Trees are bipartite graphs.

G is bipartite iff every connected component of G is bipartite.

() Discrete Optimization Lecture-8 Ngày 3 tháng 10 năm 2011 8 / 11



Bipartite graphs

Definition
A graph G(V ,E) is bipartite if its chromatic number is 2.

Comment
Bipartite graphs appear very frequently in applications. The nurses
graph, the assignment problem, matching workers with jobs, airplanes
with flights are such examples.

Theorem
A graph G(V ,E) is bipartite if and only if it does not contain odd cycles
as subgraphs.

Corollary
Trees are bipartite graphs.
G is bipartite iff every connected component of G is bipartite.

() Discrete Optimization Lecture-8 Ngày 3 tháng 10 năm 2011 8 / 11



Bipartite graphs

Comment
A 2-coloring of a bipartite graph G partitions the vertices into two
independet sets A and B called partitions.

Theorem
If G is a k-regular bipartite graph with partitions A and B then
| A |=| B |.

Theorem (Kőnig’s Theorem)
For a bipartite graph G(V ,E) ν(G) = τ(G)

Chứng minh.
In class on the board
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Bipartite graphs

Corollary
In a matrix the maximum number of zeros no two on the same line is
equal to the minimal number of lines that cover all zeros.

Comment
This was a key fact in the Hungarian method. Unfortunately the proof of
Kőnig’s theorem does not shed a light on how to find the minimal set of
lines or why our algorithm works, another proof is needed for that. But
at least it justifies our claim.
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Corollary

If G(V ,E) is a k−regular bipartite graph then it has a perfect matching.

Chứng minh.

As noted before, | V (G) |= 2n and | E(G) |= nk . Any set A can cover
at most | A | k edges so a vertex cover must have at least n vertices. A
partition covers all edges hence τ(G) = ν(G) = n and the maximum
matching is a perfect matching.

Corollary

A k-regular bipartite graph G is k-edge colorable (γ1(G) = k).

() Discrete Optimization Lecture-8 Ngày 3 tháng 10 năm 2011 11 / 11



Corollary

If G(V ,E) is a k−regular bipartite graph then it has a perfect matching.

Chứng minh.

As noted before, | V (G) |= 2n and | E(G) |= nk . Any set A can cover
at most | A | k edges so a vertex cover must have at least n vertices. A
partition covers all edges hence τ(G) = ν(G) = n and the maximum
matching is a perfect matching.

Corollary

A k-regular bipartite graph G is k-edge colorable (γ1(G) = k).

() Discrete Optimization Lecture-8 Ngày 3 tháng 10 năm 2011 11 / 11



Corollary

If G(V ,E) is a k−regular bipartite graph then it has a perfect matching.

Chứng minh.

As noted before, | V (G) |= 2n and | E(G) |= nk . Any set A can cover
at most | A | k edges so a vertex cover must have at least n vertices. A
partition covers all edges hence τ(G) = ν(G) = n and the maximum
matching is a perfect matching.

Corollary

A k-regular bipartite graph G is k-edge colorable (γ1(G) = k).

() Discrete Optimization Lecture-8 Ngày 3 tháng 10 năm 2011 11 / 11


