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Linear Programming

Question
Is there a mathematical framework common to most Combinatorial
Optimization problems?

YES!, Linear Programming

The generic form of a LP problem is:

Maximize:
∑n

i=1 cixi (1)
Subject to:

∑n
i=1 ai,jxi ≤ bj j = 1,2, . . .m (2)

xj ≥ 0, ci , ai,j , bj ∈ R (3)

Equation (1) is the The Objective Function

Equations (2− 3) are the constraints.
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Comments

1 Linear Programming problems come in many different varieties.

2 Inequalities in the constraints can be reversed.
3 Equalities instead of inequalities.
4 Minimize instead of Maximize.
5 All can be easily transformed to the generic form.
6 The standard form will be introduced shortly.

In practice, Linear Programs with hundreds of thousands constraints
and variables are used by many applications.

Finding efficeint ways to solve such huge problems is an active
research topic.
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The SIMPLEX method.

(A brief history)
Linear Programming was first developed by the Russian
mathematician Leonid Kantarovich in 1939 to help the war effort which
had many logistic problems. The simplex method was developed by
George Danzig in 1949. It is considered one of the top ten most
important algorithm developed in the 20th century. Danzig was an
American mathematician working in Stanford University, California.

How popular is the Simplex method? Try to google it. In less than 0.43
seconds I got 1,590,000 hits!
There are many implementations of the simplex method in the market.
We installed in our lab a program called AIMMS which we shall use in
this class.
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Exampe: The assignment problem

Example
Let ci,j be the amount bid by company j to perform job number i.
We introduce the so-called decision variables xi,j defined as:

xi,j =

{
1 If job number i is assigned to company number j.
0 otherwise.

The corresponding linear programming problem is:

Minimize:
∑n

i=1
∑n

j=1 ci,jxi,j (4)

Subject to:
∑n

i=1 xi,j = 1 j = 1,2, . . .n (5)
and

∑n
j=1 xi,j = 1 i = 1,2, . . .n (6)

xi,j ≥ 0 (7)

() Discrete Optimization Lecture-10 Ngày 7 tháng 10 năm 2011 4 / 21



Exampe: The assignment problem

Example
Let ci,j be the amount bid by company j to perform job number i.
We introduce the so-called decision variables xi,j defined as:

xi,j =

{
1 If job number i is assigned to company number j.
0 otherwise.

The corresponding linear programming problem is:

Minimize:
∑n

i=1
∑n

j=1 ci,jxi,j (4)

Subject to:
∑n

i=1 xi,j = 1 j = 1,2, . . .n (5)
and

∑n
j=1 xi,j = 1 i = 1,2, . . .n (6)

xi,j ≥ 0 (7)

() Discrete Optimization Lecture-10 Ngày 7 tháng 10 năm 2011 4 / 21



Exampe: The assignment problem

Example
Let ci,j be the amount bid by company j to perform job number i.
We introduce the so-called decision variables xi,j defined as:

xi,j =

{
1 If job number i is assigned to company number j.
0 otherwise.

The corresponding linear programming problem is:

Minimize:
∑n

i=1
∑n

j=1 ci,jxi,j (4)

Subject to:
∑n

i=1 xi,j = 1 j = 1,2, . . .n (5)
and

∑n
j=1 xi,j = 1 i = 1,2, . . .n (6)

xi,j ≥ 0 (7)

() Discrete Optimization Lecture-10 Ngày 7 tháng 10 năm 2011 4 / 21



ILP- Integer Linear Programming

Comment

Equations (5) guarantee that each company is assigned a job.
Equations (6) guarantee that each job is assigned.
Provided that all variables xi,j will be assigned 0, or 1.
All is fine, but what if the optimal solution includes fractions?

This brings us to the Integer Linear Programming problems:

Definition (Integer Linear Programming (ILP))

Maximize:
∑n

i=1 cixi (8)
Subject to:

∑n
i=1 ai,jxi ≤ bj j = 1,2, . . .m (9)

xj ≥ 0, xi integers. (10)

() Discrete Optimization Lecture-10 Ngày 7 tháng 10 năm 2011 5 / 21



ILP- Integer Linear Programming

Comment
Equations (5) guarantee that each company is assigned a job.

Equations (6) guarantee that each job is assigned.
Provided that all variables xi,j will be assigned 0, or 1.
All is fine, but what if the optimal solution includes fractions?

This brings us to the Integer Linear Programming problems:

Definition (Integer Linear Programming (ILP))

Maximize:
∑n

i=1 cixi (8)
Subject to:

∑n
i=1 ai,jxi ≤ bj j = 1,2, . . .m (9)

xj ≥ 0, xi integers. (10)

() Discrete Optimization Lecture-10 Ngày 7 tháng 10 năm 2011 5 / 21



ILP- Integer Linear Programming

Comment
Equations (5) guarantee that each company is assigned a job.
Equations (6) guarantee that each job is assigned.

Provided that all variables xi,j will be assigned 0, or 1.
All is fine, but what if the optimal solution includes fractions?

This brings us to the Integer Linear Programming problems:

Definition (Integer Linear Programming (ILP))

Maximize:
∑n

i=1 cixi (8)
Subject to:

∑n
i=1 ai,jxi ≤ bj j = 1,2, . . .m (9)

xj ≥ 0, xi integers. (10)

() Discrete Optimization Lecture-10 Ngày 7 tháng 10 năm 2011 5 / 21



ILP- Integer Linear Programming

Comment
Equations (5) guarantee that each company is assigned a job.
Equations (6) guarantee that each job is assigned.
Provided that all variables xi,j will be assigned 0, or 1.

All is fine, but what if the optimal solution includes fractions?

This brings us to the Integer Linear Programming problems:

Definition (Integer Linear Programming (ILP))

Maximize:
∑n

i=1 cixi (8)
Subject to:

∑n
i=1 ai,jxi ≤ bj j = 1,2, . . .m (9)

xj ≥ 0, xi integers. (10)

() Discrete Optimization Lecture-10 Ngày 7 tháng 10 năm 2011 5 / 21



ILP- Integer Linear Programming

Comment
Equations (5) guarantee that each company is assigned a job.
Equations (6) guarantee that each job is assigned.
Provided that all variables xi,j will be assigned 0, or 1.
All is fine, but what if the optimal solution includes fractions?

This brings us to the Integer Linear Programming problems:

Definition (Integer Linear Programming (ILP))

Maximize:
∑n

i=1 cixi (8)
Subject to:

∑n
i=1 ai,jxi ≤ bj j = 1,2, . . .m (9)

xj ≥ 0, xi integers. (10)

() Discrete Optimization Lecture-10 Ngày 7 tháng 10 năm 2011 5 / 21



ILP- Integer Linear Programming

Comment
Equations (5) guarantee that each company is assigned a job.
Equations (6) guarantee that each job is assigned.
Provided that all variables xi,j will be assigned 0, or 1.
All is fine, but what if the optimal solution includes fractions?

This brings us to the Integer Linear Programming problems:

Definition (Integer Linear Programming (ILP))

Maximize:
∑n

i=1 cixi (8)
Subject to:

∑n
i=1 ai,jxi ≤ bj j = 1,2, . . .m (9)

xj ≥ 0, xi integers. (10)

() Discrete Optimization Lecture-10 Ngày 7 tháng 10 năm 2011 5 / 21



ILP- Integer Linear Programming

Comment
Equations (5) guarantee that each company is assigned a job.
Equations (6) guarantee that each job is assigned.
Provided that all variables xi,j will be assigned 0, or 1.
All is fine, but what if the optimal solution includes fractions?

This brings us to the Integer Linear Programming problems:

Definition (Integer Linear Programming (ILP))

Maximize:
∑n

i=1 cixi (8)
Subject to:

∑n
i=1 ai,jxi ≤ bj j = 1,2, . . .m (9)

xj ≥ 0, xi integers. (10)

() Discrete Optimization Lecture-10 Ngày 7 tháng 10 năm 2011 5 / 21



LP and ILP

Comment
At first sight, it seems like ILP problems are easier than LP problems.
After all, for an ILP problem there will be only a finite number of
feasible solutions, so we can enumerate them all and find the optimal.
On the other hand, in the general LP problem there are infinitely many
feasible solutions so we cannot enumerate them.

As it turns out the opposite is true. There are very efficient methods to
solve LP problems while many ILP problems are extremely difficult to
solve.
This raises another question, when can we expect the solution to an
LP problem to be a vector of integers? For instance, we will be able to
prove that the LP solution to the assignment problem is guranteed to
be an integer!
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Example: Bia Hà Nội

Discussion
15 breweries need to supply beer to 35 retaurants around Hà Nội.
Each brewery can supplly si barrels of beer per day. Each restaurant
needs dj barrels per day. The cost of delivering a single barrel from
brewery i to restaurnt j is ci,j .

How many barrels should be shipped from each brewery to each
restaurant so that the shipping cost is minimized?

 

() Discrete Optimization Lecture-10 Ngày 7 tháng 10 năm 2011 7 / 21



Example: Bia Hà Nội

Discussion
15 breweries need to supply beer to 35 retaurants around Hà Nội.
Each brewery can supplly si barrels of beer per day. Each restaurant
needs dj barrels per day. The cost of delivering a single barrel from
brewery i to restaurnt j is ci,j .

How many barrels should be shipped from each brewery to each
restaurant so that the shipping cost is minimized?

 

() Discrete Optimization Lecture-10 Ngày 7 tháng 10 năm 2011 7 / 21



Example: Bia Hà Nội

Discussion
15 breweries need to supply beer to 35 retaurants around Hà Nội.
Each brewery can supplly si barrels of beer per day. Each restaurant
needs dj barrels per day. The cost of delivering a single barrel from
brewery i to restaurnt j is ci,j .
How many barrels should be shipped from each brewery to each
restaurant so that the shipping cost is minimized?

 

() Discrete Optimization Lecture-10 Ngày 7 tháng 10 năm 2011 7 / 21



Example: Bia Hà Nội

Discussion
15 breweries need to supply beer to 35 retaurants around Hà Nội.
Each brewery can supplly si barrels of beer per day. Each restaurant
needs dj barrels per day. The cost of delivering a single barrel from
brewery i to restaurnt j is ci,j .
How many barrels should be shipped from each brewery to each
restaurant so that the shipping cost is minimized?

 
() Discrete Optimization Lecture-10 Ngày 7 tháng 10 năm 2011 7 / 21



The transportation problem as an LP problem

Let si , i = 1,2, . . .15 be the available supply at brewery number i .

Let dj , j = 1,2, . . . ,35 be the minimal number of barrels needed at
restaurant number j .
Let ci,j be the cost of shipping a barrel of beer from brewery i to
restaurant j .
The variables xi,j will be the number of barrels shipped from
brewery i to restaurant j .
The corresponding LP will be:

Minimize:
∑15

i=1
∑35

j=1 ci,jxi,j (11)

Subject to:
∑15

i=1 xi,j = dj j = 1,2, . . .35 (12)

and
∑35

j=1 xi,j = si i = 1,2, . . .n (13)
xi,j ≥ 0 (14)

Note that a solution exists only if
∑15

i=1 si =
∑35

j=1 dj .
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The assignment problem

Discussion

The assignment problem is also a generic name of problems
whose LP interpretation is like the LP of the assignment problem.
While it is not clear that the optimal solution to the LP problem will
yield values of 0 or 1 to the decision variables, we will be able to
prove that this is the case.
It is noteworthy that it is actually a matching problem. Given an
n × n complete weighetd bipartite graph, we wish to find a perfect
matching of smallest cost.
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The transportation problem

The transportation problem is a typical supply/demand problem.

n suppliers can produce si units of some product i = 1,2, . . . ,n.
m businesses need dj units each,j = 1,2, . . . ,m
The cost of shipping one unit from supplier i to business j is ci,j .
The goal is to meet the demands at the lowest cost which leads to
the following LP problem:

Minimize:
∑n

i=1
∑m

j=1 xi,jci,j (15)

Subject to:
∑n

i=1 xi,j = dj (16)∑m
j=1 xi,j = si (17)
xi,j ≥ 0 (18)
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THE SIMPLEX METHOD

(Preliminaries)

Linear programming problems with hundreds of thousands of
variables and constraints are common in many industries.
Needless to say, researchers are constatly seeking ways to
improve the running time of the programs solving LP problems.
While it is known that in some cases the simplex method can run
in exponential time and there are other algorithms that run in
polynomial time, in reality, the simplex method exhibits the best
running time.
We shall study in this class the implementation that is easiest to
follow and understand and leave the speedier implementations for
those of you that will need to use it in the future.
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THE SIMPLEX METHOD

Definition (The standard form)
The following linear program is in the standard form :

Maximize:
∑n

i=1 cixi (19)
Subject to:

∑n
i=1 ai,jxi = bj j = 1,2, . . .m (20)

xj ≥ 0. (21)
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THE SIMPLEX METHOD

Observation
Every LP problem is equivalent to an LP in standard form. We do it by
adding slack variables.

If the initial LP is to minimize
∑n

i=1 cixi then we can change it to:
maximize

∑n
i=1−cixi .

A constraint of the form
∑k

j=1 ai,jxj ≤ bi can be changed to:∑k
j=1 ai,jxj + si = bi si ≥ 0

A constraint of the form
∑k

j=1 ai,jxj ≥ bi can be changde to:∑k
j=1 ai,jxj − si = bi si ≥ 0

And if a variable xi is unresitricted we can replace every
occurence of xi by the difference xi1 − xi2 so that all variables
remain restricted to non-negative values.
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The standard form

Example (Let the given LP problem be:)

Minimize: 3x1 − 4x2 + x3 (22)
Subject to: x1 + 2x2 − x3 ≤ 5 (23)

2x1 + 3x2 + x3 ≥ 4 (24)
2x1 − 3x2 − x3 = −1 (25)

x1 unrestricted, x2, x3 ≥ 0 (26)

Maximize: −3(x11 − x12) + 4x2 − x3 (27)
Subject to: (x11 − x12) + 2x2 − x3 + s1 = 5 (28)

2(x11 − x12) + 3x2 + x3 − s2 = 4 (29)
2(x11 − x12)− 3x2 − x3 = −1 (30)

x11 , x12 , x2, x3, s1, s2 ≥ 0 (31)
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How does the simplex method work?

We shall follow the steps of the simplex method on the following
example (taken from V. Chvátal’s book):

Maximize: 5x1 + 4x2 + 3x3 (32)
Subject to: 2x1 + 3x2 + x3 ≤ 5 (33)

4x1 + x2 + 2x3 ≤ 11 (34)
3x1 + 4x2 + 2x3 ≤ 8 (35)

x1, x2, x3 ≥ 0. (36)

Rewrite the standard form as:

z − 5x1 − 4x2 − 3x3 = 0 (37)
s1 = 5− 2x1 − 3x2 − x3 (38)

s2 = 11− 4x1 − x2 − 2x3 (39)
s3 = 8− 3x1 − 4x2 − 2x3 (40)

Maximize z subject to: x1, x2, x3, s1, s2, s3 ≥ 0. (41)
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How the simplex method works

We note that:
every feasible solution x1, x2, x3 of equations (32− 36) can be
extended to a feasible solution of equations (37− 41).

every feasible solution x1, x2, x3, s1, s2, s3 of equations (37− 41)
can be reduced to a feasible solution of equations (32− 36)
(delete the slack variables s1, s2, s3).
The optimal value of z determined by equations (37− 41) will give
us an optimal solution for the original LP problem.
If we can increase the values of x1, x2, x3 in equations (37− 41)
the value of z will also increase.
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The simplex method

We can start with the initial feasible solution
x1 = x2 = x3 = 0, s1 = 5, s2 = 11, s3 = 8 which yields z = 0.

We can increase the value of x1 to 1 which yields the feasible
solution x1 = 1, x2 = x3 = 0, s1 = 3, s2 = 7, s3 = 5, z = 5, an
improvement.
We notice that the more we increase the value of x1 the higher the
value of z will be. But is there a limit to the size of the inrease?
Yes there is a limit. For instance, if x1 = 3 equation (36) cannot be
satisfied with s3 ≥ 0.
It is now clear that x1 cannot be greater than 5

2 getting the feasible
solution: x1 = 5

2 , x2 = x3 = 0, s1 = 0, s2 = 1, s3 = 1
2 , z = 25

2 ,
a big improvement.
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Yes there is a limit. For instance, if x1 = 3 equation (36) cannot be
satisfied with s3 ≥ 0.
It is now clear that x1 cannot be greater than 5

2 getting the feasible
solution: x1 = 5

2 , x2 = x3 = 0, s1 = 0, s2 = 1, s3 = 1
2 , z = 25

2 ,
a big improvement.
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The simplex method

How can we find the next improvement or decide that z = 25
2 is the

desired maximum?

A close study of equations (37− 41) shows why it was so easy to
pick the increased amount of x1:
All variable in the right side of the equation were 0. The non-zero
variables were on the left side.
We can rearrange the equations to reflect this observation.

z − 5(
5
2
− 1

2
s1 −

3
2

x2 −
1
2

x3)− 4x2 − 3x3 = 0 (42)

x1 =
5
2
− 1

2
s1 −

3
2

x2 −
1
2

x3 (43)

s2 = 11− 4(
5
2
− 1

2
s1 −

3
2

x2 −
1
2

x3)− x2 − 2x3 (44)

s3 = 8− 3(
5
2
− 1

2
s1 −

3
2

x2 −
1
2

x3)− 4x2 − 2x3 (45)
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The simplex method

After rearranging the terms on the right side of equations (42− 45) we
get:

z =
25
2
− 3

2
x2 +

1
2

x3 −
1
2

s1 (46)

x1 =
5
2
− 3

2
x2 −

1
2

x3 −
1
2

s1 (47)

s2 = 1 + 5x2 + 2s1 (48)

s3 =
1
2
+

1
2

x2 −
1
2

x3 +
3
2

s1 (49)

Looks like we can increase the value of x3 to 1 (largest possible
because of equation (49)).
Repeating the same process we get:
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The simplex method

z = 13− 3x2 − s1 − s3 (50)
x3 = 1 + x2 + 3s1 − 2S3 (51)
x1 = 2− 2x2 − 2s1 + s3 (52)

s2 = 1 + 5x2 + 2s1 (53)
The feasible solution is:

x1 = 2, x2 = 0, x3 = 1, s1 = 0, s2 = 1, s3 = 0. (54)

From equation (50) we can now deduce that the maximum is 13

Can you see why?
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Summary

This has been a very brief review of the simplex method. The study of
Linear Programming is usually divided into the following parts:

1 Analysis of the simplex method.

2 Improvements.
3 Alternative methods.
4 Solving problems by reducing them to LP problems.
5 ILP (Integer or mixed integer Linear Programs).

In this class we shall study how to use LP to solve practical problems.
AIMMS will take care of the technical details for us.
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