Kruskal's MCST algorithm

Moshe Rosenfeld

Hanoi 2010 moishe@u.washington.edu

Theorem 1. Kruskal's algorithm results in a minimum cost spanning tree for the wieghted graph G(V, E).

Proof.

- 1. Let $e_1, e_2, \ldots, e_{|E|}$ be the edges of G arranged in increasing order of their weights.
- 2. Let $e_{i_1}, e_{i_2}, \ldots, e_{e_{|V|-1}}$ be the edges of the spanning tree K selected by Kruskal's algorithm.
- 3. Let T be a minimum cost spanning tree.
- 4. Among all MCST's let e_{i_m} be the largest index m such that $\{e_{i_1}, e_{i_2}, \ldots, e_{i_m}\} \subset E(T)$.
- 5. We will show that $i_m = |V| 1$.
- 6. If not, add e_{m+1} to T. This will create a cycle in it.
- 7. At least one edge of this cycle is not included in $\{e_{i_1}, e_{i_2}, \ldots, e_{i_m}\}$.
- 8. Let this edge be e_j .
- 9. Since $e_j \notin \{e_{i_1}, e_{i_2}, \dots, e_{i_{m+1}}\}$ it means that either $j > i_{m+1}$ or Kruskal rejected it because it created a cycle with the edges $\{e_{i_1}, e_{i_2}, \dots, e_{i_m}\}$.
- 10. But $\{e_{i_1}, e_{i_2}, \ldots, e_{i_m}\} \subset E(T)$ so we must have $j > i_{m+1}$
- 11. But this means that $\omega(e_j) \ge \omega(e_{m+1})$ so if we add e_{m+1} to T and remove e_j from it we cannot decrease the cost since T was a MCST.
- 12. This can only mean that the new tree has m + 1 edges in common with K.
- 13. This implies that K is MCST.