Discrete Optimization Graphs

Ngày 20 tháng 9 năm 2011

Definition (Isomorphism)

Two graphs G(V, E) and H(V, E) are **isomorphic** if there is a bijection $\phi : V(G) \rightarrow V(H)$ such that $(x, y) \in E(G)$ if and only if $(\phi(x), \phi(y)) \in E(H)$

< ロ > < 同 > < 回 > < 回 >

()

Definition (Isomorphism)

Two graphs G(V, E) and H(V, E) are **isomorphic** if there is a bijection $\phi : V(G) \rightarrow V(H)$ such that $(x, y) \in E(G)$ if and only if $(\phi(x), \phi(y)) \in E(H)$

Question

Is it easy to decide whether two graphs are isomorphic?

Isomorphism Example

Are these graphs isomorphic?

2

< 三> < 三>

Isomorphism Example

Two isomorphic copies of W7

Discrete Optimization Graphs

Ngày 20 tháng 9 năm 2011 3 / 1

2

< 三> < 三>

()

Deciding whether two graphs are isomorphic is conceptually very easy.

A B b A B b

Deciding whether two graphs are isomorphic is conceptually very easy.

• Label the vertices of G(V, E) by $1, 2, \ldots, |V(G)|$.

Deciding whether two graphs are isomorphic is conceptually very easy.

- Label the vertices of G(V, E) by $1, 2, \ldots, |V(G)|$.
- Try to label the vertices of H(V, E) by a permutation $\pi(n)$.

Deciding whether two graphs are isomorphic is conceptually very easy.

- Label the vertices of G(V, E) by $1, 2, \ldots, |V(G)|$.
- Try to label the vertices of H(V, E) by a permutation $\pi(n)$.
- Check whether π is an isomorphism.

Deciding whether two graphs are isomorphic is conceptually very easy.

- Label the vertices of G(V, E) by $1, 2, \ldots, |V(G)|$.
- Try to label the vertices of H(V, E) by a permutation $\pi(n)$.
- Check whether π is an isomorphism.

Deciding whether two graphs are isomorphic is conceptually very easy.

- Label the vertices of G(V, E) by $1, 2, \ldots, |V(G)|$.
- Try to label the vertices of H(V, E) by a permutation $\pi(n)$.
- Check whether π is an isomorphism.

As with the assignment problem, this approach is not practical.

イロト イポト イラト イラ

Definition

2

イロン イロン イヨン イヨン

Definition

• A graph $H(V_1, E_1)$ is a subgraph of G(V, E) if $V_1 \subset V$ and $E_1 \subset E$.

3

イロト イポト イヨト イヨト

Definition

- A graph $H(V_1, E_1)$ is a subgraph of G(V, E) if $V_1 \subset V$ and $E_1 \subset E$.
- A graph $H(V_1, E_1)$ is an induced subgraph of G(V, E) if $(x, y) \in E_1 \iff (x, y) \in E$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

- A graph $H(V_1, E_1)$ is a subgraph of G(V, E) if $V_1 \subset V$ and $E_1 \subset E$.
- A graph $H(V_1, E_1)$ is an induced subgraph of G(V, E) if $(x, y) \in E_1 \iff (x, y) \in E$.
- A subgraph $H(V_1, E_1)$ of G(V, E) is a spanning subgraph of G if $V_1 = V$.

Definition

- A graph $H(V_1, E_1)$ is a subgraph of G(V, E) if $V_1 \subset V$ and $E_1 \subset E$.
- A graph $H(V_1, E_1)$ is an induced subgraph of G(V, E) if $(x, y) \in E_1 \iff (x, y) \in E$.
- A subgraph $H(V_1, E_1)$ of G(V, E) is a spanning subgraph of G if $V_1 = V$.

Definition (Tree)

A connected graph without cycles is called a tree.

Definition

- A graph $H(V_1, E_1)$ is a subgraph of G(V, E) if $V_1 \subset V$ and $E_1 \subset E$.
- A graph $H(V_1, E_1)$ is an induced subgraph of G(V, E) if $(x, y) \in E_1 \iff (x, y) \in E$.
- A subgraph $H(V_1, E_1)$ of G(V, E) is a spanning subgraph of G if $V_1 = V$.

Definition (Tree)

A connected graph without cycles is called a tree.

Lemma

Every connected graph has a spanning tree.

Spanning and Induced Subgraphs

A graph of order 8 (eight vertices) The red edges form a spanning subgraph. The blue edges form an induced subgraph.

The Complement and Line Graphs

Definition (complement)

The complement of a graph G(V, E), denoted by $\overline{G(V, E)}$, is the graph \overline{G} with $V(\overline{G}) = V(G)$ and $(x, y) \in E(\overline{G})$ if and only if $(x, y) \notin E(G)$.

The Complement and Line Graphs

Definition (complement)

The complement of a graph G(V, E), denoted by $\overline{G(V, E)}$, is the graph \overline{G} with $V(\overline{G}) = V(G)$ and $(x, y) \in E(\overline{G})$ if and only if $(x, y) \notin E(G)$.

Example

The complement of C_5 is C_5 .

The Complement and Line Graphs

Definition (complement)

The complement of a graph G(V, E), denoted by $\overline{G(V, E)}$, is the graph \overline{G} with $V(\overline{G}) = V(G)$ and $(x, y) \in E(\overline{G})$ if and only if $(x, y) \notin E(G)$.

Example

The complement of C_5 is C_5 .

Definition (Line Graph)

The line graph L(G) of a graph G is a graph with V(L(G)) = E(G) and two vertices in L(G) are connected by an edge if the two corresponding edges in G share a vertex.

• • • • • • • • • • • • •

The 5-prism and its complement

The 5-prism and its complement. Discrete Optimization Graphs

The 5-prism and its line-graph

э

(Graph Coloring)

Assigning labels to vertices or edges of graphs is a fundamental tool in many proofs and algorithms on graphs. We call this procedure **coloring**. In various applications we use different rules for coloring.

(Graph Coloring)

Assigning labels to vertices or edges of graphs is a fundamental tool in many proofs and algorithms on graphs. We call this procedure **coloring**. In various applications we use different rules for coloring.

Definition (Chromatic Number)

→ ∃ → < ∃</p>

(Graph Coloring)

Assigning labels to vertices or edges of graphs is a fundamental tool in many proofs and algorithms on graphs. We call this procedure **coloring**. In various applications we use different rules for coloring.

Definition (Chromatic Number)

 The chromatic number of a graph G, denoted by γ(G), is the smallest number of colors needed to color the vertice so that vertices connected by an edge are assigned different colors.

(Graph Coloring)

Assigning labels to vertices or edges of graphs is a fundamental tool in many proofs and algorithms on graphs. We call this procedure **coloring**. In various applications we use different rules for coloring.

Definition (Chromatic Number)

- The chromatic number of a graph G, denoted by γ(G), is the smallest number of colors needed to color the vertice so that vertices connected by an edge are assigned different colors.
- The chromatic index of a graph G, denoted by γ₁(G), is the smallest number of colors needed to color the edges so that if two edges share a vertex they are assigned different colors.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Vertex Coloring

Clebsch graph: A 5-regular graph with chromatic number 4 Discrete Optimization Graphs

Ngày 20 tháng 9 năm 2011 11 / 1

2

▲圖 → ▲ 臣 → ▲ 臣 →

Edge Coloring

2

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Definition

Discrete Optimization Graphs

Ngày 20 tháng 9 năm 2011 13 / 1

Definition

• A set of vertices in a graph G(V, E) is independent if no two vertices of the set are connected by an edge in G (also called a stable set).

Definition

- A set of vertices in a graph G(V, E) is **independent** if no two vertices of the set are connected by an edge in G (also called a stable set).
- The independence number of G, denoted by α(G), is the size of the largest independent set in G.

Definition

- A set of vertices in a graph G(V, E) is **independent** if no two vertices of the set are connected by an edge in G (also called a stable set).
- The independence number of G, denoted by α(G), is the size of the largest independent set in G.
- A clique in G is a complete subgraph that is not contained in a larger complete subgraph. The size of the largest clique is denoted by ω(G).

Definition

- A set of vertices in a graph G(V, E) is **independent** if no two vertices of the set are connected by an edge in G (also called a stable set).
- The independence number of G, denoted by α(G), is the size of the largest independent set in G.
- A clique in G is a complete subgraph that is not contained in a larger complete subgraph. The size of the largest clique is denoted by ω(G).
- A vertex cover of a graph G is a set of vertices U ⊂ V(G) such that every edge has at least one end vertex in it.

Definition

- A set of vertices in a graph G(V, E) is **independent** if no two vertices of the set are connected by an edge in G (also called a stable set).
- The independence number of G, denoted by α(G), is the size of the largest independent set in G.
- A clique in G is a complete subgraph that is not contained in a larger complete subgraph. The size of the largest clique is denoted by ω(G).
- A vertex cover of a graph G is a set of vertices U ⊂ V(G) such that every edge has at least one end vertex in it.

Comment

Many of these graph parameters are inter-related. In many applications we need to calculate them. Some can be calculated effciently but

æ

イロト イヨト イヨト イヨト

• The size of the largest clique in a graph G is equal to $\alpha(\overline{G})$.

- The size of the largest clique in a graph G is equal to $\alpha(\overline{G})$.
- The chromatic number: $\gamma(G) \ge \omega(G)$.

- The size of the largest clique in a graph G is equal to $\alpha(\overline{G})$.
- The chromatic number: $\gamma(G) \ge \omega(G)$.
- The size of a vertex cover of G is at least as large as the size of a matching.

- The size of the largest clique in a graph G is equal to $\alpha(\overline{G})$.
- The chromatic number: $\gamma(G) \ge \omega(G)$.
- The size of a vertex cover of G is at least as large as the size of a matching.
- The size of the largest matching in G is $\alpha(L(G))$.

イロト イヨト イヨト イヨト

- The size of the largest clique in a graph G is equal to $\alpha(\overline{G})$.
- The chromatic number: $\gamma(G) \ge \omega(G)$.
- The size of a vertex cover of G is at least as large as the size of a matching.
- The size of the largest matching in G is $\alpha(L(G))$.

Comment

There are many useful implications to these relations. For instance, if you find a matching and a vertex cover of the same size, then the matching is a maximal matching and the cover is a minimal cover.

- The size of the largest clique in a graph G is equal to $\alpha(\overline{G})$.
- The chromatic number: $\gamma(G) \ge \omega(G)$.
- The size of a vertex cover of G is at least as large as the size of a matching.
- The size of the largest matching in G is $\alpha(L(G))$.

Comment

There are many useful implications to these relations. For instance, if you find a matching and a vertex cover of the same size, then the matching is a maximal matching and the cover is a minimal cover.

- The size of the largest clique in a graph G is equal to $\alpha(\overline{G})$.
- The chromatic number: $\gamma(G) \ge \omega(G)$.
- The size of a vertex cover of G is at least as large as the size of a matching.
- The size of the largest matching in G is $\alpha(L(G))$.

Comment

There are many useful implications to these relations. For instance, if you find a matching and a vertex cover of the same size, then the matching is a maximal matching and the cover is a minimal cover.

Or if there is an "efficient" algorithm to find the size of the largest clique in a graph then there is an efficient way to find $\alpha(G)$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >