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Lecture 4: Graphs

Graphs are important structures with numerous applications in
many areas. We shall be using them extensively in this class.

In this lecture we shall review standard definitions, examples,
prove some basic theorems and prepare to study some
fundamental algorithms.

Definition
A finite graph is a pair (V ,E) where V is a finite set called
vertices, E is a family of pairs (x , y) | x , y ∈ V called edges.

We shall usually denote graphs by G(V ,E) or H(V ,E) etc.

Remark
We used the word family rather than set to account for the
possibility that a pair (x,y) will apear more than once. Also we
used (x,y) rather than {x , y} to account for a pair (x,x).
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Examples

Graphs are dynamic data structures. They can grow (adding
vertice and edges) or shrink (deleting edges or vertices). When
a vertex is delted, all edges incident with it are also deleted.

V = {All students at HUS}
E = {(x , y)| x and y attend the same class}
V = {All cities in Vietnam}
E = {(x , y)| There is a direct flight from x to y}.
V = N ∪ D where: N = {All nurses in a hospital}
D = {all nurses’ duties}
E = {(x , y)|x is a nurse, y is a duty which x is qualified to
perform}.
V = {{x , y}|{x , y} ⊂ {1,2, . . . k}}
E = {({x , y}, {u,w})|{x , y} ∩ {u,w} = ∅.}
V = GF ∗(q) E = {(x , y)|x − y ∈ QR(q)}.
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Graph Basics

Definition

B-1: We use the term graph for G(V ,E) if the edges (x , y)
are unordered pairs.
The students, nurses, number pairs and quadratic residues
for q ≡ 1 mod 4 examples are simple graphs.
B-2: If the edges of G(V ,E) are ordered pairs (oriented)
we call G(V ,E) a digraph (directed graph).
The cities graph is a directed multi-graph and the quadratic
residues for q ≡ 3 mod 4 is a digraph.
B-3: The degree of a vertex v ∈ V (G), denoted by dG(v) is
the number of vertices adjacent to v in G
(dG(v) = |{x |(v , x) ∈ E(G)}|).
B-4: a graph G is r-regular if all vertices have degree r.
B-5: A graph G is labeled if the vertices are assigned
unique names.
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Paths, walks

Definition

G-1: An edge of the form (x , x) is called a loop.
G-2: If a graph contains the edge (x , y) more than once,
we say that it has parallel edges.
G-3: A loop-less graph without parallel edges is a simple
graph.
G-4: A walk in a graph is a sequence
(v0,E1, v1,E2, . . . , vk−1,Ek , vk) such that Ei = (vi−1, vi).
The length of a walk is the number of edges it contains.
G-5: A walk in G(V ,E) in which all vertices are distinct is a
path.
G-6: A walk (v0,E1, v1,E2, . . . , vk−1,Ek , vk) in which
v1 = vk is a closed walk.
G-7: A closed walk in which vi 6= vj , for i 6= j , 0 ≤ i , j < k
is a cycle.
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Digraphs Basics

D-1: In a digraph D inD(v) = |{x |(x , v) ∈ E(D)}| is the
indegree of v and outD(v) = |{x |(v , x) ∈ E(D)}| is the
outdegree.

A digraph D is strongly connected if between any two
vertices x , y there are directed paths x → x1 → . . .→ y
and y → y1 → . . .→ x
A tournament is a digraph in which between any two
vertices there is exactly one directed edge.

Observation

In a digraph D,
∑n

i=1 inD(vi) =
∑n

i=1 outD(vi).

Theorem
Every tournament has a hamiltonian path.
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The Petersen Graph

Petersen's graph.

Petersen's graph has 10 vertices and 15 edges. This rendition of the graph is labeled. Every vertex has 
3 adjacent vertices (neighbors).

The degree of every vertex is 3. This graph is regular of degree 3 (3-regular, or cubic).

← A vertex

An Edge  → 
← label

Discrete OptimizationGraphs



Using graphs to model problems

1. Hoan is a student in your class. You want to deliver a
book to Trung. Hoan and Trung are students at HUS, as
such they are vertices in the HUS graph. Is there a path
between Hoan and Trung?
2. Ralph is a tourist visiting Vietnam. He has a list of cities
he would like to visit. He would like to start in Hanoi and
return to Hanoi. Does the graph contain a cycle through
these cities?
3. A group of nurses show up for a shift. Can you match
the nurses with duties needed to be performed? Can you
find a set of disjoint edges in the nurses graph?
4. Can a tourist visit all airpots in Vietnam by flying in and
out of airports? Is there a closed walk through all vertices?
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Connectivity, Cycles

Definition

G-8: A graph G = G(V ,E) is connected if between any
pair of vertices there is a path.
G-9: A path containing all vertices is a Hamiltonian path.
If G has such a path we say that G is traceable.
G-10: G is Hamiltonian if it has a cycle that contains
(visits) every vertex,
G-11: G is Eulerian if it contains a closed walk that uses
every edge once.
G-12: The distance between two vertices in a graph is the
length of the shortest path between them.
G-13: The diameter of a connected graph is the length of
the longest distance among all pairs of vertices.
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Connectivity

The relation “there is a walk between two vertices x and y”
is an equivalence relation on V (G).

Definition

The equivalence classes induced by this relation are the
connected components of the graph G(V ,E).
In a connected graph G a vertex v ∈ G(V ,E) whose removal
disconnects G is called a cut vertex (or an articulation point).

Definition
A graph G is r-connected if G = Kr or G cannot be
disconnected by removing less than r vertices.
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Cycles, Notation

Definition (Notation)

a cycle of lnegth k is denoted by Ck .
C3 is a triangle, C4 a quadrilateral, C5 a pentagon etc.
A graph G(V ,E) has girth k if the shortest cycle in G has
length k.
The complete graph of order n is denoted by by Kn.
The n-wheel Wn is a graph consisting of Cn and one
additional vertex connected to all vertices of the cycle Cn.
A set of vertex disjoint edges is a matching.
A matching M in G is perfect if every vertex is incident with
one of the edges from M.

Example

The Petersen graph has a perfect matching, girth 5.
The 5-prism has a perfect matching and girth 4.
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More Examples

(Using graphs to model problems)

You wish to connect processors in a multiprocessor
computer or computers in a building to form a local area
network (LAN).
Coonections are expensive and the number of connections
is physically limited.
When designing the connections, what will you try to
achieve?
1. “High” connectivity.
2. Fast communications among processors (computers).
3. Multiple ways to exchange information among all
processors (computers).
4. Fault tolerance.
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Continued

(The Graph)

To build a mathematical model for tackling this problem we
define a graph G(V ,E) where V (G) is the set of all
computers (or processors) and E(G) is the pairs of
computers we will connect by hard wire.
To achieve the first goal we would like the graph to have
many paths between any pair of vertices, preferably vertex
disjoint.
To achieve the second goal we would like the graph to have
a small diameter.
For the third goal we would like to have many edge-disjoint
Hamiltonian cycles in the graph.
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Example
Let us study the case of connecting 10 computers where each
computer can be connected to three other computers.

1. The 5-prism:
Between any pair of vertices there are 3 vertex disjoint
paths.
It has Hamiltonian cycles.
Its diameter is 3.
2. The Petersen graph.
Between any pair of vertices there are 3 vertex disjoint
paths.
It is traceable but not Hamoltonian.
Its diameter is 2

So which design is better?
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Example continued

Suppose you want to merge two networks with 10
computers each by adding just one connection for each
computer. How would you do it?
Start from scratch, designing a graph with 20 vertices
regular of degree 4.
Preserve the previous design and connect each computer
to its “clone" (the prism).
What will be the best design?

Answer
To be answered by you in the assignment.
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