Discrete Mathematics Drill

Moshe Rosenfeld

Hanoi 2011
moishe@u.washington.edu

Tuesday Nov. 29

1 Vizing's Demo execution

1. For convenience and future use in the general proof we number the colors as:
red - 1 , magenta -2 , blue -3 , green- 4 , cyan -5 .
2. The general strategy is to find a path $v_{1}-v_{2}-\ldots-v_{k}$ which is colored it two colors i, j such that no edge at vertex v_{1} is colored j and no edge at the end-vertex v_{k} is colored i.
3. If we can find such a path, then we can switch the colors along the path from i to j and from j to i obtaining a new proper edge coloring.
4. Note that the 3 edges incident with 4 are colored $\{1,2,3\}$ and three edges incident with 5 are colored $\{2,4,5\}$ so there is no color available for the missing edge $(4,5)$.
5. Our strategy is to change the colors on some of the edges incident with 4 and construct a path as mentioned above so that at the end of the changes there will be a color available for the edge $(4,5)$.
6. We begin with listing potential re-coloring of edges incident with 4:
7. - To each vertex i we assign a "color" $x(i)$ such that this color is not included among the colors of the edges incident with i.

- The vertices incident with 4 are $\{1,8,9\}$. Looking at the given coloring we see that $x(4)=5, x(1)=5, x(8)=3, x(9)=2$.
- $x(5)=1$. Note: we actually have two choices for $x(5)$ our "algorithm" could have chosen $x(5)=3$.

8. Let us start with the first choice: $x(5)=1$. If there is no edge colored 1 incident with 4 we can color the edge $(4,5)$ with 1 .
9. But there is such an edge: $(4,1)$.
10. We are lucky! $x(1)=5$. This means that we can change the color of the edge $(4,1)$ to 5 and color the edge $(4,5)$ red (1).
11. Let us see what can we do if we were not so lucky and our algorithm chose $x(5)=3$.
12. We check whether there is an edge $(4, i)$ with $x(i)=3$, indeed $x(8)=3$. We proceed by looking for an edge $(4, j)$ for which $x(j)=$ color of $(4,8)$.
13. The color of $(4,8)=2=x(9)$. The color of $(4,9)$ is 3 and $x(1)=5 \neq 3$ so we stop.
14. We first change the colors of $(4,8)$ to blue (3) and of $(4,9)$ to magenta (2). We shall now start to build the path along which we will change the colors. The path will start with 4 at which the color 5 is missing and alternate between magenta (2) and cyan (5).
15. The path is: $4-9-15-6-14-5-3-1$. It ends at 1 where $x(1)=5$.
16. We change the colors along this alternating path and obtain a coloring of $G-(4,5)$ in which the color blue (3) is missing at both 4 and 5 .
17. so $\chi_{1}(G) \leq 5$.

The general proof: (by induction).

1. Let $G_{1}=G-(a, b)$ be colored by $\Delta(G)+1$ colors:
$\phi: E(G) \longrightarrow\{1,2, \ldots \Delta(G)+1\}$.
2. For each $v \in V\left(G_{1}\right)$ let $x(v)=i$ such that $i \notin\left\{\phi(v, u) \mid \forall u \in N_{G_{1}}(v)\right\}$.
3. Note that such an i exists since $\left|N_{G_{1}}(v)\right| \leq \Delta(G)$.
4. Let $N_{G}(a)=\left\{v_{0}=b, v_{1}, \ldots v_{k-1}\right\}$.
5. Let $v_{i_{1}} \in N_{G}(a)$ be such that $\phi\left(\left(a, v_{i_{1}}\right)\right)=x(b)$. Note that if there is no such vertex then we can color (a, b) by $x(b)$. We also note that there is at most one such vertex.
6. We continue choosing the vertex $v_{i_{m}} \in N_{G}(a)$ such that $\phi\left(\left(a, v_{i_{m-1}}\right)\right)=$ $x\left(v_{i_{m}}\right)$
7. We now proceed to construct the path by starting at a selecting the edge $\left(a, v_{i_{m}}\right)$ then the edge $e_{1}=\left(v_{i_{m}}, u_{1}\right)$ such that $\phi\left(e_{1}\right)=x(a)$ and continue wiht edges with colors alternating between $x\left(v_{i_{m}}\right)$ and $x(a)$.
8. Since ϕ is a proper edge coloring, this is a path and it must end in a vertex at which one of the two colors is missing.
9. We change the colors of the edges $\left(a, v_{i_{k}}\right)$ to $x_{i_{k-1}}$ and change the colors along the path to obtain the desired edge coloring by $\delta(G)+1$ colors.
