Discrete Optimization

Moshe Rosenfeld

Hanoi 2011
moishe@u.washington.edu

Name:

1 Assignment - 10

Due: Thursday Dec. 1

1. Use the max-flow min-cut algorithm to determine whether there is a matrix A such that
2. $A_{i, j} \geq 0$.
3. $A \cdot \mathbf{j}^{T r} \leq(13,9,4)^{T r}(\mathbf{j}=(\mathbf{1}, \mathbf{1}, \mathbf{1}))$
4. $(1,1,1) \cdot A=(3,7,2)$
5. $A_{1} \leq(2,0,8), \quad A_{2} \leq(3,8,3), \quad A_{3} \leq(0,13)$
6. Can you construct a 5 -regular graph that has no triangles with chromatic number 3 ?
7. Let G be a graph whose vertices are the seven triples forming the Fano plane and the integers $1,2, \ldots 7$ (a total of 14 vertices). Connect i by an edge to the triples containing i. Color the edges of this graph by 3 colors.
8. Prove that the edges of a bipartite graph G can be colored by $\Delta(G)$ colors.
