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Proposition of Pseudo-Cylindrical Concave Polyhedral Shells.
K. Miura.') *

Summary:

The purpose of this study is to present a new category of the concave polyhedral
surfaces which might be potential structural forms of the folded plate shells. These
surfaces are obtained by the isometric transformation of general cylindrical surfaces. The
macroscopic configuration of these surfaces are general cylindrical shape and plane shape
and these are developable surfaces. These have also an intrinsic geometrical nature which
provides a novel mechanism of the deployable shell. The resulting new category of folded
plate shell, which is temporarily called the pseude-cylindrical concave polyhedral shell,
has many useful characteristics as follows: inclusion of an arbitrary curvature distribut-
ion, its midsurface being developable, intrinsically high bending rigidity, simplicity of
elementary faces. The application of it to rigid shell structures, deployable shell
structures, irreversible deployable shell structures, and sandwich core structures gives
promise for the future. Furthermore, the discovery of the developable doubly corrugated
surface evokes much theoretical interest.

1) Dr. Eng.

Associate Professor

Institute of Space and Aeronautical Science
University of Tokyo, Japan.



§ 1, INTRODUCTION

For a geometry-minded scholar, thinking about the definition of
the folded plate shell will certainly settle down to this: the shell
whose midsurface is a polyheral surface, Of course, there is no limit
in numbers of the polyhedral surfaces and an architect can conceive a
form for his building rather freely by intuition, experience, simulating
nature, or folding a paper. An important thing is that the geometry
of these surfaces almost definitely determines the primary nature of
the structure which extends from strength, productivity, and economy
to aesthetics, '

If, then, a new geometrical form of the polyhedral surface is
discovered, there is a possibility of using it as a midsurface of a
folded plate shell whose characteristics might be favorable for some
applications, Eventually, this will produce a new category of the
folded plate shells.

The purpose of this study is to present a new category of the
concave polyhedral surfaces which might be potential structural forms
of the folded plate shells. The macroscopic configurations of these
surfaces are general cylindrical shape and plane shape, and these have
the definite common feature that these are developable everywhere, or
in other words, these are isometric with a plane,

Moreover, these surfaces have an intrinsic geometrical nature
which provides a novel mechanism of the deployable folded plate shell,
and this suggests the future architectural as well as space engineering
possibilities,

~ Since this category of surfaces was discovered accidentally by
ithe present author in an effort to study the inextensional buckling
deformation of general cylindrical shells, the following chapters
begin with the study of buckling deformations.

*This paper is a substantially revised version of the reference [1].
**The author wishes to thank Masamori Sakamaki and Tomoko Miura for
their skilled works in preparing models,



§ 2, INTRODUCTION OF PSEUDO-CYLINDRICAL CONCAVE POLYHEDRAL SURFACES

Before getting at the kernel of the subject of this paper, we must
have the recollections of the studies on the classical problem of axial
buckling of thin cylindrical shells. Because the subject owes its origin
to the forms of deformations encountered in the buckling process. That
problem has been a target of many researchers for almost half a century
and yet it has not been conclusively explored. Fortunately, such situ-
ation does by no means bother our discussion here, since the chief con-
cern about the subject is not buckling criterion but the geometrical
forms of deformations.

Now let us consider the post-buckling deformation of axially com-
pressed circular cylindrical shells. As von K;rm;n and Tsien [2]
assumed a buckle shape based on the observation, it consists of three
trignometric terms (Fig.1):

w= Ay + A11°°3(€ x/r)cos( gs/r)
+ Azocos(zg x/r) + Aozcos(zg s/r) (1)

Here w is the radial inward displacement, r the radius of the midsurface
of the shell, x and s the axial and circumferential coordinates,{ and

{ numbers, and A's unknown coefficients. It goes without saying that
the three trigonometric terms expression 1s not accurate enough to repre-
sent the buckle. Therefore, as the high speed digital computer became
available, the computation which can includes more terms representing

the shape of the buckle has been tried by, for example, Almroth (31,

Hoff and his collaborators [4]; though the computation essentially
follows the von K;rm;n—Tsien procedure. In the latter's paper, it was
shown that such a procedure results in displacement patterns that approach
a kind of concavé polyhedral surface more and more closely as the number
of terms representing the shape of the buckle is increased, Since that
polyhedral surface had been predicted by Yoshimura [5] in 1951, it is
called Yoshimura-pattérn*(Fig.2). Indeed a typical experimental result

*The pattern was afterwards described independently by L, Kirste in
Austria.



as shown in Fig.3 certainly resembles the Yoshimira-pattern, Moreover,
through a certain modification of Yoshimura-pattern, the so-called

local buckling pattern appeared in Fig.3 can be explained by Yoshimura-
like inextensional deformation as shown in Fig.4, It appears, therefore,
very likely that an infinite number of terms would yield the exact
Yoshimura-pattern if a means could be found to include an infinite number
of terms in the calculation,

It should be noted that this pattern can be obtained from the
original ecircular cylindrical shape through an inextensional process,

In other words, any line element of midsurface of the circular cylindrical
shell does not change its length after deformation., In exact geometrical
. terms, these two configurations are isometric, The significance of this
fact with regard to the elastic stability can easily be understood
through energy consideration, but their consideration is outside the
scope of the present paper. In short, the purely geometrical feature

of the polyhedral surface representing the Yoshimura-pattern is the
exactly isometric, axially and uniformly shortened surface that exists
indefinitely close to an arbitrary circular cylindrical surface,

Now, as a natural extension of the above discussion, the existence
of such isometric surfaces for general cylindrical surfaces is asked.
ThiJ question was answered by the present author in his recent paper [6].
On purpose of revealing the importaht features of such isometric surfaces,
the essential part of the paper is presented in the following,

Let us prove the presence of a sufface which has the following
characteristics: it is isometric with a given arbitrary cylindriecal
surface S; it has a uniform axial shortening; and it is indefinitely
close to S, S can be either the closed or open cylindrical surface.

As shown in Fig.5. the parallel lines l,m1l,m,... with a constant
interval A\ x &nd the parallel zones L,M,L,M,... constructed by the former
are considered on a plane, The arbitrary points on the lines 1 and m
are designated by s j(j = ...,k=2,k,k+2,...) and S541» Tespectively, with
the condition s'j <:Sj+1‘ The orthogonal projections of these points
on the other group of the lines are distinguished by the superscript of
dash, Connecting those points as shown, the rows of many triangles with
an identical height are formed. Let us fold along the oblique sides of
those triangles, for example on the L zone, so that every triangular



plane may be inclined to the x axis by an angle of § . In order to

add clarity to the matter, the solid and dashed lines refer to the
folding lines which are convex and concave to the reader's side,
respectively. A part of the L zone formed by such a process is seen in

Fig.5 as sk 1KSk+1S k+1' If the line segment s is assumed to be

K° k+1

on the plane 1* normal to the x axis, the line segment s' s .. must be

on the plane m* parallel to 1* and as much as )\xcos C) dil;t:;’i from 1*,
This relation holds everywhere between corresponding line segments on
1 and m., Thus the broken lines 1 and m are formed on the parallel
planes 1* and m*, respectively; and these planes, apart as much as
xxFose , are evidently normal to the x axis. By the same process
throughout the M's and L's zones, each zone constructs a polyhedral
surface that is symmetrical with the adjacencies about the plane 1*
and m*, |

In order to study the characteristics of this cylinder-like poly-
hedral surface, the quantity which in a broad sense may be called
"curvature" is the best conceivable means at present, In a general
sense, the mean curvature is definined as the ratio of the angle between
the tangents at the edges of a curve to the length of it. By the same
token, it may be possible to define the "quasi-curvature" ‘Q‘i> of the

circumference...s' ees a8

]
k-15K% K+l

G (T /81 ert? TSt 58T n) (2)

It is, however, more cohvenient for the following analysis to use the

—— -_
angular variation between the line segments 5115 kSk+1 and Sks'k+1sk+2’
though these are in different parallel planes. Thus

&> k=B /5" S = Bl Mgk ' (3)

Evidently, when the broken lines converge to a curve through an infini-
tesimal division, these quasi-curvatures represent exactly the curvature
in a general sense. By the help of Fig.5, the following relation can
easily be obtained:

B =2 tan™ [ (N, sin8) [ X1 (%)



Thus, the quasi-curvature<ﬁ‘2>-is written as
(k> g L (A sing) /2] (9)

Also, the unit shortening in the x axis direction e, and the amplitude
of the wave a are given as follows:
3

1 - cos B (6)
Axsin 6 (7)

a

Next, let us consider the limiting case where the line segments of
1 and m are infinitesimally small while sj and sj+1 are following a
given arbitrary smooth continuous function, and at the same time the
amplitude of the wave is infinitesimally small such as a / A KL
In this case, the quasi-curvature <K2 >, and therefore { k 1> , almost

coincide with the curvature in a general sense and it is given by
c ) =2aat? () P2as a0 P (8)

Simultaneously, the broken lines 1's and m's converge to a curve; as
an inevitable consequence, the zones M's and L's and then the whole
surface converge indefinitely close to a cylindrical surface S, whose
curvature is given by « (s). The limiting case of this polyhedral
surface is now denoted as S_,

One distinction between the polyhedral surface Sp and the corre-
sponding cylindrical surface S with an identical curvature distribution
is that the former has a uniform axial shortening e everywhere., Also
it is evident that the surface Sp is developable as it is constructed
by folding a plane, Therefore, it can be said that the surface S and
Sp are isometric, or S is developable on Sp’

In conclusion, the presence of a developable surface Sp is verified in
relation to a smooth arbitrary cylindrical surface S with the following
characteristics: S and Sp are isometric, Sp has a uniform axial
shortening €, and Sp is indefinitely close to S, The surface Sp is the
concave polyhedral surface and the basic geometrical parameters are
governed by Eq.(8), Fig.6 shows an exaggerated view (since the real
surface is constructed by the infinite mumber of infinitesimal waves)

of such a surface corresponding to an elliptical cylindrical surface,



It appears also well established that if the transfer from a surface S
to the corresponding surface Sp is taken place, it should be done in the
inextensional process. If the surface S is referred to the midplane of
a thin arbitrary general cylindrical shell, then it is found that the
surface Sp satisfies probable conditions for a surface being an in-
extensional buckling deformation.

In common parlance, this transfer means "the folding of cylindrical
surface in the axial direction". In adition, it is indeed infinite in
number of the combination of axial and circumferential wave numbers and
thus resulting axial shortenings. It is interesting to note that any
eylindrical surface can be shortened by an arbitrary amount through
such a folding.

There is certainly something in common between this fact and the
geometrical paradox that the surface area of a circular cylinder can
not be obtained as the simple upper bound of the surface area of the
concave polyhedron inscribing the cylinder. Let us consider a two-
dimensional Euclidean complex K(p,q) inscribing a circular cylinder
and denote F(p,q) as the sum of area of two-dimensional Euclidean
simplexes (Fig.7). Converging p and g to zero, we will have K(p,q)
indefinitely close to the cylindrical surface. On the other hand,
however, the limiting value of F(p,q) depends on a process of con-
vergence of p and q to zero and the value can take from the finite
to the infinite,

But to return to the point to our subject, we assumed in the pre-
ceding analysis the uniformity of the axial shortening ¢ with regard to
both circumferential and axial 6oordinates. It is, however, possible
to relax the latter assumption and give a wide definition of poly-
hedral surface Sn' Then Eq.(8) is valid for x-dependent Ax and € ,
provided that the amplitude of the wave a = >\x(2 6)1/2 is kept
constant; thus

() =22 (2e D20 A (o) PP

(9)
[a= >\xi(2 61)1/2 : constant ]

where the subscript i indicates the i-th zone in the axial direction.
This enables us to make a pattern that resembles the local buckling



pattern of the axially compressed circular cylinder shown in Fig.4.
Furthermore, the triangular division appeared in the preceding
analysis is not mandatory, and instead, the trapezoidal division yields
the similar conclusion, Denoting the bisections of the upper and the
lower bases of a trapezoid as A ° and A ¢» respectively (Fig.8a), the
correspondents to Egs.(5) and (8) can be written as follows:

o= [2/0N + %] tan™ [ A_sin 6/( ) _ = 2] (10)
(o) = 23 (2 DVRIN ()7 - \%()7]

(11)
[ o = >\xi(2€i)1/2 : constant ]

The resulting "hexagonal-pattern" can be seen in a typical example
(Fig.8b). Indeed one will sometimes observe the hexagonal-pattern
instead of the Yoshimura-pattern in the collapsing shapes of circular
cylindrical shells. A, V. Pogorelov has mentioned about a similar but
somewhat different hexagonal pattern confisuration in external pressure
case, In Figs.9 and 10, the general case of diamond and hexagonal
type polyhedral surfaces Sp corresponding to Egs.(9) and (11), respective~
ly, are shown., It is also possible to furnish a sign change in curva-
tiire of polyhedral surface Sp as shown in Fig,11,

The above argument raises a new question whether a surface with
another kind of pattern might exist that also belongs to the category
of the polyhedral surface Sp‘ In this respect, the author will not
attempt to prove in an exact manner the existence or nonexistence of
such a surface, but he simply points out in the following the analogous
characteristics between this problem and the classical problem of
regular tessellation.

The concave polyhedral surface Sp with either the diamond or the
hexagonal pattern can be developed into the plane, as it is the
fundamental premise., If the edges of these patterns were "printed"
on the surface, while a edge insides of each pattern is excluded, the
planes printed with either the diamond or the hexagonal pattérn will
be obtained after the deployment (Figs.12a and 12b). Then, it is



always possible to find the appropriate coordinate transfer as to x and
s, by which the pattern is "repularized"™, that is, each pmattern is
transferred to the same-sized repular polypon. Such coordinate transfer

can be expressed formally as follows:
x' = f(x), s' = g(s) (12)

The resulting regular pnatterns are shown in Fies.12c¢c and 12d.

These patterns remind us the classical problem of regular tessella-
tion studied first by Kepler [?]. For a formal definition, we may say
that a tessellation is regular if it has regular faces and a regular
vertex figure at each vertex. It has been proved that the triangular,
diamond, and hexagonal regular tessellations are possible, and these
are the only regular tessellations. Since the diamond and hexaponal
tessellations have their countermarts in the matterns of the polyhedral
surfaces Sp, the possibilitvy of triangular nattern of Sp is asked now.

At present, however, we are unable to find a mechanism by which a
cylindrical surface with triangular pattern can be transferred to a
polyhedral surface Sp. Therefore, it is most likely that the group of
polyhedral surface Sp is characterized by either the diamond or the
hexagonal pattern., The mixture of these patterns is possible, but it
is not the fundamental pattern.

Since the group of these surfaces has the distinct characteristics,
it will be convenient to give them an appropriate designation. The
author temporarily uses the word "pseudo-cylindrical concave polyhedral
surface", and PCCP surface as an abbreviation, because this surface is
not only cylindrical in a macroscopic sense but also it has a cylindrical
surface as its limit. It is also assumed that this designation of
PCCP surface includes the case where fundamental parameters, Xx? A

A s, and @ , are finite., We can say, there is two kinds of PCCP
surfaces, one is the PCCP surface with diamond pattern and the other is

S,

the PCCP surface with hexagonal pattern. The geometrical characteristics
of PCCP surfaces are summarized in the following.



Geometry of PCCP surface (diamond pattern)

(1) The developable concave polyhedral surface composed of triangulaé
faces,

(2) The relations between an arbitrary trianeular face 1-2-3 and the
three adjacent triangular faces (Fig.13)

a) The one particular sides of every trianglesareon the mutuallvy
parallel planes. Let us call them the bases of triangles. A
line which is vertical to these planes is denoted as x.

b) The two triangular faces, which own a side jointly, make the
identical angle to x.

c) The two triangles, which own a base jointly, have the identical
orthogonal projection to a plane vertical to x., This orthogonal
projection is also a triangle with the same base, The height of
it is denoted as the amplitude q . The amplitude Q@ characte-
rizes the depth of the wavy concave polyhedral surface and is
constant. throughout the whole surface,

d) The x-coordinate of the base, jointly owned by two triangles, is
in-between the x-coordinates of vertexes facineg to the base.

(3) The macroscopic configuration composed by this surface is cylindrical,

thus the quasi-curvature of the surface is approximately given by
© (s) = 2a/ N ()?

Geometry of PCCP surface (hexagonal pattern)

(1) The developable concave polyredral surface composed of non-rectangular
trapezoidal faces.
(2) The relation between an arbitrary trapezoidsl face 1-2-3-4 and the
four adjacent trapezoidal faces (Fig,14):
a) The bases of every trapezoidal faces are on the mutually parallel
planes. A line which is vertical to these planes is denoted by x.
b) The two trapezoidal faces, which own a side jointly, make the
identical angle to x.
c¢) The two trapezoidal faces, which own a base jointly, have the
ldentical orthogonal projection to a plane vertical to x. This
orthogonal projection is also a trapezoid and the height of it is

denoted as the amplitude o . The amplitude a characterizes

A /M



the depth of the wavy concave polyhedral surface and is constant
throughout the whole surface.
d) The x-coordinate of the base, jointly owned by two trapezoids, is
in~between the x-coordinates of the other two bases.
(3) The macroscopic configuration composed by this surface is cylindrical,

thus the quasi-curvature of the surface is approximately given by

k() =2a/ LA () - A%(s)2]

§ 3. PROPOSITION OF PSEUDO-CYLINDRICAL CONCAVE POLYHEDRAL SHELLS

A newidea is not necessarily conceived as a logical conclusion by
a certain rational mathematical analysis, but rather it is frequently
obtained by chance by a process transcending a logical way. This is
exactly the process by which the new form of shell structure is intro-
duced from the PCCP surface discussed in the preceding chapter.

For the purpose of illustration of PCCP surface, the author has
made a model using 0.25 mm thick Kent paper. This is the one shown in
Fig.6, and is representing an elliptic PCCP surface with diamond pattern.
Playing unconsciously with the model, the author has noticed the
considerable supporting capability of it in the axial direction. This
phenomenon may be explained in an approximate manner as follows.

The form of this model represents indeed a stable post~buckling equi-
librium of a very thin cylindrical shell subjected to an axial'load,
that is, in other words, a failure configuration under such loading.
But the typical load-shortening curves as showm in Fig.l15 indicate the
positive gradient in the posﬁ-buckling region for a fixed combination
of axial and circumferential wave numbers. So it is obvious that the
model could be capable of supporting substantial loads though it is
not as stiff as the original cylindrical form., Therefore, if a thin
structure is designed from the first in a form of the PCCP surface,
the elastically stable region will be assured until the next form of
fajlure, possibly either the material yield or the local instability,
will occur. The author believes that there is indeed a great potenti-
ality of such structures in practice. '

The conversion of thought from the failed form of a structure to

the potential new form of a structure is really a drastic turn. But



an even nore drastic turn has been done by the turn, in its literal
meaning, as much as ninety degrees of the loading direction, The authof
has noticed immediately that the model exhibits quite a large rigidity
against the load normal to the surface, in macroscopic sense, of it,

In spite of the minute thickness of the paper, the model can actually
support a substantial load without indicating a sign of collapsing.

On the contrary, an elliptic cylindrical model made of the same paper
collapses by its own weipht. In short, the former has much larger
circumferential bending rigidity than the latter.

This odd exmerience and the consideration of the intrinsic
geometrical characteristics of this developable surface, both has
convinced the author of that the thin structure in the form of the
FCCF surface should have great possibilities for engineering applications
[8]. According to precedent, such a category of structures is tempo-
rarily denominated as the pseudo-cvlindrical concave polvhedral shell
and the PCCP shell or CP shell for its abbreviation is used in the text.
It is to be hoped that the formal designation of it is established by
some authorized organization.

In the past, a folded plate shell which certainly belongs to the
family of PCCF shells has been apveard. It is a shell in the configu-
ration of Yoshimura-pattern, that is, a circular PCCP shell with diamond
pattern. For instance,. Salvadori discribes such a structure in his
unique book entitled "Structure in Architecture"[9].

In eeneral, the domain of form of PCCP shell is very wide. As it
has already mentioned thalt the shell can be designed for an arbitrary
curvature distribution with either the diamond or the hexagonal pattern.
Also, a rather wide selection of independent parameters, which define
‘the form in macroscopic as well as microscopic sense, is possible.
Furthermore, as an extremely special case of the shell, the concave
ﬂpolyhedral shell with a plane configuration is possible; this will be
shown in the later part of this paper. In the following chapter the
characteristics of the PCCP shell is discussed in details.

12



§ 4. PRINCIPAL CHARACTERISTICS OF PCCP SHELLS

In this chapter we discuss in details the characteristics inherent
in PCCP shells. These can be conveniently divided into the following
six principal items, though these are closely connected with each other.

L1, Versatility in forms

Tt goes without saying that the cylindrical shell form is the most
versatile and thereby the widely used shell form. Since the PCCP shell
is also in the cylindrical form at least in macroscopic sense, the merit
of the cylindrical form over other types of the shell is retained in
this case.

The independent form parameters which define the form of PCCP

surface are as follows;
a A(s), A %) (diamond pattern)
a A S(s), Z3(s), x(x) (hexagonal pattern)

where the amplitude a of the wave is constant throughout the surface,
while the wave-length parameters can vary stepwise with the coordinates
indicated in parentheses.

The sole quantity which determines the macroscopic form of the shell
is the curvature. The quasi-curvature of the PCCP surface is given

approximately as follows;

« (s)

~

2a/ )\s(s)2 (diamond pattern)

K (s)

2a/ L )\S(s)2 - xs(s)zj (hexagonal pattern)

As the amplitude & is constant throughout the surface, the arbitrary
curvature distribution can be gained by )"s and X S variations along
the circumferential coordinate s.

If both @ and A S(5)2, or A\ s(s)2 - %5(s)?, are infinitesimal

numbers of the same order, that is, by Landau's symbol

i

of >\S(s)2'] (13)

a

Q
|

= ol A ()% - A%()%] (18)

13



a PCCP surface converges to a cylindrical surface. At the same time,

the quaSi-curvature represents exactly the curvature in general sense,

In regard to the convergence of surface area, however, the above condition
is not sufficient; the reason has been mentioned before in chapter 2.
Then, the following condition must be satisfied simultaneously.

Q /)\x~—>0 (15)

Generally speaking, when the quantity a / Xx is small, the PCCP shell
has almost an identical surface area with the corresponding cylindrical
shell; this fact might have technical as well as economic meanings.
Excluding an aesthetic problem of design, considerable differences

in technical meaning will be encountered by selecting either of two
patterns of PCCP shells. For instance, let us consider the case of
designing a PCCP shell when the curvature distribution and the quantity

@ , on which the circumferential bending rigidity primarily depends,
are given in advance, the rest of free parameters are one in case of
the diamondpattern, and two in case of the hexagonal pattern; thus the
latter provides more freedom in designing the shell.

U-Z.kCircumferential bending rigidity

Now the comparison is made between a circumferential strip of a
circular PCCP shell with the diamond pattern and that of a circular
cylindrical shell as shown in Fig.16. The width of both strips is as
much as 2 Xx, that is, a single pattern width. It is also assumed
that both strips have the identical uniform thickness, The moment of
inertia of a cylindrical shell strip is

I=1(1/6) xxt3 - (16)

The moment of inertia of a PCCP shell strip, Ip, is variable along
the circumferential coordinate s. It takes the maximum value at nodal
position and the minimum at the middle of nodal position. That is

(1/20) X % sin? § < I, < (1/6) 22t sin® g (17)

where ¢ j> t 1is assumed,

14



The similar relation holds also in the case of the hexagonal pattern,
Therefore, the relative magnitude of the moment of inertia can be
written as follows;

. a [2t)? (18)

This comparison on the moment of inertia can not directly be
transferred to that of the circumferential bending rigidity of two shells,
because the section of the PCCP shell changes periodically along the
circumferential direction. The period of its variation is apparently )\S
or A s + AS depending on patterns. Also an important fact we should
know is that there is a completely different type of the large deformation
not familiar with us. If the face angles are changeable, the large
deformation is possible even without the elastic deformation of elementary
faces. This somewhat peculiar characteristic is in fact essential for
a new deployable structure, which will be discussed in the later part of
this chapter. In the context of discussion developed here, the face
angles are assumed to be constant. Under these circumstances, and as
far as the rough qualitative comparison is concerned, the comparison of
bending rigidities of two shells by using Egs.(16), (17), and (18) may
be justified. The analytical as well as experimental study of this
subject is currently being done in the author's laboratory.

Eq.(18) clearly shows that the potential of having greater circum-
ferential bending rigidity is almost essential in case of PCCP shells,

For example, if the amplitude is taken as much as several times of the
thickness of the shell, the bending rigidity of a PCCP shell could be
approximately 10 times of a regular cylindrical shell., Due to the defi-
nition of the shell in general, the amplitude several times of the
thickness is still a small amount comparing with other dimensions.
Therefore, the PCCP shell, being cylindrical in macfoscopic sense, can

be designed for a structure with greater circumferential bending rigidity
by a relatively small amount of the amplitude.

43, Being developable surface

One of the most important characteristics of PCCP shells is that
the midsurface is developable. This feature is inherent in the shells

with zero Gaussian curvature. Whether the shell is developable or not

15



has a vital influence on the production process of it. Because the
manufacturing of an undevelopable shell from the sheet material involves
the process entails the extensional deformation of the material, while

a developable shell does not,
Lly, Elements are in simple form

The whole structure of PCCP shell can be constructed by simple
triangular or trapezoidal faces. This feature as well as the possibility
of including a large number of same-sized elements will contribute to

rationalize the production process,
L-5, Characteristic as deployable structures

The geometrical fundamental of the deployable surface structure is
the inextensional transfer between two surfaces, the two occupying the
different expanses in space. Among other things, the deployable surface
structure with rigid plane element has important applications; these
stretures such as accordion type or fan type structures are examples,

It is quite interesting to note that a new mechanism of deployment is
possible by using a characteristic of the PCCP surface and assuming
every edges of the triangular or trapezoidal elements are revolving
hinges. This mechanism is most clearly exhibited by using a paper model
as shown in Fig,17, Fig.17a shows a flat plane where the subsequent
edge lines of diamond pattern are marked. In other words, the quantities
sz and As are fixed and @ is left unfixed. Give each triangular
element a small angle & +to x axis; this is equivalent with giving a
small amount of the amplitude a . This process results in the surface
shown in Fig.17b, Increasing 6 , or «a s Wwe have in sequence the
surfaces shown in Figs.17c, 17d, and 17e.

From a theoretical point of view, this mechanism is quite different
from those of accordion type or fan type deployment, because this is
the deployment in two-dimensional while the latter two are one-dimension-
al deployments, In a sense, the deployment can be defined as the increase
in the order of dimensions. Through two-dimensional deployment mechanism,
therefore, it is theorstically possible to contract a plane to a point,
Then, by patterns with infinitesimal wave lengths, the following conditions
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are perfecly realizable, that is
€ — 1 (19)

K —> oo (20)

Viewing the models in Fig.17, we could imagine the ultimate result of
these conditions as an infinitesimal coil with the axial length of zero.

L-6, Characteristic as bellows

Another distinct characteristic of PCCP shell will be found, if we
view the classical problem of axial buckling of cylindrical shells from
a different standpoint. Now let us observe Fig.15 again. In this figure
the reduced compressed stress o r/Bt against unit end shortening € r/t
for pu = 1,00 and different number of waves in circumferential direction
is plotted. Where 7 = nzt/r represents the non-dimensional circum-
ferential wave number. What in particular catches our interest is not
the domains of buckling and post-buckling as usual, but the region
following the post~buckling. In this region, the gradient of the curves
are much smaller than in the pre-buckling region, In other words, the
elastic spring constant of the shell in the axial direction is compara-
tively small. This tendency becomes more pronounced as the circumfer-
ential wave number decreases. Based on this fact, we may deduce that a
shell designed at first in the form of post-buckling configuration
should have a small spring constant in the axial direction., Indeed
it can be likened to a bellows. Since the PCCP shell is in a sense the
idealization of post-buckling configuration of cylindrical shells, it
seems probable that this characteristic as bellows is also inheritted to
the PCCP shell. Especially, the PCCP shell with a large angle of incli-
nation exhibits clearly a spring-like behavior against the axial force
(Fig.18). A noticeable feature of this bellows-like structure is that
its midsurface is developbale. It is also interesting to note that the
bellows in usual form represent something like the axisymmetric buckling
deformation of circular cylindrical shells.
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§ 5. PROPOSITION OF A CONCAVE POLYHEDRAL SHELL WHOSE MACROSCOPIC
CONFIGURATION IS A PLANE (DEVELOPABLE DOUBLY CORRUGATED PLATE)

As showm in section 4-6 of the preceding chapter, the PCCP shell
with revolving hinges has a remarkably interesting characteristic of
deployment mechanism. It suggests a great potential for the futre
conception of the structure,

It can be said in that case, that the two-dimensional contraction,
which inextensionaly transfers a plane into a point, is realized by a
folding in axial direction and a winding in the plane vertical to
the axis (Fig.19a). This opens up a new and interesting problem that
whether there exists an inextensional transfer by which a plane is
contracted into 'a point by folding in two orthogonal directions in the
plane (Fig.19b).

As a first trial to search for such a transfer, let us consider
a PCCP surface with zero quasi-curvature. In case of the hexagonal
pattefn, for example, if we put the condition <K 2> ~> 0 into Eq.(10),
we have A\ s = @ . As this corresponds to a usual corrugation type
configuration, this turned out a decided failure.

After due consideration it has been found that a probable key for
the solution of the problem is afforded by the arrow-feather like
pattern which facilitates the sign change in curvature as shown in Fig.11.
By repeating alternatively the diamond pattern and the arrow-feather like
pattern as shown in Fig.19c, the original plane can indeed be folded in
two orthogonal directions. Incomplete as it is, it is certainly nearing
a right solution.

The right solution is obtained by this way. From the configuration
of Fig.19¢, let's neglect every diamond patterns and draw a new figure
composed by the repetition of a "feather pattern" which is resolved into
four rhomboids(Figs.19d and 20). If these rhomboidal elements are
identical everywhere, though it is not necessarily so, the relationships
of geometrical parameters defining the configuration can be obtained
by the help of Fig.20, The axial and lateral shortenings X _, and X\
respectively, are given by

’
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ex=1-c059 | (21)

€= 1 - cos[tan-l(sin Gtany)] (22)

where 7y is the smaller interior angle of the rhomboid. The bulk
thickness defined in Fig.20 is given by

& = )xvsin[tan'l(sin Gtan )] (23)

From these equations, the conditions by which the original plane
can be transferred to a point is rigorously given by the following
formula:

lin [ 8>7/2, ¥y »> 7/2, )\‘v -0, A, - 0]

—_> [ € =1, € 219 8=09 >\x=o]

(24)
This is apparently the infinitesimal orthogonal division of a plane,
The sequential photographs of a model in Fig.21 vividly explane the
remarkable mechanism of this deployment,

One of the most attractive features found in this mechanism is
that the intermediately deployed configuration, as shown in Fig.22,
has the undulation in two orthogonal directions. In other words, this
is a developable doubly corrugated surface. To the author's knowledge,
this kind of surface has never been known. It should be noted that
this feature of double corrugation, when applied to a rigid type shell
configuration, will give it the stiffening effect in two orthogonal
directions.

In addition, from a theoretical standpoint, the limiting case of
this concave. polyhedral surface when X x and X ¥ are infinitesimally
small recieves added interest because of its similarity as well as
difference to Sp stated before, The limiting surface and the plane,
let's call Sp' and S', respectively, have the following relations;

Sp' and S' are isometric, Sp' is indefinitely close to S', and Sp‘ has
uniform shortenings in two orthogonal directions in plane. Thus, Sp‘ may
be an inextensional buckling configuration of plates subject to the
bi-axial uniform loadings.
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§ 6. APPLICATIVE POSSIBILITY OF PCCP SHELLS

It would be premature to discuss at this stage the applicative
possibility of the PCCP shell to structures, because in this study the
principal effort is devoted to disclose the geometrical characteristics
of the shell and thus our knowledge about the other aspects of it is
in a state of infaney. It is, however, useful to do so, since predicting
the future possibility based on the present state of knowledge will

rose helpful discussions concerning the problem among professionals,
6~1. Rigid shells

It is assumed here that the rigid shell means the PCCP shell with
rigid ridges of the elements and is used as the antonym of the develop-
able PCCP shell whose ridges are revolutionable. These characteristics,
such as possibility of inclusion of an arbitrary curvature distribution,
intrinsically high circumferential bending rigidity, simplicity of
elements, being a developable surface, and possibility of including
large number of same-sized elements, are favourable for the application
of rigid PCCP shells.

As stated before, several vault structures in the form of Yoshimura-
pattern, that is, circular PCCP shells of diamond pattern, have been
tried before. The newly discovered configurations, that is, the diamond
pattern configurations of variable curvature and the hexagonal pattern
configurations of both constant and variable curvatures, open up fresh
posibilities for this category of folded shells., The inclusion of
variable curvature makes it possible to select the best possible form,
in macroscopic sense, for strength as well as utility purpose, The
use of hexagonal pattern possesses the two advantages over the diamond
pattern. First, four ridges concentrate in every vertexes in hexa gonal
case while six in diamond case; thus the singularities of'strength as
ﬁell as fabrication are less influential in the former case, Secondly,
the hexagonal case includes more numbers of geometric parameters, while
the design of diamond case is severely restricted.

A few models shown in Figs.23, 24, and 25 illustrate the applications
to large span shell structures, The catenary curvature distribution
is used for models of Figs.23 and 24, The elliptic curvature distri-
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bution is used for the one in Fig.25. In addition, Fig.8b can be
considered as a model of reservoir,

It should be noted, however, that in these large-sized structures
the feature that the midsurface of the shell on the whole is developable
is of no importance to fabrication. Moreover, the use of reinforced
concrete 1s open to question. Professor Salvadori of Columbia University,
in his private communication to the author, wrote,"if they are pre-
fabricated they require a very large number of joints which must be
grouted and require welding of the reinforcing bars...". Indeed, the
great advantage of the reinforced concrete is its possibility of forming
any non-developable surface and, except in case of the mould fabrication,
being a developable surface is non-essential. Therefore, it may be
wise to use the materials which are usually obtainable as the form of
panels, such assteel, alminum, and plastic materials.

Meanwhile, the geometry of developable doubly corrugated surface
disclosed in the previous chapter will without any doubt possess ample
potentialities of applications to structures in general. A doubly
corrugated plate can be considered as an orthogonally stiffened plate.
Its bending stiffnesses in two directions can be varied in wide range
by changing its geometric parameters. As for materials, almost any
material, such as the reinforced concrete, metals, plastics, and even
papers can be applicable. Also, it is considered possible to extend
the concept of double corrugation to the non-developable but similar
configuration,

In addition, it is almost self-evident that the characteristics of
these rigid shells are very suitable for the core structure of sandwitch

structures,
6~2. Deployable structures and irreversible deployable structures

As stated before, the PCCP shell having revolving hinges is a
deployable structure. A structure in the form of Yoshimura-pattern,
that is, the circular PCCP shell with diamond pattern, may be appeared
before. As in the case of rigid shells, the deployable structures in
the forms of the diamond pattern configurations of variable curvature,
the hexagénal pattern configurations of both constant and variable

curvatures, and the feather pattern configuration of double corrugation



seems novel,

There are two principal directions for use of these types of
deployable structures. The first group simply uses the transfer
from the small expanse to the large expanse, or its reverse action,

No strength consideration is necessary. Such example is the panel
structure for solar cell mounting which is deployed in the outer space.
Since there is no gravity force, the strength of the structure is
unnecessary, On the contrary, the second group makes good use of the
strength characteristics of the PCCP shell at some intermediate stage
of deployment. As a typical example of this kind of structure, a case
of deployable vault structure is shown in Fig.26,

There are some cases where the repeating cycles of deployment and
folding is not necessary. The deployable structure, whose hinges are
temporary'aﬁd after the deployment they are cemented to make a mono-
coque PCCP shell structure, is indeed practicable.

§ 7. CONCLUSION

A new'cétegory of concave polyhedral surfaces, which might be
potential structural forms of the folded plate shells, is presented.
The macroscopic configurations of these surfaces are general cylindrical
shape and plane shape, and these are developable surfaces, These have
an intrinsic geometrical nature which provides a novel mechanism of
deployment, It has been shown that the resulting new category of folded
plate shell has many useful characteristics as follows; inclusion of an
arbitrary curvature distribution, its midsurface being developable,
intrinsically high bending rigidity, simplicity of elementary faces.
The application of it to rigid shell structures, deployable structures,
irreversible deployable structures, and sandwitch core structures gives
promise for the future,
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parallel lines

parallel planes

circumferential wave number

base and height of two-dimensional Euclidean simplex,
respectively

radius of circular cylindrical shell
circumferential coordinate

coordinate transfer

thickness of shell

radial inward displacement

axial coordinate

coordinate transfer

= coefficients

Young's modulus

sum of area of two-dimensional Euclidea simplexes
moment of inertia of cylindrical shell in circumferential
direction

moment of inertia of PCCP shell in circumferential direction
two-dimensional Euclidean complex

parallel zones

general cylindrical surface

concave polyhedral surface

radial amplitude of concave polyhedral surface Sp
angle

angle

bulk thickness of corrugated surface

unit shortening

numbers

circumferential wave number parameter

angle of inclination of elementary face,to x axis
curvature

quasi-curvature of circumference, Eq.(2)

quasi-curvature of circumference, Eq.(3)



A = half wave-length of buckle in axial direction

A = half wave-length of buckle in circumferential direction

X\ s A = bisections of the lower and upper bases of trapezoids
composing a hexagonal pattern, respectively

A = y-directional length of rhomboid composing a feather-pattern

M = aspect ratio of wave

p = radius

o = average compressive stressinaxial direction

Sys sj+1(j = eeey k=2, k, k+2,...) = circumferential coordinates of nodes

of concave polyhedral surface
1, 2, 3,...= nodes and semi-nodes of PCCP surface
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