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SOME REMARKS CONCERNING CLOSE-PACKING
OF EQUAL SPHERES

by A. H. BOERDIJK 513.468

Summary

For estimating the mean density in local regions of configurations
of equal spheres three criteria are stated. Some configurations are
described, which have in certain regions a local mean density exceed-
ing that of close-packing. These regions may even have an infinite
volume, Further it is proved that the maximal number of spheres
simultaneously touching a sphere is twelve. A conjecture of Fejes
concerning a fourteenth sphere added to this configuration is shown
to be false.

Resumé

Définition de trois criteres pour estimer la densité moyenne dans des
régions locales des configurations des sphéres identiques. Quelques
configurations sont décrites ayant une densité locale dans certain
régions dépassant celle de ’empillage plus dense des spheres identiques.
Ces régions peuvent avoir une volume infinie. Ensuite on prouve que
le nombre maximum des sphéres tangentes & une sphére est douze.
Une supposition de Fejes concernant une quatorziéme sphére ad-
jointe & cette configuration parait incorrecte.

Zusammenfassung

Drei Kriterien werden aufgestellt, die dazu dienen die Dichte von
Kugelpackungen (Kugeln gleichen Durchmessers) in endlich groBen
Bereichen miteinander zu vergleichen. Einige Anordnungen werden
angegeben, die gemil dieser Kriterien in gewissen Bereichen eine
grofiere Dichte aufweisen als die bekannte dichteste gitterformige
Kugelpackung. Diese Bereiche konnen selbst einen unendlich grofien
Rauminhalt haben. Weiter wird bewiesen, dal} die gréfite Anzahl der
Kugeln, die gleichzeitig eine Kugel berithren kénnen, zwolf ist. Es
wird bewiesen, daB eine Vermutung von Fejes iiber eine vierzehnte
Kugel, zu diesen dreizehn Kugeln hinzugefiigt, falsch ist.

1. Criteria for estimating the mean density in local regions

Let us consider the configuration of equal spheres (of diameter 1) known
as “close-packing” or “normal piling”. If the density inside the spheres is
unity, and zero outside the spheres, the mean density D of the configura-
tion will be —
D = (/6) V2 ~ 0-7405. )

Is this the maximal mean density obtainable in any possible configura-
tion of equal spheres, or may this density be surpassed, either in all space or
locally ? It may well be surpassed locally. For in close-packing we can ex-
tend the configuration uniformly in any direction over any distance and we
shall see that there are denser local configurations that cannot be so extended.

For the investigation of this problem we shall need means for estimating
the densities of configurations in local regions, We shall give three criteria.
I. One measure for the local mean density is the number N of centres
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of spheres of the configuration located inside or on a sphere with radius R
and centre M.

IT. Another measure for the density is the mean density d in such a sphere, -

These criteria are correlated inter alia in the following way. If we have
two configurations C and C’ for which

N>N, (0 <R<R,)

and
N>N,R, <R <Ry,
then it follows easily that

d>d,Ri—3t<R<R,—3%). 2) .

The third criterion is based on the following argument. In close-packing

the planes through the centres of adjacent spheres form a quasi-regular

honeycomb. Each centre is surrounded by six regular octahedra and eight
regular tetrahedra, both (in our case) having an edge-length 1. Calculating
the mean densities d, and dg for the space enclosed by a tetrahedron and
an octahedron we find respectively

d, = (6p—m) V2 ~ 07797, (3)
dy = (3n—3¢)V2 ~ 0-7209, (4)
where . B '

@ = aresin 113 ~ 35°16’, (5)

2¢ being the dihedral angle of a regular tetrahedron.

It is rather surprising to find that d, and dg differ by 8%,. On the ether
hand it is a known fact from crystallography (see also 1)) that the diameter
of the largest possible sphere inside such an octahedron (which sphere
touches 6 spheres of the configuration) is almost twice that for the largest
sphere inside a tetrahedron (touching 4 spheres of the configuration).

In close-packing the number of tetrahedra turns out to be twice the
number of octahedra, whereas the volume of each tetrahedron is one fourth
of that of each octahedron 2). As a check we have indeed from (1,3,4)

D =} (d,+ 2dy). (6)

The proportion of the numbers of tetrahedra and octahedrain a configur-
ation is a good measure for the density. At least this should be so in the
inside of the configuration, for there all this space is made up of tetrahedra
and octahedra. This measure will be accurate, even if the tetrahedra and
octahedra are not regular, but do not deviate “too much” from regularity,
as turns out to be the case in all configurations to be considered later.
For practical reasons we divide the octahedron into two four-sided pyra-
mids. This leads to our third criterion.

II1. If the numbers of three- and four-sided pyramids in a configuration
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inside or on a sphere with radius R are t and frespectively, t/f can be regarded as a measure for the local mean
' density of that configuration. b
he mean density d in such a sphere. For close-packing we have t/f = 1. i
ia in the following way. If we h !
h § way. 1t we have 2. The density of close-packing and locally denser configurations ‘
<R<R) i We will now consider six different configurations 1, 2, ..., 6, all with a r
= 1 A central sphere. For M we choose the centre of that sphere. We build up the
<SR<R,), configurations by addition of other spheres, in the order of increasing dis- .
tances from M. All n spheres of which the centres have the same distance ,5"
) from M form together a “shell”. So we have %
R<R,—1%). @) i . 13
ollowing argument. In close-packing . N = % n. (7) .

jacent spheres form a quasi-regular | e
1by six regular octahedra and f;lglht ! The configurations 1, 2 and 3 occur in close-packing. Configuration 1 is

having an edge-length 1. Calcula ting conformable hexagonal close-packing, 3 is conformable face-centred cubic 1
pace enclosed by a tetrahedron an d close-packing and 2 is a mixture of the two types. In other words, in 1 the )1

succession of planes of largest density is of the type a-b-a-b-g, in 2 of type :
b-c-a-b-a,in 3 of type b-c-a-b-c (M being in the middle plane). In the region

V2 ~ 07797, 3) — ‘

— v R < V3 which will be considered here, these three turn out to be the only
)VZ ~ 0-7209, , (4) i possible configurations with a central sphere occurring in close-packing.
3~ 35°167 Configuration 4 consists of 12 spheres touching the central sphere, with

- ’ (5) ] their centres on the vertices of a cuboctahedron (as in configurations 2 and
lar tetrahedron. ‘ 3). Six spheres are added with their centres on the symmetry axes of the
y and dy differ by 89%,. On the ether square faces of the cuboctahedron and 8 spheres are added in the same way
raphy (see also 1)) that the diameter 3 to the triangular faces.

Configuration 5 consists of 12 spheres, touching the central sphere, with
their centres on the vertices of a regular icosahedron. These 12 spheres
do not touch each other 3), 4) as the edge-length of the icosahedron will he

such an octahedron (which sphere .
) is almost twice that for the largest 1
g 4 spheres of the configuration), }
rahedra turns out to be twice the

me of each tetrahedron is one fourth ' lyg = = =~1-05. (8)
eck we have indeed from (1.34) - V10 4275
|- 2d,). (6) 1 - Twenty spheres are added with their centres on the symmetry axes of the 1

: faces of the icosahedron. For this shell R will be
rahedra and octahedrain a configur- }

y. At least this should be so in the | 3V3 + V15

this space is made up of tetrahedra | a=3 T—-{ ~1-59. )
ccurate, even if the tetrahedra and 10 -+ 215

eviate “too much” from regularity, | In configuration 6 we have one sphere touching the central sphere in
figurations to be considered later, ] its “north pole”. Five spheres are added one by one, all touching the north-
tahedron into two four-sided pyra- pole sphere, the second touching the first one, the third one touching the
second one, and so on. Between the first one and the last one of these 5
spheres there will be a gap, as the dihedral angle 2¢ of a regular tetrahedron

=

sided pyramids in a configuration |
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Shell N LB T (equation (5)) is somewhat smaller than 27
nr R un. Configuration causing the configuration to be symmetrical
value 1 2 3 4 5 6 plane of the central sphere. The centres of th
0 0 0-00 n,N 1 1 1 in the vertices of an irregular polyhedron
1 1 1-00 n 12 12| 12 }2 : 1 triangular, 4 square and 1 rectangular. Fi
N | 13| 13) 13! 13 fllz 12 with their centres on or close to the symm
¢ 3 3 8 g 23 13 of these spheres have their centres in the ¢
f 6 6 6 6 10 sphere. The centre of the one facing the gaj
of 133 |1-33 1. . 0 5 distance R from M equal to
2 b 1-35 n 0 o 33 133 | oo [2-00
0] 0 —~73 —
N| 13| 13| 13| 13| 13 141 b= 13 cos (x—4¢)
¢ 8 8 8 8| 20 10 For all other shells the values of Rand n
f 6 6 6 6 0 6 will not give them separately. Table I cont
3 V2 141 t/j: 1'32 1'32 1-33 |133 | oo |1-67 N, 1, f and t/f for R from 0 to V3.
N1 19!l 10 18 6 0 4 We shall indicate a part of each of these
. sl s 19 13 | 18 the configuration followed by the number ¢
f 2l 12 18 8120 10 a sphere touched by 12 others, with their ¢
uf o067 067 [0 21121 0| 10 tahedron. |
4 a 159 n 0 0 67 [0-67 [ oo |1-00 From the table it follows that the conﬁgig
Nl 19| 19 1(9) 01 20 0 have a larger local mean density than €
. 3 8 g 191 33 18 occurring in close-packing, according to I 4
floazl 2l e 8140 [ 10 tions 4-5 and 6-2 have for a certain regiot
B uf 1067 [067 {06 12 0 10 to our criteiion 11, as follows from (2). I
5 %l/6 1-63 n 9 1 ‘67 1067 | oo [1-00 0<R< V3 the local mean density accord
Nl 21| 20 13 23 33 10 4 never falls below that of close-packing.
¢ 10 9 s | 16| 10 28 Tt turns out to be impossible to extend
f 2] 12 12| 12| o 20 6 over a larger part of space, without camﬂ
_ if 0-83 [0-75 |0-67 |1-33 10 for some shells. This effect is so strong t
6 V3 173 n 181 21| 24 0 °‘(; 2'08 tended, the density of such configuration|
N packing.
t 22 gé gg ig 2(3) 28 Comparison. of configurations with ot]
f 9| 26| 28| 12 0 ?g regular tetra.hedron as a cent're, leads to
if (117 (115 (114|133 | oo [2:00 too the density of close-packing can be 4
3. Configurations denser than close-pac

Table of the values of n, N.
' NVt i 3)
and f as functions of R (from 0 to }'3) for the configurations 1, In th fi i f £
n the configuration o ace-centere

?{, vees 0 d(}escribed in the text.

= distance of the centres of the s

k= ¥ pheres from th j

N = ?;I;ibzﬂﬂfbiﬁhefres ‘]'Jvlth the same value of R e centre M of the central sphere element of two adjacent tetrahedra ¢
fotal 2 of spheres of which the centres are at a distance not larger than R edge, but never a face. v hexagonal ;

t = numbe -si 1 i

f = numbe: (?ff fzﬁ?:isz(?%ygzgiﬁd:o C:n-talged illll the configuration e aves m com i e .

ntained in the configuration a and b ar other faces in common with other tets
e defined

by eq. (9) and (10) reSpCCtiVe]y_
build configurations of equal spheres,
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 TABLE 1
Configuration D
1 2 3 4 5 6

n,N 1 1 111 1

n 121 12| 12| 12 12 12
N 13] 13) 13] 13 13 13
t 8 8 8 81 20 10
f 6 6 6 61 0

t/f 11-33 |1-33 |1-33 [1-33 oo 12:00
n 0 0 0 0 0 1
N 13) 13| 13] 13 13 14
t 8 8 8 81 20 10
f 6 6 6 6( 0 6
tf |1-33 |1-33 [1-33 [1-33 o 11-67
n 6 6 6 6 0 4
N[ 19| 19| 19] 19 13 18
¢ 8 8 8 81 20 10
I 12 12 12] 12 0 10
t/f [0-67 10-67 [0-67 |0-67 oo [1-00
n 0 0 0 01 20

N 191 19 19| 19 33 lg
t 8 8 8 8| 40 10
Fl 12l a2 2| 12] ol 10
tf 10-67 10-67 10-67 [0-67 oo |1-00
n 2 1 0 8 0 1
N 21| 2] 19 271 33 23
t 10 9 81 16| 40 20
Sl 2] 12| 12| 12| of 10
tf 1083 {0-75 |0-67 |1-33 oo [2-00
n 18] 21| 24 0 0 0
N | 39| 41 43 27| 33 28
t 281 30 32] 16| 40 20
I 24 26 28( 12 0 10
tf 1117 1115 |1-14 |1.33 oo (2-00

nctions of R (from 0 to V§) for the configurations 1,

spheres from the cen

e value of R

h the centres are at a distance not larger than R

tre M of the central sphere

8 contained in the configuration

ontained in the configuration a and b are defined

(equation (5)) is somewhat smaller than 2x/5. Six more spheres are added
causing the configuration to be symmetrical with respect to the equatorial
plane of the central sphere. The centres of the 12 outer spheres are arranged
in the vertices of an irregular polyhedron with 15 faces, of which 10 are
triangular, 4 square and 1 rectangular. Fifteen more spheres are added
with their centres on or close to the symmetry axes of these faces. Five
of these spheres have their centres in the equatorial plane of the central
sphere. The centre of the one facing the gap mentioned above will have a

distance R from M equal to

b =713 cos (m — 4¢) ~ 1-347. (10)

For all other shells the values of R and n can be found easily, so that we
will not give them separately. Table I contains for the 6 configurations n,
N, t, f and t/f for R from 0 to 3.

We shall indicate a part of each of these configurations by the number of
the configuration followed by the number of the outer shell. So 3-1 will be
a sphere touched by 12 others, with their centres in the vertices of a cuboc-
tahedron.

From the table it follows that the configurations 4-5, 5-4, 5-5, 6-2 and 6-5
have a larger local mean density than configurations of the same type
occurring in close-packing, according to I and IIT; moreover the configura-
tions 4-5 and 6-2 have for a certain region of R a larger density according
to our criterion 11, as follows from (2). It is remarkable that in the region

0 <R« 1/3 the local mean density according to all criteria of configuration
4 never falls below that of close-packing.

It turns out to be impossible to extend any of the configurations 4, 5 and
6 over a larger part of space, without causing the density to decrease locally
for some shells. This effect is so strong that it seems unlikely that, if ex-
tended, the density of such configurations will be larger than that of close-
packing,

Comparison of configurations with other types of centre, e.g., with a
regular tetrahedron as a centre, leads to similar conclusions. In these cases
too the density of close-packing can be surpassed locally.

3. Configurations denser than close-packing in regions with infinite volume

In the configuration of face-centered cubic close-packing the common
element of two adjacent tetrahedra can be a vertex, or at the most an
edge, but never a face. In hexagonal close-packing this element may be a
face. However, two such tetrahedra having a face in common never have
other faces in common with other tetrahedra. Of course it is possible to
build configurations of equal spheres, of which the centres form the ver-
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tices of tetrahedra in such a way that we could visit each tetrahedron by
perforating common faces of tetrahedra only. Such configurations are of
interest, since in a connected part of space with a volume exceeding that
of two tetrahedra they will have a local mean density exceeding that of
close-packing according to criterion III.

As a typical example we take four spheres touching each other. Their
centres are the vertices of a regular tetrahedron. We add four spheres with
their centres on the symmetry axes of the faces. So we obtain five tetra-
hedra, forming a polyhedron with 4 X 3 = 12 faces. Six more spheres can
be added with their centres on the symmetry axes of 6 of these 12 faces.
Now t = 17, f = 0. Of course such a configuration will not occur in close-
packing. Alternatively, it can be regarded as built up from “five-rings”,
consisting of five spheres of which the centres are arranged on a circle of
radius of 313 ~ 0.865. These five-rings play here the role of the configura-
tions of six spheres of which the centres are arranged on a circle of radius 1,
in the planes of maximal density in close-packing (“six-rings”). Here our
configuration contains 6 of such five-rings.

Let us compare the six-ring and the five-ring. In the former we can
Place one sphere, touching all 6 spheres. In the latter two spheres can be
placed; each touching the plane of the centres of the 5 spheres, and also
the 5 spheres themselves. Both configurations so obtained contain 7 spheres.
In the six-ring there are 12 contact points, whereas this number may be
15 (“almost 16) for the five-ring. The six-ring is the base of six regular
tetrahedra in close-packing, whereas the five-ring may contain four regular
tetrahedra and a slightly irregular one in itself.

The configuration considered above has been built around a point
(the centre of the first tetrahedron). It turns out to be possible to build up
close configurations along a straight line also. We will consider three types
of such “needles”.

There is a needle that contains regular tetrahedra only. This is possible
because a regular tetrahedron can be screwed around a certain axis in such
a way that one of its faces in the original position coincides with another
of its faces in the second position. In fact a regular tetrahedron has 12 of
such screw-axes, 6 right-handed and 6 left-handed. The lines joining the
mid-points of opposite edges in a regular tetrahedron are mutually perpen-
dicular and all pass through the centre of the tetrahedron. Each of the
screw-axes intersects one of these lines perpendicularly in a point located
at a distance of i Vi from the centre of the tetrahedron and encloses an
acute angle arctan 3 ~ 71°34’ with the direction of the nearest of the two
opposite edges. In fig. 1 we have drawn a regular tetrahedron projected
onto a plane at right angles to one of its screw-axes Z. Along this axis iden-
tical tetrahedra can be piled so that they fit together exactly (fig. 2a).
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X==2VI0
y=-%v2

H
Z= Ta‘m

b
X=—70—V7_é

7
y= 70—L/2'
PRV

Fig. 1. Projection of a regular tetrahedron of edge
to one of its 12 screw-axes.

Each tetrahedron is rotated relative to if
a = 2 arctan V5 ~ 131°49" around Z. T

divection of the screw-axis is 5 ]/10. It ap
with 7. So the orientations of no twcf tetr:
equal spheres of diameter 1 with their cen
hedra we obtain the first needle cor'lﬁgul
needle every sphere has 6 conta-ct points.
6 pairs of members crossing a?: ngh; angle
other at right angles, having in common f
the vertices of one tetrahedron.

A second more complicated needle ma
of the two free faces of each tetrahedro

Fig. 2. a. Regular tetrahedra piled along a strai
This line is a screw-axis common to a.\ll these tetrs
by equal spheres of radius 1, of which the centz

fig. 2a.




RDIJK '
[ T
’k we could visit each tetrahedron by
fira only. Such configurations are of
space with a volume exceeding that
deal mean density exceeding that of
L |
'spheres touching each other. Their §
trahedron. We add four spheres with |
f the faces. So we obtain five tetra |
"8 = 12 faces. Six more spheres can ‘
mmnetry axes of 6 of these 12 faces,
toufiguration will not occur in close-
wded as built up from “five-rings”, N
’ centres are arranged on a circle of
8 play here the role of the configura-
$ are arranged on a circle of radius 1,
I?se-packing (“six-rings”). Here our
rings.
he five-ring. In the former we can
s. In the latter two spheres can be
> centres of the 5 spheres, and also
ations so obtained contain 7 spheres.
Dm'ts, thereas this number may he
e six-ring is the base of six regular
feﬁve-ring may contain four regular
in itself,
® has been built around a point
turns out to be possible to build up
e also. We will consider three types

ar tetrahedra only. This is possible
ewed around a certain axis in such
al position coincides with another
ct a regular tetrahedron has 12 of
left-handed. The lines joining the
' tetrahedron are mutually perpen-
> of the tetrahedron. Each of the
perpendicularly in a point located
f the tetrahedron and encloses an
direction of the nearest of the two
2 & regular tetrahedron projected
crew-axes Z. Along this axis iden-
ey fit together exactly (fig. 2a).

CLOSE-PACKING OF EQUAL SPHERES 309
x=- V10 x= FVio
Yy=-%VvZ y=-5 vz
z= VO ze +VW

Fig. 1. Projection of a regular tetrahedron of edge-length 1 onto a plane at right angles
to one of its 12 screw-axes.

Each tetrahedron is rotated relative to its neighbours through an angle
a = 2 arctan J5 ~ 131°49’ around Z. The relative displacement in the
direction of the screw-axis is v V/E. It appears that a is incommensurable
with 7. So the orientations of no two tetrahedra can be the same. Placing
equal spheres of diameter 1 with their centres on the vertices of the tetra-
hedra we obtain the first needle configuration (fig. 2b). In this type of
needle every sphere has 6 contact points. Since the 12 screw-axes occur in
6 pairs of members crossing at right angles two such needles can cross each
other at right angles, having in common four spheres with their centres on
the vertices of one tetrahedron.

A second more complicated needle may be obtained by adding to each
of the two free faces of each tetrahedron in the above-mentioned needle

Fig. 2. a. Regular tetrahedra piled along a straight line so that they fit together exactly.
This line is a screw-axis common to all these tetrahedra. b. First needle configuration formed
by equal spheres of radius 1, of which the centres are on the vertices of the tetrahedra of

fig. 2a.
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a sphere with its centre on the symmetry axis of that face.This configuration
contains interwoven five-rings.

A third type of needle can be obtained by piling identically oriented
five-rings, filled up by spheres with their centres on a straight line at dis-
tances 1. Qur configuration 6-1 is a part of this needle.

The latter needle is especially interesting, since it can be nsed as a building
stone for a close plane configuration. In fig. 3 the plane of this configuration
and the axes of the needles are perpendicular to the plane of the drawing.

72162
Fig. 3. Close plane configuration obtained by piling needle configurations of the third
type with alternate orientations of the five-rings. The plane and the axes of the needles
are perpendicular to the plane of the drawing.

To investigate the density of the above-mentioned configurations our
criteria I and II can be extended in an obvious way. Instead of considering
the volume of a sphere of radius R we have to consider the volumes of a
cylinder of unit length and radius R, or that of a rectangular parallelopiped
with edge-lengths 1, 1 and 2R. In this way we find that in the needles and
in the plane configurations the local mean density surpasses that of any
configurations of the same type occurring in close-packing, according to
one or more of our three criteria. ‘

Piling of the plane configuration, or parts of it, leads to configurations
filling all space. The mean density however does not exceed that of close-
packing. Further investigation shows that it is likely that 3/4 of all space
could be filled by parallel needles of the first type. In that 3/4 part the mean
density is about 0-73. This is rather high, considering the absence of period-
icity in the direction of the axes of the needles.

4. Proof that the maximal number of spheres simultaneously touching a
sphere is twelve

Fejes 3) has shown that for arbitrary configurations of equal spheres
we must have for the mean density
4
D<—— %  ~07547. (11)
30V2(65—2915)
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This inequality of course only holds for the mean density over all space.
So (3) is not in contradiction with it. His proof is based on the assumption
that no more than 12 spheres can touch a central sphere (all spheres of
equal diameters). He considers this an experimental fact. We shall give
here a brief account of a proof of this assumption.

Using central projection, with the centre of the central sphere as a centre,
we can transform the problem to a spherical one. This can be stated as
follows. How many circles with a geodetical radius of arcsin § can be drawn
on the surface of a sphere with radius 1? Of course the circles may not

overlap.
The area of each of the circles will be
A4, = 27 (1 —3V3) > 0-8417. 12)
The number C of circles therefore cannot exceed
4 2
Tt s, (13)
4, 1-113

i.e. C will be 14 or less.

With each of the circles however a certain empty area will be associated.
As we have for the dihedral angle 2¢ of a regular tetrahedron

27 2z

3 <2 < 3 (14)
the number of circles that can simultaneously touch a certain circle cannot
exceed 5. The closest configuration in the immediate neighbourhood of
a certain circle will be like fig. 4. This is a part of the surface of the sphere
drawn in stereographic projection, in which the plane of the drawing touch-
es the sphere at the centre of the central circle in the drawing. Each of the
areas A, is associated in the same way with each of the three circles sur-

72183

Fig. 4. Stereographic projection of a part of the surface of a sphere of radius 1, on which
6 equal circles of radius arcsin 4 have been drawn, five of which touch a central one.
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and van der Waerden 5) (i.e. that for 13 equal outer spheres the diameter
of the central sphere has to be 1:045 at least), but in contradiction with
the assertion of Gregory (in an unpublished note mentioned in ©)) that
13 equal nonoverlapping spheres can touch another sphere of the same
diameter. Since each of the contact points is associated with two spheres,
the number of contact points for any configuration of K spheres cannot
exceed 6K. So in close-packing it is already maximal 2).

5. Proof that the conjecture of Fejes concerning a fourteenth sphere added
to a configuration of twelve spheres touching a central sphere is false

Fejes states as a conjecture that, if a sphere is touched by 12 spheres
(all spheres of diameter 1), a 14th sphere added to this configuration will
have a distance from the centre of the central sphere in excess of 1-38.
He mentions “a crude experiment” in support of his conjecture.

Apparently he has considered a configuration similar to our configuration
5-1, to which the 14th sphere is added with its centre on the symmetry
axis of one of the faces of the icosahedron and pressed towards the central
sphere until the other 12 spheres are in their most close position on the
surface of the central sphere. This configuration indeed supports his con-
jecture,

From our configuration 6-2 and from (10} however it is clear that this
is false, as the 14th sphere is here at a distance of 1-347 from the centre
of the central sphere. We have not succeeded in proving that shorter dis-
tances are impossible. With the aid of (20) an estimation may be obtained
of a lower limit of this distance. This is much lower than 1-347.

We express our gratitude to Dr Wise for informing us in detail of the
inspiring contents of his paper on close-packing of unequal spheres.

Eindhoven, January 1952
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