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ABSTRACT 

A subset of a metric space is called metrically homogeneous if the set of 
distances from a chosen point of the subset to all the other points of the 
subset is independent of the chosen point. The main result of the paper is 
a complete characterization of the compact, metrically homogeneous subsets 
of the Euclidean plane. 

1. Introduction. If  ~1  and ~ 2  are two subsets of a distance space, 
p(5"l, 5~2) is the set of distances p(x,y), x e i f1 ,  Y ~ ~°2" A set ~ such that p(P, 
= p(Q, 5¢) for any two points P and Q of 5p is a metrically homogeneous set. 

Since the problem of  characterizing such sets is even more general than the 
difficult and important problem of  determining those subsets of a space whose 
group of self-isometries is simply transitive, its solution in general settings should 
not be expected to be easy. We succeed here only in completely characterizing 
the compact metrically homogeneous subsets of the Euclidian spaces E2; however, 
much of our preliminary analysis is valid in any strictly convex two dimensional 
real Banach space. 

Curves of constant width and the vertex sets of regular polygons are quite 
clearly metrically homogeneous. A convex cyclic polygon with alternate sides 
equal is called quasi regular and its vertex set is still another example of a metri- 
cally homogeneous set in E 2. Indeed, if  we insist that the set of  distances emanating 
from each point have the same "repetit ions" then the smooth curves of constant 
width together with the vertex sets of regular and quasi regular polygons are the 
only metrically strictly homogeneous sets in E 2. 

However, if one of the vertices be omitted from the vertex set of an odd sided 
regular polygon, the residual set is metrically homogeneous and suggests the 
ultimate characterization theorem to the effect that such sets are either arcs of 
curves of constant width, vertex sets of quasi regular polygons or suitably truncated 
vertex sets of regular polygons. 
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Surprisingly, it follows from this characterization that each finite metrically 
homogeneous subset of the plane has a non-trivial group of isometries. Already 
in Euclidean 3-space there exist finite metrically homogeneous sets lacking this 
property. 

The stimulus for this investigation was a question posed by J. Conway at the 
East Lansing conference on Combinatorial Geometry. The present form of the 
proof of case V of the main theorem is due in essence to Mr. William Webb, to 
whom we are grateful for several useful ideas. 

2. Preliminaries and a few general theorems. Generally points will be denoted 
by capitals. PQ is the distance from P to Q while PQ is the segment defined by P 
and Q. 

B2 is a two dimensional Banach space over the reals with a strictly convex norm. 
The diameter of a set ~ relative to a point P ~ 5 ~ is lub{PX [ X ~ ~}.  If the 
diameter of de relative to each point of ~ is constant and finite, the set is said to 
be of constant diameter. If PQ is a diameter of i f ,  PQ is a diametral segment 
of f t .  It is well known that in E2 a set of constant diameter is the boundary of a 
set of  constant width, and conversely. In the sequel, d will always denote the 
diameter of the set considered. 

The main result of the present section is the characterization of infinite compact 
metrically homogeneous sets in E2 (Theorem 4). 

THEOREM 1. Any two diametral segments of a set ~ in B2 intersect. 

P r o o f .  Suppose AB = d, DC = d and A B C D are the vertices of a convex 
quadrilateral (see Fig. 1). Let the diagonals AC and BD intersect in E. Then 

A ¸ D 

Fig.  1 

AE + EB > d, DE + EC > d hence AC + DB > 2d. Since AC ~ d and DB ~_ d, 
this is a contradiction. 

If A B C D is not convex then one of the points, say D, is in the triangle formed 
by the other three points (see Fig. 2). Let DC intersect AB in E and let F be a point 
collinear with C and D and such that FE = (y/x)EC. Then FA = (y/x)a and from 
the triangle inequality we have FA + AC > FC = FE + EC, or (y/x)a + b 
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8 o C 

Fig. 2 

> (y/x)d + d, hence y(a - d) + bx > xd or y(a - d) > x(d - b). This is a contra- 
diction, and the proof of Theorem 1 is completed. 

THEo~vt 2. I f  A "~ is a compact set of constant diameter in B 2 then 8" = ext 
conv ~ .  

ProoL Assuming the theorem false, there is a point P e ~ which is in 
the relative interior of a segment X Y  c cony .9°. 

Let Q ~ A ° be diametral to P (i.e. such that PQ is a diameter of 50. The strict 
convexity of the norm in B2 implies that 2PQ < QX + QY, thus PQ <max{QX, QY}. 
Since the diameter of cony Y~ is the same as the diameter of ~ ,  this is a contra- 
diction, and the theorem is proved. 

We note that Theorem 2 implies the existence of a natural cyclic order for the 
points of any set of constant diameter (and in particular for any metrically homo- 
geneous set). This observation will be used throughout the sequel. 

The next result will also be used very frequently; we shall refer to it as the 
"monotonicity theoiem". 

THEOREM 3. I f  P, Q, X ,  Y are different points of  a set 8" of constant diameter 
in B2, such that PQ is a diameter of  Y' ,  QX N P Y  ~ ~ and P Y  < PQ, then 
P Y  > PX.  

Proof. (Compare Fig. 3). Let Y* be a point diametral to Y, and let 
E = YP  n Y*X.  (The point E exists by virtue of the axiom of Pasch, and con- 
vexity.) Since YE + E Y *  > Y * Y  = d and Y*E + E X  = Y * X  <= d, we have 
YE > EX.  Hence P Y  = EP + E Y  > EP + E X  > PX, as claimed. 

Q 

,1 

P 
Fig. 3 
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A little more descriptively, the montonicity theorem asserts that as the point X 
moves on the boundary of conv ~ away from P, the distance P X  is monotone 
strictly increasing till X encounters the first point diametral to P. P X  is then 
constant as X moves through the points diametral to P and then it is monotone 
strictly decreasing as X returns to P. 

Heppes [1] has recently characterized curves of constant width by the property 
that each chord of the curve is maximal among the chords of at least one of the 
arcs determined by the chord. This is another way of viewing the monotonicity 
property. 

DEFINITION. The midpoint of an arczd of a closed convex curve ~ in B2, with 
endpoints A and B, is the (unique) point M of  M such that M A  = MB. If  z4 
contains points P, Q, R such that PQ = QR = d, the diameter of ~,  then M is a 
major arc of ~. Otherwise it is a minor arc. ~ itself is included in the class of 
major arcs. 

THEOREM. 4. A compact metrically homogeneous subset ~ of B 2 is either a 
finite set or a major arc of a curve of constant diameter. 

Proof. Recall that 5 p is a closed subset of the boundary ~ of conv ~9 a and 
assume that ~ is infinite. Each point of $e is then an accumulation element of 5 ~. 
Suppose P ~ ~ ' -  5 p and let A and B be the end points of the maximal arc of 
in ~¢ - ~ containing P. A and B are, of course, in ~ .  We now propose to show 
that A and B are endpoints of a major arc of ~ lying in ~ .  

• ~AB d |  To this end let8 = mm[-~--,~- / , where d is the diameter of ~ and hence also 

o f ~ ,  and let g = g ( , , A )  be the sphere of  radius 8 centered at A. Let {X~) be a 
sequence such that X~ ~ ~ n H and lim Xi = A. Now suppose that E is any point 
in ~ n g and consider Y~ ~ ~ t~ g such that Y~X~ = EA. It is clear that the 
sequence {Y~} tends to E from the same side as {X~) tends to A, i.e. Y~ E A B holds 
in the cyclic order defined on ~. Now define Z~ as an element of ~ such that 
AZ~ = EXt. It follows easily that {Z~} tends to E from the other side, i.e. EZ~ AB 
holds. Thus an arbitrary point of ~ n H is a two-sided accumulation element 
of ~ .  

Let A'B be the arc of  ~ which does not contain P and suppose Q is a point of  
(~' - ~ )  n ~ c~ ~'B. At least one of the end points of the maximal arc of $' in 

- ~ which contains Q is in ~ ~ ~', and is a one-sided accumulation element 
of  .5", contradicting the above. Hence such Q does not exist, and A is the end 
point of an arc of ~ lying in ~ .  Let M be the component of ~ containing A, with 
midpoint M, and suppose F its other end point. Then ,~/ must be a major arc 
since otherwise there is clearly a point Z in ~ - ,9' such that for no point X ~ ~ is 
M X  = MZ,  while there is a point Y ~ ~ with A Y = MZ. This contradicts the 
homogeneity of ~ and proves that ~ / i s  a major arc of ~.  
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If  F # B then there would be two disjoint major arcs of  e~ in ~ which is clearly 
impossible. Hence .~ = A'~ and the proof  of  Theorem 4 is completed. 

A finite metrically homogeneous set in B 2 is the vertex set of  a convex polygon 
and we seek to characterize such polygons; for brevity, we shall say that such 
a polygon is metrically homogeneous. Let at  < a2 < "" < am = d be the numbers 
in the distance set. I f  the vertices o f  a metrically homogeneous polygon, labelled 
in cyclic order, are Po,P1,- . . ,Pn then it is easy to see that if PiPj = a 1 then P~ and 
Pj are adjacent. 

3. Some lemmas. We list now a sequence of lemmas which will be needed in 
the proof  of  Theorem 5. Thus far our results have been valid in a strictly convex B 2. 
We cannot proceed much further without recourse to additional structure so we 
shift the locale at this point to E2. 

LEMMA I. I f  the convex quadrilaterals  A B C D and A '  B '  C' D' satisfy 
A B  = A 'B ' ,  BC = B 'C ' ,  CD = C'D' ,  A C  >= A ' C '  and BD >= B'D' ,  then AD >- A 'D '  
with equal i ty  i f  and only i f  A C  = A ' C '  and BD = B'D' .  

Proof. Consider a third quadrilateral A"B"C"D" with A"B" = AB,  B"C" = BC, 
C"D ~ = CD, A"C" = A C  and B"D " = B'D'.  Then ~ B C D  >= ~ B"C"D ~, and 
~ A C B  = ~ A"C"B ". Thus ~ A C D  <= ~ A"C"D" and since AC = A"C ~ and 
DC = D" C", it follows that AD >= A"D". A similar argument shows that A"D" >= A 'D' 
and hence AD >= A'D' .  It is now easy to see that equality occurs only if AC = A ' C '  
and BD = B'D' .  

LEMMA 2. I f  the quadrilaterals  ABCD and A ' B ' C ' D '  satisfy A B  = CD = p 
= B ' C '  < A ' B ' = C ' D ' = q = B C ,  A C = B D = r < = r ' = A ' C ' = B ' D ' ,  A D = s ,  
A 'D '  = s', then s' > s. 

Proof. Again consider an auxilliary quadrilateral A"B"C"D" with A"B"= q, 
B"C" = p, C"D"= q, A"C" = B " D ~ =  r, A"D" = s". Quadrilaterals ABCD and 
A"B"C~D" have congruent circumcircles and it is clear that the arc ABCD is less 
than or equal to the arc A"B"C"D". Thus s" > s and, by Lemma 1, s' > s". 

LEMMA 3. I f  the quadri lateral  ABCD satisfies AB  = CD = p ,  B C =  q, 
AD = s, A C  = BD = r and p + q > s, then ~ A B C  < 1 2 0  °. 

Proof. From the theorem of Ptolemy we have p2 + qs = r 2, thus p2 + q(p + q) > r 2. 
Hence p2 + pq + q2 > p2 + q2 _ 2pqcos ~ ABC,  and therefore cos ~ A B C >  -½, 
i.e., ~ A B C  < 120 °. 

LVMMA 4. I f  the quadrilaterals  ABCD and A ' B ' C ' D '  satisfy A B  = BC = CD 
= a, A C  = BD = b, AD = c, A ' B '  = B 'C '  = a, C'D'  = b, A'C" = B 'D '  = d and 
A 'D '  = c, then ~ B 'C 'D '  < 90 °. 

Proof. Ptolemy's theorem implies that ac + a 2 = b 2 and ac + ab > d 2. 
Thus ab - a 2 > d 2 - b 2 = a 2 + b 2 - 2abcos ~ B'C 'D '  - b z and hence 
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ab(1 + 2cos ~ B'C'D') ~ 2a 2. Therefore b(1 + 2cos ~ B'C'D')  ~_ 2a > b, 
i.e. cos ~ B'C'D' > 0 or ~ B'C'D' < 90 °. 

LEMMA 5. I f  quadrilaterals ABCD and A'B'C'D'  satisfy AB = CD = A'B '  = 
B ' C ' = a ,  B C = C ' D ' = b ,  A C = B D = B ' D ' = c  and A D = A ' D ' = d ,  then 
A 'B 'C'D'  is cyclic. 

Proof. Consider C*, the reflection of C in the perpendicular bisector of BD. 
Quadrilateral ABCD is certainly cyclic and C* is on its circumcircle. But A'B'C'D'  
is congruent to ABC*D, hence the assertion. 

LEMMA 6. No metrically homogeneous polygon in Ez contains consecutive 
vertices A,B,C,D,E with AB = CD = p, BC = DE = q, AC = BD = r, AD = CE=s  
and s > r > q > p .  

Proof. (Compare Fig. 4). From Lemma 1 we conclude that BE > AD = s 
and that the diameter d is greater than s. The diametral segment from A must 

E 

, / 

° 

q 

Fig. 4 

intersect the perpendicular bisector of the segment ~IBI From Lemma 3 it follows 
that ~ A B C  = ~ BCD < 120 °. Now a simple calculation shows that the 
perpendicular bisector of the segment AB intersects ~4b in X and the line CD in 
Y such that q > XD ~_ YD. It follows that the only points of the polygon on the 
opposite side of the line M X  from A are B, C, and D, and none of the segments 
AD, AC, or AB, is diametral. This contradicts the homogeneity assumption, and 
thus completes the proof. 

LEM~h 7, No metrically homogeneous set ~ in E2 contains points A1,A2,Aa,  
A4, As ,A6,  AT,As,  such thatAa A5 = AtA2 = A7A8 = A4A6 = a2, A2Aa = AaA4 
= A4As = AsA6= A6A7 = al ,  A1A3 = AaA4 = AsA7 = A6As = as and AIA4 
= AaA6 = AsAa = a4. 

Proof. (Compare Fig. 5). From Lemma 4 we have ~ A1A2A 3 = g AsATA6 
< 90 °. Suppose AIA8 = at. A2A7 is clearly greater than AIAs  and hence an 
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A 3 6 
A4 A5 

]Fig, 5 

examination of quadrilaterals AtA4AsA s and A2A4AsA 7 shows that A2A 6 > AsA 4. 
Hence AsA4 < d, thus AsA3 = d. But then no diametral segment from A5 intersects 
AsA3, which is a contradiction. Hence there is a point Ao of Y such that AoAl = ai 
and A o ~ A s for i = 1,2,. . . ,  8. I f  AoA2 = a3 then ~ AoAIA 2 < 90 ° which is clearly 
impossible. An easy montonicity argument shows that AoA ~ ~. a3 for i = 3, 4, 5, 6, 
7, 8. Simlarly AoA ~ ~ a2, i = 2,3, ...,8. Hence AoAp = a a and AoA ~ = a2 for some 
q > p > 8, and it is clear that A~lg ~ a 1. Hence ~ AoA~A p < 90 °. A similar 
argument shows that ~ A s A ~ A t <  90 ° for suitable s,t; but then the polygon 
conv Se would contain four acute angles which is impossible. This completes 
the proof of ]_emma 7. 

LEMMA 8. No metrically homogeneous set in E 2 contains the eight point 
configuration A1,Az "" As with 

A1A 2 = A3A4 = A4A5 = AsA6 = ATA s = a, 
A2A3 = AeA7 = AsA5 = A4A6 = a2 
AxA3 = A2A4 = AsA7 = A6Aa = a3 
A I A ,  = ABA5 = a4 < AsA6. 

Proof. (Compare Fig. 6). The perpendicular bisector of AsA o intersects 
AsA8 in Y and the line ATAs in X. A simple calculation shows that A s X  and 

\ 
\ 

" --~x 
A~ ,,'~-...A. 

°  I/I l °'  ',.2toJ 

A 3 ~6 

A 4 01 A 5 

Fig. 6 
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A s Y  are both less than a2. A point ,/5, diametral to As, must lie in the triangle 
A a X Y  and hence .45A8 = a t ,  i.e. ,15 is adjacent to As. Similarly for / /4 .  Now, if  
`45 = A1 it is clear that AaA 7 > AsAt  = d, which is impossible. I f  `4s = -44 then 
-4sA~ = a3 has no solution, contradicting the homogeneity. But then the diametral 
segments As,~5 and A4-44 are disjoint, which is again impossible. Hence in all 
cases we have a contradiction and the lemma is proved. 

4. Characterization of finite, metrically homogeneous sets in E2. The following 
theorems provide information on metrically homogeneous polygons, which leads 
to their complete characterization in Theorem 7. 

THEOREM 5. The length of a side of a metrically homogeneous polygon 
cannot exceed 2. 

Proof. Suppose that the vertices of  the polygon labelled in cyclic order, are 
Po,Pt ,  . . . ,P ,  and that P~Po = ak > a2. Let PoPt = d while PoP x < d for x < t. 

We propose now to show that for all i < t 

(1) P0, P t , " ' ,  P~ are concyclic; 

(2) P~P#= aI~-#I 

(3) e ,Pi  > min (ai+k,d}. 

Suppose, in fact, that these conditions are met for i =< m <  t. I f  m = 2r consider 
the point Px such that P,P~ = a,+ 1. It  is clear from (2) that x > 2r. 

I f  d < a, + 2 then monotonicity and the fact that PoP, = ar while PoPt = at+ 2 imply 
that either PoPi = d for some i < t, an impossibility, or that 2r < t < r + 2. This 
is possible only if  r < 2, i.e., PoPa = d hence ak = a3. But it is easy to show that 
ak = d = a3 is an impossibility. Hence d > ar + 2 o I f  x > 2r + 1 then P, Py = d for some 
y, r < y < x. This in turn implies that P,Pn < P,Px = ar + 1. But thisis impossible since 
P,Pn > min{a~+k,d} > a,+ 2. So x = 2 r +  1. We now show that Pro+ 1Pro, P,+ 1Pro- 1, 
"",Pro+ t P~ is a strictly monotone increasing sequence. This follows f rom the fact 
that Pm+tP, = a,+t ~ d and diametral segments must intersect. Since Pm+IP, 
= a,+ 1 it follows that P~+tPi = am+l-~, for r < i < m + 1. 

I t  is immediate that PoPt""  P~+ 1 are concyclic since the triangle Pro+ t PmPm- 
is congruent to the triangle P~_2Pm_tP m. This implies that P~P# = al~_#l for 

- -  = r + 1. Finally PnPm+t >= min{d, ak+m+~} 

since otherwise we would have P~Pm = d while no diametral segment f rom Pm+t 
meets the diametral segment PnPm" 

Now suppose that m = 2r + 1 and let P~ be such that P,P~ = at+2. From the 
previous case we know that d > a~+2 and it follows that P,Pn > a,+ z. Hence x = n. 
I f  x > m + 1, there must be a y such that P,Py = d, where r < y < x. But this 
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means that P,Pn < a,+a, a contradiction. Hence x = m + 1. Exactly as in the 
previous case we conclude that Pm+aPi= a,,+l_ i for r <  i < m + 1, Po,P1,. . . ,  

Pm+a are concyclic, and P~P#=Ctl~_#l for c q f l , < m + l ,  [ ~ - f l [ <  [ - ~ ]  

= r + l < r + 2 .  
This completes the proof  of Theorem 5. 

THEOREM 6. A metrically homogeneous polygon in E2 is cyclic. 

Proof. The proof  is somewhat detailed and is organized into six main cases, 
the first and most involved being that in which the polygon has a side of  length 
2 followed by at least five successive sides of length 1, a five-plus run as we call it. 
The remaining cases are concerned in order with the four, three, two and one- 
runs respectively and that in which the polygon is equilateral. In each analysis the 
monotonicity lemma and various comparison lemmas allow us to obtain con- 
siderable information about the combinatorial structure of  the polygon, while at 
strategic junctures a euclidean calculation or two, as represented by Lemmas 6-8, 
allow us to rule out unwanted structure and conclude that the polygon is not 
only cyclic but highly regular. 

Case I.  Let the vertices of  the polygon be labelled Po,P1, "",Pn in cyclic 
order and suppose that PoP a = PaP2 = P2P3 = P3P4 = P4P5 = aa and P, Po = a2. 
We also assume that d > a3 and n > 5. The excluded cases are dealt with separately. 

It is immediate that P1Pa = a2. For  suppose PIP,, = a2. If  x n then the 
monotonicity lemma implies d = a2, which contradicts the assumptions; hence 
P I P , >  a 2. Supposing x > 3, let i be such that PaPi = d. Then i > x is impossible 
by the monotonicity lemma, since it would imply aa = P1P2 < P1P3 < PaPa = a2. 
But x > i __> 3 is also impossible, since it would imply a 2 = P1Px ~ P1Pn > a3. 
Since i ~ x, we have exhausted all the cases, and established PaP3 = a2. 

Subcase (i): PoP2 = a 2. Consider Px such that P2Px = aa. If  x = n then, 
by monotonicity, P,Pa = d. Since d > a a, monotonicity implies PnP5 = 0, contra- 
dicting the assumption n > 5. Hence x < n and P2Pn > aa. Suppose x > 5. 
Monotonicity again implies that P2P i = d for some i > x, and thus P2P4 = a 1. 
This is impossible, hence x = 4 or x = 5. 

Suppose x = 5, i.e., P2P 5 = a a. Then (by monotonicity) P2P 4 =PAP5 = a2 
and by congruence (Lemma 2) PoP3 = P2P5 = PIP,, = a3. 

Now, if P2Pn = a,~, we claim that P~P, = a3. Indeed, if not, monotonicity 
would imply P1Pn=d > aa, and if  d>a4,  no:diametral segment from P2 would 
intersect P~P,. If  d = a 4, then P2P6 = 4. Now, i fn  # 6, it follows that PaP ,=a4 .  
Noting that the points Po,P~,P2,P3, P4, P5 are concyclic, we see that P~ is the 
center of  the circle through them (since PnPt = P~P2 = PnP3 = a4), - -  a manifest 
impossibility since PnPo = a2. On the other hand, if  n = 6 the same concyclicity 
argument implies P6Pa < a4; hence PaP6 = aa, P4P6 = a2, and PsP6 -- at.  
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Thus the points Po,'", P6 a r e  all concyclic and are 7 of  the 8 vertices of  a regular 
octagon. But then a4 = PiP6 < P2P6 = a 4 .  T h e  contradiction establishes our 
assertion that P~P, = a3; by congruence we also have PtPs -- a4. 

If, on the other hand, P2Pn ~ a 4 then P2Pn > a4, and it follows that P2P6 = 614, 
P3P6 = a3, P4P6 -- a2, PsP6 = | .  Then, by congruence, we have PtP5 = a4. 

Therefore in any event, regardless of  the assumption about P2Pn, w e  have 
P1P5 = POP,, = a4. 

Now, if  the polygon fails to be cyclic, there exist three vertices Pt,Pj, Pk such 
that either PiP j = P #Pt = at and PiP~ > a2, or PiP# = as. P #Pk = a2 and PiP# > a3. 

In the first case any triangle P:~PyPz such that P~Py = P ~ z  = at  and P~Pz = a2 
has ~ P,~PyP: < 120 ° by Lemma 1. Note now that the points Po,Pt, "",P5 are 

concyclic and hence each of  the circular arcs PoPt, PtP2, "",P4P5 is at least 60 °. 
This means that PoP5 = at, which is easily seen to be impossible. 

In the second case, if P~P~'~ is such that P~Py = at, PyPz = a2 and P~,P~ = as 
then ~ P~PyP~ < 120 °, again by Lemma 1. In this case we have the circular 

arcs PoPs, P, P2,"',  PaPs are at least 40 ° and it follows that PoP6 < a2. This, too, is 
easily seen to be impossible 

This completes the proof  in subcase (i). 

Subcase (ii): PoP2 ~ a2. Let x be such that P2Px = a 2. I fx  ----- n then P2Po --- d, 
and no diametral segment from P,  would intersect P2Po; hence x < n. I f  x > 4, 
then y such that P 2 P y  = d would satisfy 3 < y < x;  it would follow that P2Pn <= a 1, 
which is clearly impossible. Hence x = 4, i.e., P2P4 = a2. 

I f  PoP2 > a3, then P2P.~ = as. Indeed, let z be such that P2Pz = as;  z = 0 
would imply that PoP2 = d, and then the diametral segment from Ps would not 
intersect POP2. Hence z ~ 0. I f  z > 5, it would follow that P2Py = d for some y 
such that 4 < y < z; but then we would have P2Po < as, which is a contradiction. 
Therefore z = 5, as claimed. Now PsPs = a2; otherwise we would have PsP3 ffi d 
and this diametral segment would not intersect any diametral segment from P2. 
Then P1P4 = a3 follows by congruence; thus Pj,P2,P3,P4,P 5 are concyclic, 
and from the lemmas we infer that the arcs PtP2, P2P3, PsP4, P4P5 are at least 60 ° 
each; hence P t P s <  a2, which is clearly impossible. 

Therefore we may assume that PoP2 = a~. Let x be such that P3P= = as; then 
x = 0 implies d = as, against our assumptions. I f  x > 6 we would have P3Py ffi d 
for some y with 4 < y < x;  but then it would follow that P3Pt _~a~ which is 
impossible. Hence x = 5 or x = 6. 

Suppose first that x = 6; then PsP6 = at, and it readily follows that PsP5 
= P4.P 6 = a 2. By congruence we have PtP4 = as, and Pt, P2, Pa, P4, Ps, P6 are 
concyclic. The lemmas imply that the arcs P1P2, P2P3,'",PsP6 are at least 60 ° 
each; hence P6Po = as, which is impossible. 

Suppose therefore that x = 5. Then P1P4 = as is impossible by I.emma 5, 
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hence we may assume that P I P , >  a,. By the monotonicity lemma it follows that 
PtPn = a 3. The comparison lemma shows that if PoPs > a ,  then PaP6 = a4, 
and then that PsP6 > at  ; hence PsP6 = a2. But then P2Px = a , ;  indeed, if  we had 
P2P~ = a ,  for some x with x < n, it would follow that P2P, < as, contradicting 
PoP2 = as. Now, PtP4 > a ,  is impossible, since it would imply P1Pn-1 = a4, 
which contradicts Lemma 5. Hence we may assume P I P ,  = a,.  But then we 
have the configuration of  Lemma 7, which is impossible in a metrically homo- 
geneous polygon. 

Hence PoP2 # a2 is impossible, and the proof  in subcase (ii) is completed. 
Turning now to the still remaining special cases, we first observe that if n = 5 

the only possible configuration is that of  six vertices of  a regular heptagon, which is 
clearly cyclic. I f  n > 5 but d = as, then necessarily P1Pa = a2, P1P,  = aa = PoPs. 
If  we had PoP 2 = as, it would follow that P2P,  = az contradicting the comparison 
lemma. Hence PoP2---a2, and similarly P2P,  = a2. Then clearly P2P5 = as, 
P3P5 = a2, and P2Pn = as. By monotonicity, also PnP 3 = as. Therefore 
Po,Pt ,  "",P5 are concyclic, and P,  is the center of the circle through them. But 
since P~Po = a2 # as = P, Pt ,  this shows that n > 5 and d = a s are incompatible. 

This completes the proof of  Theorem 6 in Case I. 

Case H.  We consider now a 4-run, satisfying PoP1 = P t P 2 = P 2 P a = P 3 P 4 = a l  
and PnPo = P4P5 = a2. It  is immediate that P1Pa = a2 and that at least one of 
PoP2 and P2P4 is a2. Without loss of  generality we shall assume that PoP2 = a2. 
I f d  = as, it follows at once that PnPt = PaP5 = as. Since diametral segments must 
intersect, this would imply n = 5  which is impossible (since PnPx = al would 
have no solution). Thus we may assume d > a3. 

We consider first the possibility P2P,  > a2. By monotonici ty we have 
P2P5 >= a ,  < P2Pn, hence P2P4. --- as. Now, PaPo = a a is impossible by Lemma 5 
applied to Po, P t ,  P2, Pa, P4. Therefore PaP5 = a a. Since PoPs >= a4, it follows 
from the comparison lemma that P1P4 ~_ as; hence PtP~ = as. Moreover, we 
must have P tP~ - t  = a4, and so P~-IPo = as. The comparison lemma shows that 
P2P5 > P2Pn. Hence P2Pn = a4. Lemma 7 implies that  the points P , - l ,  P,,  Po, 
P1, P2 are concyclic; since Po, P1, P2, P3 are clearly concyclic or well, it follows 
that Pn-1, P~, Po, P1, P2, Pa are on one circle. But this is impossible since the arc 

PoPs = PoP 1 + P1P 3 should equal the arc PnP 1 = PnP 0 + POP1, while 
PoPs >_- a ,  > a3 = P1P~. Thus the assumption P2P4 > a2 leads to a contra- 
diction. 

On the other hand PeP4 = a2 = PoPe is also impossible. Indeed, without loss 
of  generality we may assume PnP 2 = a3, and the monotonicity then implies 
a2 < PnPt < as. 

This completes the proof  in Case II. 

Case I I I .  Next we consider a 3-run, satisfying PoP1 = PxP2 = P2Ps = al  
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and P ,  Po = PaP+ = a2. The case in which d _-< a s is easily disposed of, so we 
assume d __> a+. Clearly P I P S =  P2Po = a2, and either P2P+ = aa or P2Pn = as. 
But P2P, = a3 would imply P1P, = d, and this diametral segment could not 
intersect any diametral segment from P2. Hence P2P4 = an, and similarly 
P1P,  = an. 

Assume now PoP3 = an; then the points P,, Po, Px, P2, P3, P+ are concyclic. 
I f  the entire polygon is not cyclic, points P~, Pj, Pk exist such that either P~P~ 
= PjPk = al  and PiPk > a2, o r  PiPj = al ,  PjPk = a 2  and PiPk > a 3. In the first 
case, by Lemma 3 applied to the points Po, P1, P2, Pa, we have ~ PpPxP2 < 120 °. 

This implies that the are PoP1 is more than 60 °, and that the arc P .Po""  P5 is 
greater than 360 °, - -  which is impossible. In the second case, Lemma 3 appli~ed 
to P2PaP+P5 implies ~ P2PaP+ < 120 °, which in turn means that the arc P2Ps 
is greater than 40 °, and that the arc ~ is greater than 280°; hence 
P~P+ = al ,  which is easily seen to be impossible. Thus, in the present case, the 
polygon is cyclic, as required. 

Assume next that PoP3 >__ a+; it follows at once that PaP5 = as = POP,-1 
and that n - 1 > 5. Also, PoPa < PxP,-1 = P2Ps, since otherwise the configu- 
ration of Lemma 8 would result. Thus P2P5 = P~P,-x > a+, and therefore 
P2Pn = a4 = PxP4. If  d = as it would follow that P2P5 and PIP , -1  are disjoint 
diametral segments; hence d > as. Next we claim that P2Px = as implies x = 5; 
indeed, P2Pn_x = as would imply P , - I P I  < a+, while P2Py = as for some y with 
5 < y < n - 1 would imply P2P,_  ~ < a4, both of which are impossible. Hence 
P2Ps = P1P,,-~ = as,  and therefore PoP3 = a,,. Now, PaPs = as implies i = 6 
or i = 7; indeed, assuming i > 7 we would have P3P~ = d for some j with 
5 < j  < i, hence P2Pn_~ < as which is impossible. 

Suppose first that i = 7, i.e., PaP7 = a s. It follows at once that PsP6 = P6P7 
= a l ,  PaP6 -- a4, P,*P6 = PsP7 = a2, hence PsP7 = POP,, = P,Ps = as- But the 
comparison lemma applied to the quadrilaterals P2P3P`*P5 and PoP2P3P`* shows 
that POP,, > P2Ps.  Hence i ~ 7. 

Now suppose i = 6. Then, by the comparison lemma, PsP6 = a~. Points 
P2,Pa ,P , , ,P5  are concyclic, as are P:, . ,Ps ,Ps ,P6;  thus P 2 , P s , P , , , P s , P 6  are 
concyclic, hence P,,P6 < PsP5 = as,  i.e., P+P6 = a2. Then it follows that Px and 
Po are concyclic with the previously mentioned points. But this is impossible 
since it would imply that a+ = PoP s = P2P,, = a3. Hence PoP3 > as is not possible, 
and the proof in case III is completed. 

Case IV.  The assumption of a 2-run PoPa = P1P2 = al ,  P ,Po = P2P3 = a2, 
is easily seen to be impossible, since d > a2 and PtP~  = a2 has no solution. 

Case V. We turn now to the ease of 1-runs, assuming PoPt  = P2Pa . . . .  
= P , ,_2P,_I  = a I and P1P2 = PsP4 . . . . .  P,,Po = a2, and n _~ 5. 

We first show that a configuration Q, consisting of four points A, B, C, D with 
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AB = CD = al,  AC = BD = a3, must occur among the vertices of  the polygon. 
Indeed, suppose that Q does not occur. Without loss of  generality we may assume 
that PoP2 = a3, and then P1P3 = a4 (otherwise either P, '-  1, P,', Po, P1, or Po, P1, 
P2, P3, would be in configuration Q); hence P3P5 = a 3. Now, P4P7 = a4 would 
yield Q (with points P4,Ps,P6,PT),  while P4P6 = a,, would imply P4P2 = a3 
and Q would occur (with P2,P3,P,, ,Ps).  Therefore we necessarily have P,,P2 = a`* 
and P`*P6 = a3. Continuing (by induction) we see that PtP3 = P2P`* = PsP7 
= P6Ps . . . . .  P,'-2P," = Pn-lPo = a4, and P3P5 = P`*P6 = PTP9 . . . . .  P,'P1 
= PoP2 = a 3. It is immediate that the polygon is a (4k)-gon, and that Po,P4,Ps,  
"" ,Pn-3,  and P1,Ps,P9, . . . ,P, '_2,  are vertices of  congruent regular k-gons with 
a common center; hence the two sets of points ate on a circle (with center 0, and 
radius R). Similarly, P2 ,P6 ,P lo , " ' ,P , ' - I ,  and P3 ,P7 ,P l t , ' " ,P , ' ,  are vertices of  
congruent regular k-gons inscribed in a circle of  center 0 and radius r. Since 
POP,, > P2P6 it follows that R > r. 

We propose now to show that these two concentric but unequal circles circum- 
scribe congruent triangles. This being obviously impossible, the existence of  
configuration Q will be established. We shall prove that the triangles PoPIP`* 
and P2P3P7 are congruent; to do this, we must ascertain some additional dis- 
tances. Note, first, that if  d = a4 then n < 5 and the impossibility is easily checked. 
Next, P,tPx > P`*P7 implies P`*P7 -- as = P6P9 = P2Ps . . . .  , and d > as. Since 
P`*Ps > P,,P~, it follows that P,,Pt = a 6 and d > a 6. The fact that P,,Po = P`*Ps 
means that both must equal a 7. Similarly P6Pa = P6Plo = a 6 since P6P3 < P1P,, 
= a6. Finally, P6P~ > P:Ps  = POP`* = a7, and since P6P2 < P t P s  = a7, it 
follows that P6PH = a7 = P2P7 • Hence the two triangles mentioned above are 
congruent, and we have proved that configuration Q must occur. 

Therefore we may assume PoP2 = PxP3 = a3. From the fact that PoP3 < P3P6 
we see P3P6 > a`*. I f  P3Po ~ a`* then PoP3 > a s and P3P5 = a`*; also, P2P," 
~_ PoP3 > as, which implies PAP`* = a`*. Similarly, P1P,'-t  ~_ PoP3 > as, hence 
PIP, '=  a`*. Now P2P:, = as has no solution since P2Ps > P3Po > as and, by 
Lemmas 1 and 2, PAP,, > P3Po > as. Thus P3Po necessarily equals a`*. 

Now, by Lemma 6, P2P`* = a3 and, since P2P," > PoP3 = a`*, we have P2P5 = a`* 
and P3P5 = a3. It follows by induction that all second order diagonals have length 
as, and thus the polygon is cyclic. 

Case VI. There remains only the case in which PoP1 = PIP2 . . . . .  P,'Po 
= al.  We may assume that PoP2 = PtP3 = a2. If  PoPs = as, then P2P4 = a2 

(otherwise the configuration of  Lemma 6 would occur). Now P~P4 = a3 by 
congruence, and it follows by induction that all second order diagonals have 
length a2. Hence the polygon is cyclic, as required. 

On the other hand, if  PoP s ~ as then PoP s ~ a4. But P2P5 ~_ PoPs, and 
similarly P2P," > a4. Hence P2P 4 = a3, PsP5 = as, and P1P," = as. Then P2P~, = a4 



196 BRANKO GROI'ZBAUM AND L. M. KELLY Israel J. Math., 

has no solution, since P2Ps > P2P, > PoP3 >---a4 by the comparison lemma. 
The contradiction reached completes the proof in Case VI. 

Thus Theorem 6 is proved. 
In order to characterize finite metrically homogeneous sets conveniently, 

we need the following: 
DEFINITION. If the set of vertices of a convex polygon P may be represented as 

A - B, where each of A and B is the set of all vertices of some regular polygon, 
A D B, card A = 2k(m + 1), and card B = m, then P is called an evenly 
truncated regular polygon of type (k, m). 

Note that a quasi regular polygon can, but need not, be an evenly truncated 
regular potygon. 

Now we are ready for the characterization theorem: 

THEOREM 7. A finite set in E 2 is metrically homogeneous if and only if it is 
the vertex set of a regular, quasi regular, or evenly truncated regular polygon. 

Proof. It is easily checked that the sets mentioned are metrically homogeneous. 
Suppose therefore that Po, P I , ' " ,  P, are the vertices of a metrically homogeneous 
polygon P, labeled in the cyclic order. By Theorem 6, if all edges of P have length 
a 1, all the vertices of P are concyclic and thus P is regular. If among the edges of P 
of P there is no k-run with k > 2, but some edge has length a2, then all edges of P 
of length al belong to 1-runs; since all the 1-runs are congruent, and the points 
of each are concyclic, all vertices of P are concyclic and P is quasi regular. Thus 
we are left with the case in which P contains some k-run, k > 2. By Theorem 6, 
each m-run, m ~ 1, contains some three points P~, Pj, Pk such that P+Pj = al, 
PjPk = a2, and PiPs ---- a a. Since all the vertices of each m-run are concyclic, this 
implies that the radius of the circle is independent of m. Therefore all points of 
neighboring runs (which share an edge of length a2) are concyclic, and thus all 
vertices of P belong to the same circle. 

In order to complete the proof we shall show that each run is of odd length, 
and that all runs have the same length. 

Indeed, assuming PoP1 = P1P2 . . . .  P2~-IP2~ = al and P,Po = P2kP2~+ I 
= a2, there is no solution x to PkPx = PoPk+I = ak+x; hence P is not metrically 
homogeneous. 

In order to show that all runs have same length, assume that P,Po = a2, PoPa = 
= P1P 2 . . . .  P2k_2P2t~_l = al, and P2~_IP2k--  P2k÷2,n-lP2t~+2,.--- a2, with 
k > m. Then there is no x such that Pk÷ ,,Px - PoP~÷,+I = ak+m+~, hence P is 
not metrically homogeneous. 

This completes the proof of Theorem 7. 
As an immediate consequences we have: 
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COROLLARY I. A compact subset of E 2 is strictly metrically homogeneous if 
and only if it is either a smooth curve of constant width, or else the vertex set of 
a regular or quasi regular polygon. 

COROLLARY 2. Each finite metrically homogeneous subset of E 2 has a non- 
trivial group of self-isometrics. 

REMARK. The structure of metrically homogeneous subsets of E3 seems to be 
much more complicated. Even Corollary 2 fails in Ea; the simplest example 
known to us consists of 10 points, obtained by omitting from the 12 vertices of the 
Archimedean solid with 4 triangles and 4 hexagons as faces, two vertices which 
belong to the same hexagon but are neither neighbors nor diametrally opposite. 

It is well possible that the characterization of finite strictly metrically homo- 
geneous sets in E3 is not completely hopeless. In particular, it may be conjectured 
that the analogue of Corollary 2 is valid in E2 if restricted to strictly metrically 
homogeneous sets. 
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