HELLY’S THEOREM AND ITS RELATIVES

BY
LUDWIG DANZER, BRANKO GRUNBAUM, AND VICTOR KLEE

Prologue: Eduard Helly. Eduard Helly was born in Vienna on June 1, 1884.
He studied at the University of Vienna under W, Wirtinger and was awarded
the Ph. D. degree in 1907. His next few years included further research and
study in Gottingen, teaching in a Gymnasium, and publication of four volumes
of solutions to problems in texthooks on geometry and arithmetic. His research
papers were few in number but contained several important results. The first
paper [t] treated some basic topics in functional analysis. Its “selection
principle” has found many applications and is often referred to simply as
“Helly's theorem” {see Widder’s book on the Laplace transform). The same
paper contains also the Heliy-Bray theorem on sequences of functions (see
Widder’s book) and a result on extension of linear functionals which is
mentioned in the bocks of Banach and Riesz-Nagy. His famous theorem on
the intersection of convex sets (also commonly called “Helly’s theorem™) was
discovered by him in 1913 and communicated to Radon.

Helly joined the Austrian army in 1914, was wounded by the Russians, and
taken as a prisoner to Siberia, where one of his “colleagues” was T. Rado,
He returned to Vienna in 1920, and in 192) was married and appointed
Privatdozent at the University of Vienna. Along with his mathematical
research and work at the University, he held important positions in the
actuarial field and as consultant to various financial institutions. His paper
[31 on systems of linear equations in infinitely many variables was a much-
quoted study of the subject. The “Helly’s theorem” which is of special
interest to us here was first published by him in 1923 [4] {(after earlier
publication by Radon and Konig), and the extension to more general sets in
1930 [5].

In 1938 the Hellys emigrated with their seven-year-old son to America,
where Professor Helly was on the staff of Paterson Junior College, Monmouth
Junior College (both in New Jersey), and the llinois Institute of Technology.
He died in Chicago in 1943. For much of the above information we are in-
debted to his wife Elizabeth (also a mathematician, now Mrs. B. M. Weiss),
who resides at present in New York City. Their son Walter (Ph.D. from
M.I1.T.) is a physicist with the Bell Telephone Laboratories in New York.
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Iniroduction. A subset C of a (real) linear space is called conver if and
only if it contains, with each pair x and ¥ of its points, the entire line segment
{x, ¥} joining them. The equivalent algebraic conditionisthat ax + (1 — adyeC
whenever xe{,ye(C, and a€[0,1]. At once from the definition comes the
most basic and obvious intersection property of convex sets: the infersection
of any family of convex sels is again a comvexr set, though of course the inter-
section may be empty. The present exposition centers around a theorem
setting forth conditions under which the intersection of a family of convex
sets cannot be empty. This famous theorem of Eduard Helly may be formulated
as follows:

HeLLY’'s THeoREM. Suppose .75 is a family of at least n + 1 convex sels in
alfine n-space R®, and i i5 finile or each member of 5 is compact. Then
if each n + 1 members of 5 have a common point, theve is a poini common
to all members of 55,

FIGURE 1

Let us inspect two simple examples. Consider first a finite family of compact
convex sets in the line R', each two of which have a common point. Each
set is a bounded closed interval. If [a,, 5..], - -, [&«, fx] are the sets of the
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family, it is clear that the point min; {3} is common (o all ol them, as s the
point max; {«,} and of course all points between these Lwo, Consider nest a
family of three convex sets in R°, having a common puint isce Figore 1.

the sets and to a supershaded area which is the intersection of all threc.
Helly's theorem shows that if a convex set in R intersects cach ol the three
shaded areas, then it must intersect the supershaded aren,

The coneex Judi conv X of a set .X in a linear space is lhe intersection of
all convex sets containing X. Equivalently, conv X is the set of all conveex
combinations of the points of X. Thus peconv X if and only if there are
points x,, sy of X and positive numbers e« , -+ -, a, such that 20« = 1

and = X7 «;x;. Helly's theorem is closely related to the following results
on convex hulils:

CaraTHEoDORY'S THeoREM. When X < RY, cach point of conv X Is a convex
combination of w + 1 (or fewery points of X.

Rapon’s TueoreM. Each sel of 1+ 2 or more points in R can be expressed
as the union of twe disjoint sels whose convex hulls have a comuion point.

Consider, for example, a set X < B°. By Carathéodory’s theorem, each point
of conv X must be a point of X, an inner point of a segment joining two
points of X, or an interior point of a triangle whose vertices are poinis of X.
If X consists of four points, Radon’s theorem implies that one of the points
lies in the triangle determined by the other three, or the segment determined
by some pair of the points intersects that determined by the remaining pair
(see Figure 2},

FIGURE 2

The theorem of Carathéodory was published in 1907. Helly's theorem was
discovered by him in 1913, but first published by Radon [2| in 1921 (using
Radon’s Theorem). A second proof was published by Konig 11] in 1922, and
Helly’s own proof appeared in 1923 (Heily [1]). Since that time, the three
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thearems, and particularly that of Helly, have been studied, applied, and
generalized by many authors; especially in the past decade has there been a
steady flow of publications concerning Helly's theorem and its relatives. Many
of the results in the field {(though not always their proofs) would be under-
standable to Euclid, and most of the proofs are elementary, as is true in most
parts of combinatorial analysis which have not heen extensively formalized.
Some of the results have significant applications in other parts of mathematics,
and there are many interesting unsolved problems which appear to he near
the surface and perhaps even accessible to the *amateur” mathematician. Thus
the study of Helly's theorem and its relatives has several nontechnical as-
pects in common with elementary number theory, and provides an excellent
introduction to the theory of convexity.

The present report is intended to be at once introductory and encyclopedic.
Its principal aim is to supply a summary of known results and a guide to
the literature. Contents are indicated by section headings, as follows:
Proofs of Helly’s theorem;

Applications of Helly's theorem;

The theorems of Carathéodory and Radon;
Generalizations of Helly’s theorem;
Common transversals;

Some covering problems;

Intersection theorems for special families;
Other intersection theorems;

Generalized convexity.

Since the report is itself a summary, it seems pointless here to summarize
the contents of the individual sections. The emphasis throughout is on com-
binatorial methods and hence on finite families of subsets of R*. For inter-
section properties of infinite families of noncompact convex sets, especially in
infinite-dimensional linear spaces, see the report by Klee [6].

Many unsolved problems are stated, and after §§1-2 most results are
stated without proof. The bibliography of about three hundred items contains
all papers known 1o us which deal with Helly’s theorem or its relatives in a
finite-dimensional setting. In addition, we list many other papers concerning
intersection or covering properties of convex sets, and some general references
for the study of convexity and generalized convexities. (We are indebted to
E. Spanier and R. Richardson for some relevant references in algebraic topo-
logy, and to J. Isbell for information about the paper of Lekkerkerker-Boland
[1).) Some of the material treated here appears also in bocks by Bonnesen-
Fenchel (1], Yaglom-Boltyanskii [1], Hadwiger-Debrunner {3], Eggleston |3],
Karlin [1], and in the notes of Valentine [8]. In general, these will be referred
to only for their original contributions. For fuller discussion of some of the
unsolved problems mentioned here (and for other elementary problems), see
the forthcoming book by Hadwiger-Erdos-Fejes Té6th-Klee {1].

Organization of the paper is such that formal designation of various results
as lemma, theorem, etc., did not seem appropriate. However, the most
important results are numbered, both to indicate their importance and for
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purposes of cross-reference. In order to avoid a cumbersome numbering
systemn, we adhere to a convention whereby 4.6 (for exampler refers 1o the
numbered result 4.6 itself, 4.6 . refers to 4.6 together with immediately
stibsequent material, 4.6+ refers to material which fullows 4.6 but precedes
4.7, and 4.6— refers to material which precedes 4.6 but follows 4.5,

Much of our notation and terminology is comsmonly used, and should be
clear from context, In addition, there is an index to important notions and
notations at the end of the paper. Equality by definition is indicated by :=
or =:. When used in a definition, “provided” means “if and only if”; the
latter is also expressed by “iff”. The set of all points for which a statement
Pix) is true is usually denoted by {x: P(x). However, when Pux) is the con-
junction of two statements P'txyand PY(x), and P'lx} is of especially simple
form beginning “x --+¥, we sometimes write [P'(x): P"ix) for lx: Pix)l in the
interest of more natural reading. (For example, {xe E:[[xll £ 1}: ={x:xe E
and |lx!l = 1)

Though much of the material is set 1 an n-dimensional real lincar space
R", the full structure of £* 15 not always needed. Some of the results are
available for finite-dimensional vector spaces over an arbitrary ordered field,
while others seem to require that the field be complete or archimedean., We
have not pursued this matter. The n-dimensional Enclidean space {with its
usual metrie) is denoted by E".

A convex body in R' ts a compact convex set with nonempty interior, It is
smooth provided it admiis a unique supporting hyperpiane at each houndary
point, and sériclly convex provided its interior contains each open segment
1x, ¥ joining two points of the body. The family of all convex bodies in R"
is denoted by 7"

A Aal is a translate of a linear subspace. The group of all translations in
R" is denoted by T*, or simply by T when there is no danger of confusion,
A positive homothely is a transformation which, for some fixed v& B and some
real « > 0, sends x€ R into v + wx. The group of all positive homotheties
in & is denoted by H" tor simply A} and the image of a set X under a
positive homothety is called a homothel of X,

Set-theoretic intersection, union, and difference are denoted by N, U, and
~ respectively, + and — being reserved for vector or numerical sums and
differences. The intersection of all sets in a family -+~ is denoted by ==,
For a point xe R, a real number «, and sets X and Y < R”, aX: = {ux: xe X},
s+ YVi={x+r:veY L, X+ YVi=s{v+yv:xeX, ve ¥V}, T'Y is the family of all
translates of X, and AY is the family of all homothets of X, The interior,
closure, convex hull, cardinality, dimension, and diameter of a set X are de-
noted respectively by int X,cl X, conv X, card X, dim .Y, and diam X. The
svimbol @ is used for the empty set, 0 for the real number zerv as well as
for the origin of R". The nnit splicre of @ normed linear space is the set
{x:1lxl = 1}, while its wnit cell is the set {x:|lxll £1}. The n-dimensional
Euclidean unit ¢ell is denoted hy B*, the unit sphere tin E*"') by 8",

A cell in a metric space (M, o} is a set of the form {x: prz, X3 £ ¢} for some
zeM and : = 0, When we are working with a family HC for a given convex
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body C in R", these homothets are also called cells. When p denotes a distance
function and X and Y are sets in the corresponding metric space, (X, Y): =
inf {p{x, ¥ xe ¥, ve ¥V},

In general, points of the space are denoted by small Latin letters, sets hy
capital Latin letters, families of sets by capital script letters, and properties
of families of sets (i.e., families of families of sets) by capital Gothic letters,
Small Greek letters are used for real numbers, indices, and cardinalities, and
sometimes small Latin letters are also used for these purposes. Variations
from this notational scheme are clearly indicated,

1. Proofa of Helly’s theorem. As stated in the Introduction, Helly’s theorem
deals with two types of families: those which are finite and those whose
members are all compact. Though the assumptions can be weakened, some
care is necessary to exclude such families as the set of all intervals 10, 8} for
8 > 0 or the set of all half-lines [a, o[ = B'. For a family of compact convex
sets, the theorem can be reduced at once to the case of finite families, for if
the result be known for finite families then in the general case we are faced
with a family of compact sets having the finite infersection property (that is,
each finite subfamily has nonempty intersection), and of course the intersection
of such a family is nonempty. This is typical of the manner in which many
of the results to be considered here can be reduced to the case of finite
families. The essential difficulties are combinatorial in nature rather than
topological, and whenever it seems convenient we shall restrict our attention
to finite families. The reader himself may wish to formulate and prove the
extensions to infinite families. {(See also Klee [6] for intersection properties
of infinite families of noncompact convex sets.)

For a finite family of convex sets, Helly's theorem may be reduced as
follows to the case of a finite family of {compact) convex polyhedra: Suppose
2% is a finite family of convex sets (in some linear space), each n + 1 of
which have a common point. Consider all possible ways of choosing # + 1
members of %7, and for each such choice select a single point in the inter-
section of the # + 1 sets chosen. Let J be the (finite) set of all points so
selected, and for each K¢ %" let K' be the convex hull of KnJ It is
evident that each set K’ is a convex polyvhedron, that each n + 1 of the sets
K' have a common point, and that any point common to all the sets X' must
lie in the intersection of the original family .

We turn now to some of the many proofs of Helly’s theorem, with apologies
to anyone whose favorite is omitted. (Some other proofs are discussed in §84
and 9.) It seems worthwhile to consider several different approaches to the
theorem, for each adds further illumination and in many cases different
approaches lead to different generaiizations.

Helly’s own proof [1] depends on the separation theorem for convex sets
and proceeds by induction on the dimension of the space. (Essentially the
same proof was given by Kdénig [1].) Among the many proofs, this one
appeals to us as being most geometric and intuitive, The theorem is obvious
for R’. Suppose it is known for £*’, and consider in RB" a finite family % of
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at least » + 1 compact convex sets, each # + 1 of which have a common point.
Suppose the intersection #.2%" is empty. Then there are a subfamily & of
% and a member A of ¥ suchthatz ¥ = @ bute{F ~{A}) =M = @.
Since A and M are disjoint nonempty compact convex subsets of R*, the
separation theorem guarantees the existence of a hyperplane H in R" such
that A lies in one of the open halfspaces determined by H and A lies in the
other, {To produce H, let || || be a Euclidean norm for R*, let x and y be
points of 4 and M respectively such that || x — yIl = p{A, M): = inf {J}a — m||:
ae A,me M7}, and then let H be the hyperplane through the midpoint {x + y}/2
which is orthogonal to the segment [x, y]. (See Figure 3.) Now let J denote
the intersection of some » members of F ~{A}. Obviously J> M, and
since each # + 1 members of .2%" have a common point, J must intersect A.

H

FIGURE 3

Since f is convex, in extending across H from M to A it must intersect H,
and thus there is a common point for each n sets of the form G N H with
Ge % ~{A4}y. From the inductive hypothesis as applied to the (n - 1)-
dimensional space H it follows that M N H is nonempty, a contradiction
completing the proof.

Radon’s proof [2] is based on the result stated above as Radon's theorem.
To prove this result, suppose p,, ---, p. are points of B* with mz » + 2.
Consider the system of » + 1 homogenecus linear equations,
ir;=0=§.feﬂ lz2j<n,

i

i=1

where p; = (pl, +++, p1) in the usual codrdinatization of B*. Sincem > n + 1,
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the system has a nontrivial solution (r,, ---,7.). Let {/ be the set of all ¢
for which r; 2 0, V the set of all ¢ for which =; <0, and ¢: = Tigpri > 0.
Then Jier r: = —¢ and Zieer (2Od P = Ziev (—vifc) i, completing the proof
of Radon’s theorem.,

Now to prove Helly’s theorem for a finite family of convex sets in R*, we
observe first that the theorem is obvious for a family of » + 1 sets. Suppose
the theorem is known for all families of 7 — 1 convex sets in R, with j =
# + 2, and consider in &* a family %~ of j convex sets, each n# + 1 of which
have a common point, By the inductive hypothesis, for each A€ .5 there
is a point p, common to all members of .24~ ~ {A}, and by Radon’s theorem
there is a partition of .%" into subfamilies .5 and % such that some point
z is common to the convex hulls of {ps: Fe % } and {ps: G € ¥} (see Figure
4, where & ={A,(} and ¥ = {B, D}). But then zex_ 2" and the proof is
complete.

FIGURE 4

The literature contains many other approaches to Helly’s theorem. Some
of the more interesting may be described briefly as follows:

Rademacher-Schoenberg {1] and Eggleston (3] employ Carathéodory’s theorem
and a notion of metric approximation,

Sandgren [1] and Valentine {9] employ Carathéodory’s theorem and the
duality theory of convex cones; Lannér's use of support functionals [1j leads
also to application of the duality theory.

Bohnenbiust-Karlin-Shapley {1} employ Carathéodory’s theorem to prove a
result on convex functions from which Helly's theorem follows (see 4.5).
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Hadwiger {2; 5] obtains Helly's theorem and other results by an application
of the Euler-Poincaré characteristic, which he develops in an elementary
setting.

Helly [2] proves a topological generalization by means of combinatorial
topology (see 4,11).

R. Rado {2] proves an intersection theorem in a general algebraic setting
and deduces Helly’'s theorem as a coroflary (see 9.4),

Levi’s axiomatic approach [1] is based on Radon’s theorem (see 9.3).

Additional proofs of Helly's theorem are by Dukor [1], Krasnosselsky [2],
Proskuryakov [1], and Rabin [1]. For our taste, the most direct and simple
approaches to Helly’s theorem are those of Helly and Radon described earlier,
However, each of the many proofs throws some light on the theorem and
related matters which is not shed by others. As is shown by Sandgren [1]
and Valentine [9), the duality theory provides efficient machinery for study
of Helly’s theorem and its relatives, The approach by means of combinatorial
topology leads to many interesting problems but remains to be fully exploited,

We have indicated the close relationship of Helly’s theorem to the theorems
of Carathéodory and Radon. In fact, each of these three theorems can be
derived from each of the others, sometimes with the aid of supporting hyper-
planes and sometimes without this aid, and each can be proved “directly” by
means of induciion on the dimension of the space (with the aid of the support
or separation theorem). Perhaps the inter-relationships could best be under-
stood by formulating various axiomatic settings for the theory of convexity,
and then studyving in each the interdependence of these five fundamental
results: Helly’s theorem, Carathéodory's theorem, Radon’s theorem, existence
of supporting hyperplanes at certain points of convex sets, existence of
separating hyperplanes for certain pairs of convex sets. Levi [1] makes a
small step in this direction, and §9 describes several generalized convexities
from which the problem might he approached.

This seems a good place to state a sort of converse of Helly's theorem, due
to Dvoretzky [1]. Let us say that a family of sets has the $.-property provided
the intersection of the entire family is nonempty or there are # 4+ 1 or fewer
sets in the family which have empty intersection. Helly's theorem asserts
that each family of compact convex sets in £" has the 9,-property. Of course
the $.-property does not characterize convexity, for a family of nonconvex
sets in R™ may have the D.-property “by accident” {see Figure 5). However,
Dvoretzky’s theorem may be regarded as saying that if a family of compact
sets in R" has the £,-property by virtue of the linear structure of its members,
then all the members are convex,

DvoreTzKY's THEOREM. Suppose {K.:tel) is a family of compact sels in R"
none of which lies in a hyperplane. Then the following two assertions are
equivalent:

all the seis K, are convex;

if (for each ¢ J is affinely equivalent lo K,, then the family {J.:c¢el} has
the H.-property.
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FIGURE 5

An example may be helpful. Each of the familjes 5a, 5b, and 5c in Figure
5 consists of four sets (all but one convex), obtainable by suitable translations
from the members of 5a. The families 5a and 5b have the $,-property because
of their position rather than by virtue of the linear structure of their members.
The family Sc lacks the £,-property.

2. Applicationg of Helly's theorem. We may distinguish two types of
applications of Helly's theorem, although the distinction is somewhat artificial.
It is used to prove other combinatorial statements of the general form: Jf a
certain type of collection is such thai each of ils k-membered subfamilies has a
ceriain property, then the entire collection has the property. And it is used to
prove theorems which are not explicitly combinatorial in statement, but in
which a property of a class of sets is established by proving it first for certain
especially simple members of the class, and then stepping from this special
case to the general result by means of Helly’s theorem. The same description
applies to applications of Carathéodory’s theorem. We shall give several
examples of applications of Helly’s theorem, with references and comments
coliected at the end of the section.

2.1. Suppose Z5" is a family of at least n +1 convex sets in R, C is a
convex set in R, and S5 is finite or C and all members of 25 are compact.
Then the existence of some translate of C which intersects lis contained in;
contains] all members of 257 is guaranieed by the existence of such a lranslale
Jor each n + 1 members of 2¢.

Proor. For each Ke . 2f", let K' := {xe R":(x + CK}, where » means
“intersects” or “is contained in” or “contains”. Then each set X' is convex
and the above hypotheses imply that each n + 1 of the sets K’ have a com-
mon peoint, By Helly’s theorem, there exists a point zeﬂ“x K’ and then
{z + Ok for all Ke 2¢,

A common transversal for a family of sets is a line which intersects every
set in the family.

2.2, Let &7 be g finite family of parallel line segments in R:, each three of
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which admil a common transversal. Thew theve is a bransversal contnon to alfl
members of 7.

Proor. We may suppose .57 to consist of at least three members and thit
all segments are parallel to the Y-axis; for each segment Se.% let Cx denote
the set of all points (&, 1€ R® such that § is intersected by the line y =
cax + . Then each set Cs is convex and each three of such sets have a
common point, whence by Helly's theorem there exists a point (e, o) € [Y 4¢ S'C.s'.
The line ¥ = ayx + 5 is 3 transversal common to all members of .47,

2.3. If @ conrex scf in R is covered by a finite family of open or closed half-
spaces, thei il is covered by some 1 + 1 or fewer of these halfspaces.

Proor. Suppose, more generally, that .+~ is a finite family of sets in R*
covering a convex set C, and that for each Fe & the set F:=C~Fis
convex. Then {F': Fe "} is a finite family of convex sets whose inter-
section is empty, s0 by Helly’s theorem there are # + 1 or fewer sets in this
family whose intersection is empty. This completes the proof.

2.4, Two finile subseis X and Y of R™ can be sirictly separated (by some
hyperplane) if and onlv if for cvery sel S cousisting of at mosi n + 2 poinls
From X UY, dhe sets SN X and SN Y can be strictly scparaied.

FProor. We may assume that X U VY includes at least n + 2 points. For
each x; = (x', -, 2 e X and ». = (¥'. .-, ¥") eV, let the open halfspaces [,
and @, in R"'' be defined as follows:

S = {j SRCTIP ISEREND M S i iﬂ,-xi>0},
1

Q. = {Jt: do + i;-’?f-"i < 0} .

By hypothesis, each n + 2 members of the family {/,:xe X} U {Q, . rve Y}
have a common point, and hence by Helly’s theorem there exists A€ (N, SO N
(N,e, €. Then the sets X and Y are strictly separated by the hyperplane
{ze R": 30 42" = — ).

When # and v are points of a set X < R, v is said to be visible from 2 {(in
X} provided [#, v] c X.

25. Let X be an infinile compact subset of R, and swppose that for each
n+ 1 painds of X there s a point from which all n + 1 are visible. Then the

set X Is starshaped (that is, theve is a poinl of X from which all points of X
are visible).

ProoF. For each e X, let V, = {y:[x, v} = X}. The hypothesis is that each
n+ 1 of the sets ¥, have a common point, and we wish to prove that
N, Ve # @. By Helly’s theorem, there exists a point y& () ., conv V.,
and we shall prove that yef),., V.. Suppose the conirary, whence there
exist ve Xand ne [y, ] ~ X, and there exists x' € X N [, x} with [, 2’ [ N X = 3.
Further, there exist we lir, x| such thatliw — x'|} = (1/2)p({u}, X}, and r € [#, w]
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and x,€ X such that |}x, — v]| = p({&, o], X). Since a, is a point of X nearest
to v, it is evident that V,, lies in the closed halfspace @ which misses ¢ and
is bounded by the hyperplane through x, perpendicular to [v, x,). But then
yeconv V, « @ and Ly% = =/2, whence /xwy <=xf2. Since p({v}, X) =
ol{w}, X) < pl{u}, X), it is clear that v # « and hence some point of {x, v| is
closer to x, than » is. This contradicts the choice of ¢ and completes the
proof.

The preceding five results have all illustrated the first type of application
of Helly’s theorem. We now give three applications of the other sort, in which
the theorem is not apparently of combinatorial nature, but nevertheless Helly’s
theorem is very useful.

26. If Xis aset in E* with diam X £ 2, then X lies in a (Euclidean) cell
of radius [2nf(n + D1 If X does not lie in any smaller cell, then cl X con-
lains the verlices of a regular n-simplex of edge-length 2,

FProor. We present two proofs of this important result. The first is logically
simpler and shows how the theorems of Helly and Carathéodory can some-
times substitute for each other in applications, The second is more under-
standable from a geometric viewpoint. By combining aspects of these two
proofs, one can arrive at a third proof which is easily refined to yield the
second equality of 6.8 below.

By Helly’s theorem (or 2.1), 2.6 can be reduced to the case of sets of *
cardinality =« + 1. For consider X < E™ with card X =z n + 1, and for each
xeX the cell B.: = {y: 1y — x|| = [Znin + 1}, If 26 is known for sets
of cardinality =# + 1, then each »# + 1 of the sets B, have a common point,
whence [, B: is nonempty by Helly’s theorem and the desired conclusion
follows.

Now suppose X © E® with card X £ # + 1. Let v denote the center of the
smallest Euclidean cell B containing X and let »(X) be its radius. With
r:=rlX), let

(20, oy amy s = {x€ X: 1y — 2}l =},

where m = n. It is easily verified that yeconv {z, ++-, 2.} and we assume
without loss of generality that y = 0, whence 0 = 35" a2 with X} a; = 1 and
always «; 2 0. For each i and j, let dij: = || z: — z;{| < 2, whence di; = 2»* —

2(z;, z;). For each j,

1—a; = a2 iﬂsdf‘fﬂ

inki v
=2 — (i aiZ;, z,-)/z =2 R

and summing on j (from 0 to m < #n) leads to the conclusion that w2
{m + )2, whence

2 < 2

2
r e .
Twm+l1T n+1
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Further, equality here implies that m =#n and d.; =2 for 1 7 ¢ j, =0 the
proof is complete.

In the above paragraph, the assumption card X £ u <+ 1 (justificd by Helly's
theorem) was used only to insure that the point y € conv X could be expressed
as a convex combination of n# + 1 or fewer points of X. But this is also
insured by Carathéodory’s theorem, so the above proof could also be based
on the latter.

The second proof of 2.6 is by induction on the dimension. For £', the
theorem is trivial. Suppose it is known for E*™' and consider a set X< E*
with card XY= nu+ 1. Let v, B, and #X) be as above, If veconv Z for some
Z &% X, then the proof is completed by the inductive hypothesis, for 5 is then
the smallest cell containing Z. (It is easily proved thatif yeéconv Zand pe E”
~ f v}, there exists z€ Z with ||z — ¥l < |z~ pll. This is equivalent to the
lemma mentioned at the end of 9.9 below.))

Hence we may assume that card X = # + 1 and veintconv X, Now let /
denote the family of all {n# + 1}-pointed sets X < E" {with diam X £ 2) for
which A is maximal. By compactness, 7 is nonempty, and clearly Xe ¢
implies diam X = 2. Consider a set {x,, ---, x,}€.¢ and suppose

min {llx;, — x|} :02i<isnt=llaxe—nll <2.

Then it is not difficult to find another point xy near x, such that {jx, — 5, |! <
Hxi— 2l <2, flae— )i =1las—x1l for i>1, and #{x, -, 2.0 >
r({%s, *++, %»}). But of course {xq, --+, x.} € ¢ and the contradiction completes
the proof.

2.7. If C is a convex body in R, there exists a point 2 € C such that for each
chord [, v} of C which passes through 2,1z — wlflle — all = nf(n + 1).

Proor. For each point xe C, let C.: = x + n(n + 1)7(C — x). We claim that
ﬂl,.ec C, # @, and to prove this it suffices (in view of Helly’s theorem) to
show that if x, «-+, 2, are points of C, then (), C;, includes the point y: =
{n + 17" 20 x;. This is evident, since for each j it is true that

» 1 n
v=x; + — s X Ex + C—xi).
. i ry né" ") it ot i

Now consider an arbitrary chord [, #1 passing through the point z € n,ec C..
Then zeu + nin + 17 (e, ] — u), whence z = ¢ + n{n + 1)7' 4y — n) for some
ie0,1] and |fz—wlifllv—all =antn + 7' < uln + 177F, completing  the
proof.

2.8. Let "/ be an additive family of sels which includes all open halfspaces
in R" and suppose ¢ is a function on .5/ to {0, oo which satisfies the following
conditions:

a®. IFX,Ye. W, then dlX U Y) 2 p(X) + 2y

b iF X, Ye. o with XY, then p(X) £ (Y,

¢’ there is a bounded set Bc R” such that R* ~ Be o and p(R*~ B) <
0+ 'R, Then there exists a point x* ¢ R* such that p(J) 2 (1 + D7 (R™
Tor cachopen halfspace [ containing x*.
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Proor. We assume without loss of generality that #(R") =1. Let _# de-
note the set of all open halfspaces in R® and for each J¢ j let J' denote
the closed halfspace R* ~ J. Let ¥ denote the set of all Ge & such that
#G) < (m+ 1Y% Then for any # + 1 members G,, ---, G, of & we see from
a’ that (L) G) £ 306 (G < 1, whence \U; G; # R* and )y G! # . (Similarly,
the theorem is trivial if ¥ has fewer than # + 1 members,) It follows from
Helly’s theorem that every finite subfamily of {G':Ge &} has nonempty
intersection. Now with B as in ¢°, it is easy to produce a finite subfamily
S5 of _Z such that the intersection MNeeg F’ is bounded and contains B.
For each F¢ & we have FC R"~ [, 5 F' c R* ~ B, whence from b° and
¢’ it follows that ¢(F) < #{R" ~ B) < {(# + 1)”' and consequently Fe ¥ . Thus
{G':Ge &Y} is a family of closed sets with the finite intersection property,
and each set in the family intersects the compact set [] reg ¥ . Hence there
exists a point x* €[,y G’ and this completes the proof of 2.8.

* * * * * * * *

From the eight examples above, it can be seen that Helly’s theorem is not
only one of the most interesting results but also one of the most important
tools in the study of finite-dimensional convexity. For other applications of
Helly’'s theorem, see Yaglom and Boltyanskii [1], Rademacher-Schoenberg [1],
Hadwiger-Debrunner [1; 3], and also some of the references below.

Theorem 2.1 is due to Vincensini [2) and Klee [2], a related result to
Edelstein {1]. 1t is a generalization of Helly’s theorem, since the latter results
when C consists of a single point and » means “intersects” or “is contained
in”. For various covering problems, 2.1 is useful when the family C consists
of one-pointed sets. (See 2.6 and 6.2.)

The result 2.2 is due to Santalé (2] and is discussed also by Rademacher-
Schoenberg ({1l In a similar manner, Helly’s theorem for R° vields the follow-
ing “fitting theorem” of Karlin-Shapley [1): Suppose ¢, - - -, ¢ are real-valued
functions on a linear space E: x,, +--, x,, are points of E;a,, -+, a. are real
numbers; and ¢,, +--, ¢w are real numbers =0. Then the existence of a linear
combination of the ¢."s which fits each point (x;,a;) within « (i.e., {ox: —
a;| = &) 1s guaranteed by the existence of such a fitting for each # + 1 points
(x;, a;). The same paper of Karlin and Shapley contains a result similar to
2.3. (For other approximation theorems obtained with the aid of Helly’s
theorem, see Snirel'man [1].)

Theorem 2.4 is due to Kirchberger [1] and the above proof to Rademacher-
Schoenberg [1]. (See also Shimrat [1].) The original proof, which did not
employ Helly's theorem, is nearly 24 pages long.

Theorem 2.5 is due to Krasnosselsky [1] and related resuits to Molnar [5]
and Valentine [8].

Theorem 2.6 originated with Jung [1], while the first proof above is essenti-
ally Gustin’s reformulation [2] of Verblunsky's proof (1]. Blumenthal-Wahlin
[1] were apparently the first to apply Helly’s theorem to this sort of problem,
which is studied in more detail in §6. Carathéodory’s theorem was employed
by Eggleston [3].
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Theorem 2.7 was treated by Minkowski [1) for # = 2 and 5 — 3, and in the
general case by Radon [1]). However, these authors prove more, namely that
the centroid of C has the stated property. The above proof by means of
Helly’s theorem is apparently due to Yaglom-Boltyanskii {1]. Grinbaum (§6
of [18]} treats this and related matters in his discussion of Minkowski's
measure of symmetry.

Theorem 2.8 was established by B. H. Neumann [1] for R* and under more
restrictive hypotheses on g The above proof is an improvement of Rado's
reasoning in [1]. Griinbaum {13] has given a different proof based on Helly’s
theorem; however, for validity of his reasoning the mass-distribution should
be assumed continuous, See Griinbaum {16} for additional references and
related results.

3. The theorems of Carathéodory and Radon. We referred earlier to the
close relationships among the theorems of Carathéodory, Helly, and Radon.
As an additional illustration, we include the standard derivation of Carathéo-
dory’s theorem from Radon’s. Consider a set X < R® and a point ve€ conv X,
There are points r; of X and positive numbers «; such that T a; =1,
SV ax; =y, and ¥ cannot be expressed as a convex combination of fewer than
mt points of X. Suppose m = n + 2. Then by Radon’s theorem there exist
numbers B,, -+, Ba, not all zero but with zero sum, such that X7 8x: =0,
Let V={f <0} and let j € V be such that a;/8; = a:fp; for allie V', Then
we have

y= g[a,- + (aslBBx: |

where the coefficients are all =0, their sum is 1, and the coefficient of x;
is 0. Thus y is a convex combination of m — 1 points of X, The contradic-
tion shows that m = n + 1 and establishes the theorem of Carathéodory.

For other proofs of Carathéodory’s theorem, see Carathéodory [1]. Steinitz
[1], Rémes [1}, Bohnenblust-Karlin-Shapley [1], Eggleston [3], Ptak [2], and
others. For some recent refinements and related material, see Motzkin [4;5),
Motzkin-Straus [1}, and some of the references below.

Carathéodory’s theorem has many interesting applications (e.g., 2.6, 4.5, 6.8).
Ptak [1] applies Carathéodory’s theorem in a beautiful proof of Haar's theorem
on the uniqueness of best approximations, and other applications in approxima-
tion theory are those of Réngés 1}, Rademacher-Schoenberg [1], Mairhuber [1],
and Motzkin [5]. (See also Snirel’man [1].}

An especially simple and useful consequence of Carathéodory’s theorem is

3.1. In R", the convex hull of a compact sct is compact.

Proor. Let X be a compact subset of R" and let 4 denote the set of all
points @ = (s, -+ +, a,; € R"*" such that 3§ «; = 1 and always a; 2 0. For each
point

(a, 20 = (@, -, @, (X, -+, 1)€A X X,
let fia, x): = 24 aix;. Since f is continuous and 4 x X "*'is compact, the set
FlA x X" iscompact. But by Carathéodory’s theorem, /14 x X" =conv X.
The following result is due essentially to Steinitz {1] and has also heen
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proved (in various forms) by Dines-McCoy [1], C. V. Robinson [2], Gustin [1],
Gale {1}, and others. The proof below by means of Carathéodory’s theorem is
due to Valentine and Griinbaum.

3.2. If a point v is {nterior to the convex hull of a set X< R*, then y is
interior 1o the convex hull of some set of 2n or fewer points of X.

Proor. To simplify the notation, we assume without loss of generality that
v is the origin 0. With Qcint conv X, there is of course a finite subset ¥ of
conv X such that Ocint conv ¥ and we conclude the existence of a finite set
Vo X with Ocintconv V. Let J denote the set of all linear combinations of
n — 1 (or fewer) points of V. Since clearly =+ R, there exists a line L
through 0 such that L n f= {0}. Let w, and w, be the two points of L which
are boundary points of conv V and let H; denote a hyperplane which supports
conv V at w;. Clearly 0€lw,, w.] and w;€conv {(V n H;). By Carathéodory’s
theorem and the choice of L, w; can be expressed as a convex combination of
some # points #i, ---, 25 of V 1 H; but cannot be expressed as a linear com-
bination of fewer than # points of V. It follows that w; is interior to the
set conv {#1, -+ -, vi} relative to H;, and since 0¢ Jw,, w,[ we see that

Oeintconv {v], -, Uy, 21, +-*, tat.

This completes the proof.

Rademacher-Schoenberg [1] deduce from Steinitz’s theorem a relative of the
theorem 2.4 of Kirchberger [1].

Some recent work of Bonnice-Klee [1] exhibits the theorems of Carathéodory
and Steinitz as manifestations of the same underlying result. For a subset
Z of B" and an integer j between 0 and #, define the j-inferior int; Z as the
set of all points y such that for some j-dimensional flat Fc R", ¥ is interior
to ZNn F relative te F. Then of course int, Z = Z and int, Z=int Z. The
theorem of Bonnice and Kiee is as follows:

33. If Xc Rand yeint;conv X, then yeint; conv Y for some set Y consisi-
ing of at most max{2j, n + 1} poinits of X.

Now for a positive integer 7 and a set X in a linear space, let Hi{X) de-
note the set of all convex combinations of j or fewer elements of X. Then
of course conv X = U;’_l Hi{X). On the other hand, the convex hull conv X
can also be generated by iteration of the operation H; for fixed j > 1. That
is, conv X = Ui, H¥X), where H}{(X): = H{X) and (for {>1) H{(X): =
H{H;'(XY. It is natural to ask how many times the operation H; must be
iterated to produce the convex hull of a set in R*. Thecase fzn+1is
settled by Carathéodory’s theorem. The case j = 2 was treated by Brunn {1}
and in subsequent years by several other authors (Hjelmslev [1], Straszewicz
[1], Bonnesen-Fenchel [1}, Abe-Kubota-Yoneguchi (1]), However, the question
becomes trivial (modulo Carathéodory’s theorem) in view of the following
almost obvious fact:

34, HAHJ(X)) = Hiu(X).
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From this it follows (as noted by Bonnice-Klee [1]) that if X< R and j,j.--- j. "
n+ 1, then H; (H;, -+ (H;, (X)) = conv X; conversely, if X is the set of ali
vertices of an #-simplex and j,j: - -+ j. = n, then H; (H;, -+ - (H; (X)) ) # conv X.
(Related problems on the generation of affine hulls are much more complicated.
See Kiee [B].)

Carathéodory’s theorem is the best possible in the sense that if the number
17 + 1 is reduced, the theorem is no longer true for alf sets X < R”. However,
the theorem can be sharpened when attention is restricted to special classes
of subsets of B", such as those which are connected {(3.5) or have certain
symmetry properties (3.6). A set in A" is said to be conwvexly conmnected
provided there is no hyperplane H in R" such that the set misses H but
intersects both of the open halfspaces determined by H. Results of Fenchel
[1], Stoelinga (1], Bunt [1], and Hanner-Ridstrom [1] may be stated as follows:

3.5. Suppose the st X < R is lhe union of n connected sels or is compact
and the union of n convexlv connected sels. Then cach point of conv X is a
convex combingtion of n or fewer poinis of X,

As is noted by Hanner-Radstrom [1], the conclusion of 3.5 may fail even in
E* if the set X is assumed merely to be convexly connected and to be bounded
or closed but not compact. For X < R let X&: = HyX) ~ H{(X), the set of
all points of conv X which do not lie in X or in any line segment joining two
points of X. Then for various bounded convexly connected subsets X of K?,
the set X2 may have any finite cardinality and it may be countably or un-
countably infinite (the latter proved by P. Erdos, using well-ordering). It is
easy to produce closed convexly connected subsets X of R* for which X2
consists of one or two points. Danzer has given a complicated example in
which X2 consists of three points. Are there other possibilities?

The following result of Fenche! [4] reduces to Carathéodory's theorem when
n = A

3.6. Suppose G is a group of linear isometries of E" onlo ilself, m is the
dimension of the sel M of all G-invariani points of E", and X is a subset of
E™ which is mapped inio ilsell by each member of G. Then each point of
Mn conv X lies in a sel conv Ugeng Jor some setl 'Y consisting of al most
m + 1 points of X.

It would be interesting to know just how much 3.3 can be sharpened when
the set X is subjected to various restrictions. From 3.4 and 3.5 it is evident
that conv X = H}(X) when X is as in 35 and jizn —1.

We turn now to some results and problems which were inspired by Radon’s
theorem. For each pair of natural numbers n# and », let f{n,#) denote the
smallest % such that every set of & points in R™ can be divided into » pair-
wise disjoint sets whose convex hulls have a common point. It follows from
Radon’s theorem that f{(un,2) =n + 2. The function f has been studied by R.
Rado [6] and Birch [1], whose resulis are as follows:

3.7. For each n and », f(n,¥) 2 (n + Ur — u, with equality when n=1 and
n=2 Alwavs F,n22fin -1, —nand fln,y crmin + 1) —n* —n + 1.
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The recursive inequality and determination of f(l1, 7} are due to Rado and
the other resuits to Birch. Birch’s argument employs Carathéodory’s theorem,
a fixed-point theorem, and the result 2.8 on measures in &*. Combining the
recursive inequality with the fact that fF(2,+) = 3r — 2, we see that always

fr,NE2 30— +n+2 (for rz2),

a bound which is sometimes better than ru(n + 1) — #° — n + 1, Other minor
improvements are possible, but all known results are far from Birch’s con-
jecture that perhaps always f(n,#) = (n + L)¥ — n. The above results imply
that 9 = (3,3 = 11 and 13 £ f(3,4) = 17, but the exact values of f(3,3) and
f{3, 4) are unknown.

Several other problems are implicit in the paper of Rado [6], and a result
related to one of these was obtained recently by Birch. For natural numbers
n and » with » < n, let b(n, r) denote the smallest number % (if one exists)
such that for each set of % points in R* there is an r-dimensional flat which
contains # + 1 of the points and intersects the convex hull of the remaining
points. Birch's result and its proof, not previously published, are as follows:

38, Forn=2r+ 1,00, ¥y=n+2; for n = 2r + 2, b(n, v) does not exist,

Proor. Suppose first that # = 2r + 1 and x,, - -, xx4: are points of &*. By
Radon’s theorem, there are real numbers a;, not all zero but with zero sum,
such that 37" aux; = 0. At least # —r 4+ 1 of the a’s have the same sign,
s0 we may assume that the numbers a;, ---, @s—ps, are all non-negative and
at least one is positive, With s: = 3 " a; > 0, we have

#=r+1 ntl3
Sh i = S (—aeyiss;,
i=1 F=n—r+1

and this point lies simultaneously in the setconv{x;:1 2/ =% —» + 1} and in
the smallest flat containing {xpn—r+2=<j=n+2} It follows that
bin,r) =n + 2, and a look at the n-simplex shows that b(n, ) > n + 1.

For the case n = 2r + 2 it suffices to check that if

A:={a’a2!a3)"',a”):ﬂ>0}CR“’

then A has the remarkable property that for any r + 1 points x,, ---, %, of A
{(with » < #/2 — 1), the r-flat through {x,, :--, x,} misses the convex hull of
A~{xy, -, %}

An example similar to 4 above was first given by Carathéodory [2]. It
established the following fact, later rediscovered by Gale [3] and Motzkin [3]:

39. For 2sm=k and 2m = n, R* conlains a convex polvhedron with k
vertices such thal each m of these vertices determine a face of the polyhedron.

For further information on polvhedral graphs, see the papers by Gale [5],
Griinbaum-Motzkin [2], and others listed by them. For an application of 3.9,
see 8.2+,

We should mention also another interesting unsolved problem which in-
volves choosing subsets of a finite set in such a way that certain convex hulls
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have emply intersection. For natural nambers 2 = u = », let b sy denote
the smallest number % such that in each set of £ points in general position
in B", there is an r-pointed set X which is convexly independent (no point of
X lies in the convex hull of the remaining points of X'). 1t is abvious that
(e, 1+ 1) = 1 + 1 and easy to verify that A(n, 2 + 2) = n 4 3. Erdos-Szekeres
{1] mention a proof by E. Makai and P. Turan that #2,5 =9, and they
establish upper bounds for A(2,») which are far from their conjecture that
B2,7y=2""+1. In a later paper (Erdos-Szekeres |2|) they prove that
hi2,ryz 25

De Santis’s proof (1] of his generalization of Helly's theorem is based on a
generalization of Radon’s theorem which applies to sets of flats in a linear
- space. We shall state a slight extension of the latter result, but this requires
further notation. For each finite or infinite sequence r. of integers with 0 £
= e £ .-, let Hra) denote the smallest integer & for which the following
is true: whenever F. is a sequence of flats in a real linear space, each F;
being of deficiency #;, then the set of all indices 7 can be partitioned into
complementary sets / and J such that the intersection (conv ., F) N
(conv U ¢, F5) contains a flat of deficiency & When no such & exists, define
&(ry) = oo, The following is a slight improvement of De Santis’s generalization
of Radon’s theorem.

3.10. If m is the smallest infeger for which v < m, then $ry) =¥y . When
this fails to apply, Elry) = oo,

It may not be obvious that 3.10 is a generalization of Radon’s theorem. To
see that it is, consider a sequence x,, ---, xx of points in R". Each point may
be regarded as a flat of deficiency #, so the corresponding sequence », ---, Iy
has always r; =#. When k2 n + 1, then  {in the statement of 3.10) is equal
to i + 1, and thus &(r,) = r... provided this is defined; otherwise &i{r,} = co.
It follows that when &k = 2 + 2 the set of indices {1, ---, &} can be partitioned
into complementary sets [ and J such that the intersection conv{x:ie/} N
conv {x;: j€ J} contains a flat of deficiency #; that is, the intersection is non-
empty.

By combining the ideas of 3.10 and 3.8, one may obtain further generali-
zations of Radon’s theorem. However, these appear to be of only marginal
interest.

4. Generalizations of Helly's theorem. This section contains some generali-
zations and other relatives of Helly's theorem, all in R" except for a few
supplementary comments. (See §9 for generalizations in other settings.) At
the end of the section we formulate some general problems which may serve
as a guide to further research in this area. Division of material between §3
and §4 is somewhat artificial in view of the close relationships between the
theorem of Helly on the one hand and those of Carathéodory and Radon on
the other. Nevertheless, it seems to be justified in that the two different
lines of investigation are different in spirit and lead to different generali-
zations.
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Helly’s theorem may be regarded as saying something ahout the “structure”
of certain families .2 of convex sets in R* for which .55 = . Specifi-
cally, it says that if 2% is finite or all members of %" are compact, then
there is a subfamily . consisting of at most # + 1 members of ..%¥  such
that = % = . This suggests the attempt to find theorems which say some-
thing ahbout the structure of every family 2%~ of convex sets in R* for which
7.4 = @, and which has Helly’s theorem as a consequence. The known
partial results in this direction are summarized in a separate report by Klee
|6], since they seem more akin to the infinite-dimensional considerations. How-
ever, the relevant papers are listed also in our bibiliography (Gale-Klee (1],
Karlin-Shapley [1], Klee {2;4), Rado [5], Sandgren [1}).

As applied to certain families 2%~ of convex sets, Helly’s theorem asserts
the existence of a point x common to all members of %". The set {x} may
be regarded, for j = 0, in any of the following six ways:

j-dimensional convex set . ed
.. . . 1s contained in
as a 1 j-dimensional flat which { 0 } each member of %",

. . intersects
{/ + D-poinied set

In each of the six cases, we may ask for conditions on a family 7~ which
assure the existence of such sets corresponding to other values of j. Tweo
of these questions are redundant, for there exists a j-dimensional convex set
intersecting all members of %" if and only if there exists a j-dimensional
flat intersecting all members of 2F", and (since the members of .25 are
convex) for j = 1 there exists a (7 + 1)-pointed set which is contained in all
members of .2 if and only if there exists a 1-dimensional convex set which
is contained in all members of 2#”. The remaining four questions have all
led to generalizations of Helly's theorem, The most recent of these is the
following theorem of Griinbaum [18]:

41, Let g, =n+l,gn,=2n,9n,N=2n—3 for l<j<n, and
g, my=n+ 1. If 25 is a finite family of at least g(n, i) convex sels in R"
and each y(n, jY members of i have an at-least-j-dimensional interseclion, then
the intersection n. %" is al least j-dimensional.

When j =0, this is merely Helly's theorem. Examples show that for each
choice of j and # (with 0 < j £ u), g(n, /) is the smaliest integer which has
the stated property.

The following result is due to De Santis {1}

42. If 2 is a finite family of at least n + 1 — § convex subsets of R" and
the intersection of each n + 1 — j members of %~ contains a j-dimensional flat,
then =87 contains a j-dimensional flat.

This also becomes Helly’s theorem when j = 0, and the integer # 41— ig
the smallest which has the stated property. The proof of De Santis is based
on an analogue of Radon’s theorem (see 3.10), and Valentine [9] has given a
proof by means of the duality theory. As De Santis has noted, his theorem
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may be stated in the following form which is independent of the dimension
of the space: Suppose .2 is a finile family of convex sefs in a real lincar
space E (which may even be infinite-dimensional) and the ddersection of cacl j
members of 57 contains a flat of deficiency < j in E. Then =527 confains a
Aat of deficiency < j.

Theorems 4.1 and 4.2 are especially satisfactory generalizations of Helly's
theorem, since in each an intersection property of the entire family %7
follows from the assumption of that same property for certain subfamiiies of
2%7. Now, turning to another of the four questions mentioned above, suppose
we wish to produce for some f 2 1 a j-dimensional flat which intersects all
members of .2¥". This is the problem of common transversals discussed in §5.
Simple examples show that the existence of a transversal common to all
members of %7 is not assured merely by assuming this for certain subfamilies
of %7, Indeed, for each m = 3 there are m congruent line segments in the
plane such that each m — 1 of them admit a common transversal but no line
intersects all m of them (Santald [1]). (For other examples see the references
cited in §5.) The only true generalization of Helly’s theorem in the direction
of common transversals is the following result of Horn [1] and Klee [1]:

4.3. For integers 127 <n+1 and a family &7 of at least j compact
convex sels in R", the following three asserlions are equivalent:
a®, each j members of & have a common poind;

b’ each flat of deficiency j — 1 in R" admils a translate which intersets all

members of 57,
ki)

c'. each flat of deficiency j — 2 in R" lies in a flal of deficiency j — 1 which
infersects ali members of 2§ .

The two-dimensional case had been considered earlier by Horn-Valentine
[1i. For the general case, Horn [1] (and later Karlin-Shapley [1]) proved that
a® implies <%, and the rest is due to Klee [1}. Alternate proofs are given by
Hadwiger [4] and Valentine {8]. Klee's proof depends on the following
description of the “hole” in K" which is “surrounded” by j + 1 open convex
sets Cy, -+-,C; such that each j have a common point but no point is com-
mon to all § + 1: there is @ flal F of deficiency j such that the set Ui Ci misses
F but intersects every half-flat bounded by F in a flal of deficiency 7 — 1 con-
taining F.

For j = n + 1 each of the conditions b’ and ¢’ above asserts that .25~ % &,
and thus Helly’s theorem is obtained. For j =2 =5, the theorem asserts
that if there is a common point for each two members of a family 55~ of
compact convex sets in K°, then each line L in R is parallel to some line L'
which intersects all members of .2¥" and each point x€ R® lies on a line X
which intersects all members of %7 (see Figure 6). Regarding the lines
paraliel to a given line as the pencil of lings through a certain point at
infinity, we see that the real projective space is a natural setting for 4.3.
The theorem may also be approached by means of spherical convexity (Horn
(1]). (See 9.1 and 9.2 for a discussion of spherical and projective convexity.)

Now consider the fourth of the questions mentioned above: for j > 1, what
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FIGURE 6

conditions on a family ¥~ of convex sets in &* will assure the existence of
a j-pointed set which intersects each member of 27?7 (Cf. the discussion of
Gallai-type problems in 7.4+ and near the end of this section.} It is convenient
to employ the terminology of Hadwiger-Debrunner [2], in which a j-partition
of 2% is a partition of %" into § subfamilies each of which has nonempty
intersection. Under certain stringent geometric restrictions on %7, the
existence of a j-partition for ¥ is assured by the existence of partitions for
certain subfamilies of %% (see §7). However, an example of Hadwiger-
Debrunner [3] shows that for arbitrarily large integers m there exists a family
% of m plane convex sets such that each proper subfamily of %" admits
a 2-partition but .. itself does not. It seems probable that such a family
exists for each m = 8. Hadwiger-Debrunner (2] approach the problem of j-
partitions by means of the following theorem.

44, For r = jin — 1) + 2, the existence of a j-partition for a finite family
S of convex sets in R is implied by the condition thal among each r + j — 1
sels in 57, some r have a common poinl. The same condition does not imply
the existence of a (j — 1)-partition.

When =1 and » =n + 1, this reduces to Helly's theorem, The result
may be formulated somewhat differently, as follows: for integers r, s, and n,
let fir,s, n) denote the smallest integer j for which a j-partition is admitted
by each finite family 2%~ of convex sets in R such that among each s

AT

members of 247, some » have a common point. Then 4.4 asserts that
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Jirys,m)=s—r+1 whenever r £sand wr=z(n—Ds+ e+ 1. It is noled
by Hadwiger-Debrunner [2] that J(r,s,#) =co when s € # and that always
Jir,s,n) 2 s—r» + 1. There remains the problem of completely determining
the numbers f(r,s, n), which is solved by 4.4 for # = 1 but not even for n=2.
In fact, the above result yields only J(4,3,2) = 2, while examples of Danzer
(in Hadwiger {12], Hadwiger-Debrunner [3]) and Griinbaum [9] show that
J4,3,2) 2 3. Danzer's example consists of six congruen! triangies, while
Griinbaum’s consists of nine fransiates of an arbitrary centrally symmetric
strictly convex body in R® It is unknown even whether J(4,3,2) is finite.
(For a generalization of the functions J, see 7.44.)

Yet another generalization of Helly’s theorem arose in connection with the
theory of games. It is due to Bohnenblust-Karlin-Shapley [1), and various
applications to Karlin-Shapley [1].

45, Suppose C is a compact convex set in R" and @ is a finile family of
conlinuous convex functions on C such that for each x € C there exisis ¢ € @ with
o(x) > 0. Then there are positive numbers ay, -+, a; with § £ n and members
o, 05 of @ such that Shawdx) > 0 for all xeC.

To deduce Helly’s theorem from 4.5, let .2¥" be a finite family of compact
convex sets in R*, C a compact convex set containing their union, and for
each e 2F and xe C let ox{x): = p{{«}, K). Then if the intersection n._ %"
is empty, the set of functions @: = {px: Ke %"} satisfies the hypotheses of
4.5 and hence there exist positive a; , - -+, a; With j £ # such that 2} awpx (x) > 0
for all xeC. This implies that M} K: = @ and Helly’s theorem foliows.

A well-known topological theorem of Knaster-Kuratowski-Mazurkiewicz [1]
has the following corollary, of which an elementary proof was given by Klee
[11: If j + 1 closed convex sets in R™ have convex union and each j of them
have a common point, then there is a poini common lo all. Using this fact as
a lemma, Levi [2] proved:

4.6. Suppose F is a finite family of at least n closed convex sels in R* and
5 has the following two properties: Wy, : the union of any n + 1 members of
# has connected complement in R*;, 3,. each n members of ¥ have a
common point.

Then there i{s a point common to all members of F .

This may be regarded as a generalization of Helly's theorem, since W.4, is
obviously implied (for # > 1) by the condition that the members of & are
bounded and convex and each »n -+ 1 have a common point.

The above lemma was extended in another way by Berge [2] and Ghouila-
Houri [1}, though their resutts do not formally imply Helly's theorem. Rather
than stating in full the result of Ghouila-Houri [1], we state its two most
interesting corollaries as

4,7, Suppose C,, ---, Cn are closed convex sels in a topological linear space
and each k of the sefs have a common point, where 1<k <m. If UTC:is
convex, then some k+ 1 of lhe sels have a common point. If k=m—1 and



124 LUDWIG DANZER, BRANKO GRUNBAUM, AND VICTOR KLEE

NP C:= @, then each m — 1 of the sels have a common point in every closed
set X such that XU UT C: is convex.

The second part of 4.8, describing the “hole” surrounded by the sets in
question, may be compared with the description in 4.3+. The result 4.7 can
also be approached by means of the Euler characteristic (Hadwiger [5], Klee
[7D.

For a family & of sets, let us define the Helly-number ol 5 ) to be the
smallest cardinal k& such that whenever ¥ is a finite subfamily of ¥ and
% = @ for all & <% with card .%" <k +1, then 2% = @. Helly's
theorem asserts that «(2"™)=# + 1 when " is the family of all convex
subsets of RB*. The notion of Helly-number is especially appropriate for
families ¥ which are intersectional in the sense that #%” € F forall & c F .
For example, Griinbaum [10] defines a measure of sonconvexity 4(X)z 0 for
each compact Xc E®, with 4(X) =0 characterizing the convex sets and
MX) < oo if and only if X is the union of a finite family of pairwise disjoint
compact convex sets. He proves

4.8. For finite ¢ 2 0, let & (n, ¢) denote the family of all compact sets X < K"
with A< e, Then & (n, <) is intersectional and has finite Helly-number.

Of course a(Z(m,0) =#n + 1. Griinbaum gives estimates for (% (n,¢)
and examples showing the impossibility of improvement in certain directions.
The following result was proved by Motzkin [2]:

49, Let .+ (n,d) denote the family of all varieties in (real) affine or pro-
fective n-space which are defined by one or nore algebraic equations of degree

<d. Then 7 (n,d) is intersectional and o{.# (n,d)) = (” : d

In seeking Helly-type theorems for various non-intersectional families &,
one may encounter difficulties caused by the fact that the intersections of
members of % can be structurally much more complicated than the individual
members. For such % , it may happen that the Helly-number (% ) is in-
finite and that a more appropriate notion is the Heliy-order a% ), defined as
the smallest cardinal £ such that whenever % is a finite subfamily of %
and @ # 257 ¢ F forall & c & withcard & <k + 1, then @ = z% ¢ & .
Note that always a%.% ) < a(.F ), with equality whenever & U {@} is inter-
sectional.

Now let %/ (n, j) denote the family of all nonempty subsets of ®* which
are the union of j or fewer disjoint compact convex sets. Then af (5, 1)) =
a’(%/(n,1)) = n + 1 by Helly’s theorem. An example of Motzkin (in the cor-
rection of Santalé [7]; see also §25 of Hadwiger-Debrunner [3]) shows that
a(Zn,2) = ¥.. However, Griinbaum-Motzkin [1] establish

4.10. Thefamily of all “twins” in E" has Helly-order 2n +2; ie., a"% (0, 2)) =
2n + 2.

The same result holds if “compact” is replaced by “open” in the definition
of %/ (n,j), but not if it is deleted. It is unknown even whether the family
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(2,3 of all “triplets” in R® is of finite Helly-order, but Griinbaum and
Motzkin conjecture, more generally, that a®(Z27/(n, 7)) = j{n + 1). Their paper
contains other intersection theorems in an abstract setting, with interesting
applications to convexity. In particular, they show that if .4 is a family
of subsets of R", and the intersection of each # members of &% is the union
of n or fewer pairwise disjoint closed convex sets, then =% is itself such a
union. {(This is a theorem of Hely-type in the sense described below.) ’

A nonempty compact metric space is called a homology cell provided it is
homologically trivial (acyclic) in all dimensions. In his second paper on inter-
section properties, Helly {2] employed Vietoris cycles and homology over the
integers mod 2 to prove

411, In R", the family of all homology cells has Helly-order n + 1.

A combinatorial form of this result appears on p. 207 of Alexandroff-Hopf
[1}. Helly actually proved a somewhat stronger formulation: If % is a
family of subsets of R,z is a homology cell for all & < % with card
Fan and € =0 for all € ¢ F with card & = n + 1, then =% is a
homology cell.

It is interesting to contrast the fate of Helly's topological Theorem 4.11
with that of its special case concerning the intersection of convex sets. For
the geometric theorem, many generalizations, variations, and applications were
found, but the topological theorem was nearly forgotten during more than
twenty years. Except in Helly’s paper [2]) and the book of Alexandroff-Hopf
[1], we were unable to find any use of it prior to Molnar’s paper {1] in 1956.

In R*, Helly’s topological theorem applies to simply connected compact sets.
Helly {2] gave an elementary proof for this case, and Molnar [1; 2] established
the following improvement: A family of at least three simply connected com-
pact sets in R® has nonempty simply connected inlersection provided each two
of its members have connected intersection and each three have nonempty inter-
section.’

Now for a metric space X, let %% X denote the family of all homology
cells in X which can be topologically embedded in R". From Helly’s result
it follows easily that &%.%,X) £ # + 2, whence of course n+1 £ a(ZFM™ =
1 + 2 for every s-dimensional manifold M". As observed by Molnar {3], the
2-sphere S? is the only 2-dimensional manifold in which the family of homology
cells is of Heliy-order 4. More generally, it is evident that a®(<%7,S") = n + 2,
and another result of Helly [2] (also p. 296 of Alexandroff-Hopf [1]} implies
that X contains a homology n-sphere whenever (2. X)=n + 2. (See Soos
1] and Molnér [4] for related material.)

? Using reduced Cech hamolegy groups with coefficients in an arbitrary field, J. Berstein

[1] has generalized Molnir's theorem as follows: If Ay, ---, Aw are compact subsels of
an nw-manijold M sueh that Ay U --- U Aw = M and such that for each k= n+1 and
Jor every by, -+, ix the set Ay 01 -+ 0 Ay, 18 (m — k)-acyelic, then every union of inter-

sections of the A, is oo-acyelic. In particular, the set AL -+ N Am i3 nonempiy and
w-geyelic. (Here {—1)-acyclic means nonempty and (-acyclic means connected.) See also
Jussila |1).
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There are many geometric problems in which the application of Helly’s
original intersection theorem (if possible at all) may require considerable
ingenuity, but to which Helly’s topological theorem can be applied quite
simply. Apparently this was first noticed by Griinbaum [11] in connection
with common transversals (see §5). Undoubtedly, many new fields of appli-
cability of Helly’s topological theorem remain to be discovered.

The topological intersection theorem and other results of Helly {2] are
closely related to the fact that if a space be covered by a finite family F
of sets all of whose intersections are homologically trivial, and all members of
F  are closed or all are open, thest the space is homologically similar to the
nerve N% . (For explicit formulation of one version of this result, see p. 138
of Leray {1] or §4 of Chapter IV of Borel [1}. A related result on the Euler
characteristic is given by Borsuk [3] and there are similar results involving
homotopy type (Borsuk [2], Weil {1]).) As an illustration, let us derive Helly’s
geometric theorem from these results and the fact that every subset of R" is
homologically trivial in all dimensions = 2. Let .%¥ be a finite family of at
least n + 1 compact convex sets in K", each # 4+ 1 of which have a common
point. Suppose #.% = @ and let # be the smallest number such that some
{k + 1}ymembered subfamily * of % has empty intersection. Since each k&
members of & have a common point, the nerve N¥° is isomorphic with the
(k — 1)-skeleton S*™* of a k-simplex. Since N¥ is homologically similar to
the union U7 of all members of &, it foliows that the (4 — 1)-dimensional
homology of Uis not trivial. But this is impossible, for Uc R"and k¥ —1 = ».

* * * * * * * * *

Helly's geometric theorem gives some information about “intersection
patterns” of convex sets in K", and additional information is supplied by the
result of Hadwiger-Debrunner {2] (4.4 above). It seems natural to ask what
is meant by “an intersection pattern of convex sets in £"” and, having settled
on a definition, to attempt to determine all such patterns. We suggest two
alternative but essentially equivalent definitions:

An inlersection pattern of convex sels in R® is the

nerve N# of a finite family &
{incidem‘e array A(F, -, F) of an ordered k-zupfe} of convex subsels of K.

In the first case, N% is an abstract complex whose vertex-domain is 5,
with & e N (i.e., & is the vertex set of a simplex in N5 ) if and only
if 1% = @. The problem is to characterize intrinsically the abstract complexes
which (up to isomorphism) can be obtained in this way. In the second case,
A(Fy, -+, F) is a function on {1, ---, &} to {0, 1} such that A, -+, &) =1
if and only if n;=l F., + @. The problem is to characterize intrinsically the
arrays which can be obtained in this way. Of course the two problems are
equivalent, but the different formulations may suggest different approaches.
It seerns that the ideas of Hadwiger [2; 5] might be useful here,

Notice that the desired characterizations must depend on the dimension of
the space, for with unrestricted dimension every intersection pattern is possible.
Helly’s theorem implies that for families in R" the complex N & is determined
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by its n-dimensional skeleton and the function A(F,, :--, Fi} is determined by
its restriction to k-tuples (i, ---,#) having at most n + 1 different entries.
Alternatively, one may consider in place of A(F:, ---,F,} the analogously
defined array M (F,, -, Fy) which is a function on {1, .-+, £}**" to {0,1}, and
expresses only the incidence of j-tuples of the Fi's for j £ # + 1. Further
restrictions are imposed by the result of Hadwiger-Debrunner (2]. However,
the problem of general characterization appears to be very difficult and is not
trivial even for the case of R'.}

The one-dimensional case was encountered by Seymour Benzer [1;2] in
connection with a problem in genetics, He was concerned with those % x &
matrices which have the form M{F,, ---, F;) for some k-tuple of intervals on
the line. Alternatively, one may ask for an intrinsic description of those
graphs G which are representable by intervals—that is, which can be realized
as the l-skeleton of a nerve N.% for some finite family % of linear
intervals. In this form, the problem was recently solved by Lekkerkerker-
Boland [1), whose result is as follows:

4,12, A finite graph G is representable by intervals if and only if it satisfies
the following two conditions:

(o) G does not contain an irreducible cycle with more than three edges;

(B) among any three vertices of G, at least one is directly connected fo each
path joining the other two.

They also characterize the representable graphs as those which fail to have
subgraphs of certain types, and they describe some practical methods for
deciding whether a given graph is representable by intervals.

We turn now to an abstract description of some of the types of problems
which arise in connection with Helly's theorem and its relatives. Suppose X
is a given space and P is a hereditary property of families of subsets of X.
That is, P is a class of families of subsets of X, and F < & e¢P implies
F eP. For each cardinal «, define the property P« by agreeing that & ¢ .
provided % e¢P whenever & ¢ ¥ and eard # <x+1. (Use of the
condition “card & < & + 1”7 rather than “card & < x” is motivated by the
feeling of Griinbaum and Klee that the Heliy-number aw,{%”") defined beiow
should turn out to be # + 1 rather than n 4+ 2. If this requirement were
abandoned, less awkward formulations would result from using “card % < «,”
a course favored by Danzer, We use “card .%# < &+ 17 rather than “card & =x”
in order to handle infinite as well as finite cardinals.)

A problem of Helly-iype is to find conditions under which % e, implies
S €%Pa, where x and 2 are cardinals with & < . The conditions may be on
the individual members of .5 as well as on the structure of % , and of
course will depend on X, %, « and 1. Essentially the same problem is often
viewed the other way around: Given X, %, conditions on % , and « [resp. 4],
what is the greatest 2 [resp. the smallest #] such that &% € P, implies F ¢ B\?

* It seems difficult even to determine all intersection patterns which are realized by
parallelotopes in B whose edges are parallel to the coordinate axes. Some special
aspects of this problem have recently been treated by Danzer and Grimbaum.

e
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A more general problem is said here to be of Gallai-type. Suppose X, R®,«, 2,
and conditions on % are given. Even though # e®. may not imply
F ek, it is clear that each & &%PB. can be split into subfamilies having
the property Pn. The problem is to determine the smallest cardinal ¢ such
that every family % which satisfies the given conditions and has property
B, can be split into ¢ (or fewer) subfamilies each having property P..

See 8.8+ for a still more general type of problem.

Problems of these types have been considered in the literature mainly for
convex subsets of linear spaces, and the remaining work is almost entirely
for spherical spaces {(see §9).°* Nevertheless, we believe that of the many
theorems reported here which can be formulated without linearity, most have
counterparts not only for the sphere but for any manifold. Of course the
property of special interest is that of having nonempty intersection.® We de-
note this by D, so that 5 €D if and only if #.% # @. The literature deals
only with problems in which & is given extremely small or i is given extremely
large. In fact %, is the simplest interesting property and in the other direction
P, (denoted henceforth by %.) is of special interest since when & €. a
compactness argument can often be used to show that % €. Note that
F eD, provided each two members of & have a common point and % €®.
provided .5 has the finite intersection property. In a sense ®. marks the
horderline between combinatorial geometry and general topology.

Existing results on the above problems involve principally the numbers
ax(Z), BE), and r.(&) which are defined below in terms of the property .
Note, however, that the definitions may be given for other properties as well,
and that some interesting problems can be formulated in this way. Let &
be a family of sets. Then:

the ith Helly-number an(Z) is the smallest cardinal « such that (% c &
and % €D, implies F €D;

the xth Hanner-number §.(%) is the largest cardinal 2 with 2 + 1 = (successor
of card &), and such that (& c & and F e®.) implies .F ey,

the eth Gallai-number (&) is the smallest cardinal g such that each & < &
which is in D. can be split into g (or fewer) subfamilies, each having property
Dee .

The Helly- and Hanner-numbers are dual in the sense that if card & z 2,
then ex(&’) = « if and only if f(&") = 4. Note also that ap (&) = a{&’), where
(&) is the Helly-number defined earlier in this section, and that ey (&) <
iff 78(2) = 1. Helly’s theorem asserts that if %™ is the family of all convex
subsets of R, then ap (™) =n+1 and B.(F") = W,. §7 discusses the
Hanner- and Gallai-numbers for certain subclasses of Z°° and describes the
problems of Hanner [1] and Gallai {in Fejes Té6th {38]) which motivated this
terminology.

¢ From an abstract combinatorial viewpoint, such problems have recently been studied
by Danzer.

5 Also of special interest is the property D of being disjoint. That is, Fef iff
Fin F: = @ whenever Fye€ #F with Fy #+ Fp. Cf. 8.6-88.
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5. Common transversals. An m-fransversal of a family of sets in B* is an
m-dimensional flat which intersects each member of the family. Thus Helly’s
theorem deals with O-transversals and Horn’s generalization 4.3 assures the
existence of m-transversals under certain conditions on the existence of 0-
transversals. The present section is devoted to the following problem, first
formulated by Vincensini {1]: For 1=m<#un—1 and j = 2, find conditions
on a family % of sets in &® which assure that if each j-membered subfamily
of 5 admits an m-transversal, then so does % . At present, only a little
is known about the case m = #n — 1 (see 5.1 and 5.2). All the other results
are for m =1, and some only for # =2, The literature abounds in examples
showing that even in R®, rather stringent conditions must be imposed (Frucht
(1), Griinbaum [1; 6}, Hadwiger [9), Hadwiger-Debrunner {1;3), Harrop-Rado
[1], Kijne [1], Kuiper [1], and Santal6 [1;2]).

Vincesini’s problem involves the manifold Fi,. of all sm-flats in R", While
F..o is of course identifiable with K", the manifolds F,.. are not contractible
for 1 £ m = n -1, and herein lies part of the difficulty. It seems that any
comprehensive study of m-transversals, seeking new theorems under mintmal
hypotheses, must take account of known results on the structure of F,,,. and
of the closely associated Grassmannian manifold Gayymsr of all {m + 1)-di-
mensional linear subspaces of R**!. For accounts of some such results and
references to others, see Steenrod [1] and Milnor [1].

The first significant resuits on common transversals were those of Santald
|1}, who proved

5.1. If &7 is a family of parallelotopes in R with edges parallel to the
cobrdinate axes, and an (n — V)-transversal is admitied by each subfamily & < &°
with card & < 2*'(n + 1), then F itself admits an (n — 1)-fransversal.

Santald’s proof is based on an anatogue of Radon's theorem. By extending
the methods of Hadwiger-Debrunner (1; 3] and Griinbaum [5; 6; 11}, Grinbaum
120] has recently used Helly’s theorem to obtain a generalization of 5.1, The
following terminology is convenient: A convex cone C is an assoeciaied coue
of a polyhedron P provided the vertex » of C is one of the vertices of P, and
C is the cone from v generated by P (i.e., C:= Upr v+ [0, 00lx—t)). A
polyhedron P’ is related to P provided each associated cone of P’ is an inter-
section of translates of associated cones of £. Then Griinbaum’s theorem is

8.2. Suppose P is a centrally symmelric polvhedron in R with 2p vertices,
and 57 1s a familv of polvhedra related lo P, If an (n — 1)-transversal is
admitted by each subfamily & < 57 with card & = pln + 1), then &7 itself
admils an (n — Y)-transversal.

Increasing the number p{n + 1) leads to a similar result without the as-
sumption of central symmetry. Even under additional restrictions on the
family &7, the bound in 5.1 is the best possible for # = 2. (See Frucht |1,
Santalé [2], and Griinbaum [6].} The best bounds in higher dimensions are
unknown,
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For other results on transversal hyperplanes, see the paper of Valentine
8] in this volume,

The rest of the section will be devoted to l-transversals,. We say that a
family % of sets has property ¥ provided % admits a l-transversal, and
property ¥; provided a 1-transversal is admitted by every subfamily consisting
of at most j members of % . The following result (Griinbaum [20) is a
partial converse of 5.2:

53. If K is a centrally symmelric conmvex body in R* and if there exists
7 < oo such that T; implies X for all families of homothets of K, then K is a polygon.

An early result of Santald [1] is

5.4. For a family of parallelotopes in R" with edges parallel to the cobrdinate
a.l’es, 3:2“—1}2” impk‘es i.

It would be interesting to find an extension (analogous to 5.2) of 5.4 to more
general classes of polyhedra,

A family 5~ of sets in R" is said to be separated if there exists a finite
sequence 5% = (H,, ---, Ha) of parallel hyperplanes in R* and an enumeration
(K., -, Kn) of Z£ such that each K; lies in the open set bounded by H.,
and H;.

As a direct application of Helly's topological theorem, Griinbaum [11] proved

5.5. Suppose & and 5% are as above, and for 1 =i=m let K be the
set of all points (u,v)e Hy, x Hy such that [u,v] intersects K;. If the sets K;
are all compact and convex and if the intersection of any 3,4,---,2n—2 of
the sets K* is a homology cell, then (for ") Tia- tmplies %.

From this he deduced

5.6. For a family of compact convex sels in R™ whose members lie in distinct
parallel hyperplanes, T,y implies T,

5.7. For a family of Euclidean cells in E" such that the distance belween any
two centers is greater than the sum of the corrvesponding diamefers, Fp..,
implies E.

The result 5.5 is an easy consequence of Helly's geometric theorem, and
was first proved for # = 2 by Santal6 [2] (see also Dresher [1], Rademacher-
Schoenberg [1]); 5.7 extends earlier results of Hadwiger [7] and Hadwiger-
Debrunner [38].

With ¥ and 527 as above, and j = 2, 2¥ is called f-simple provided each
j of the sets K" have connected intersection. From reasoning similar to that
of Brunn [2], it follows that every separated family of convex sets in R" is
3-simple. With the aid of this remark, Griinbaum [11] derived the following
from 5.5:

5.8. Fora 4-simple separaied family of compact convex sets in R®, T, implies k.

His examples show that none of these conditions can be dropped. It would
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be interesting to extend 5.8 to higher dimensions, and in particular to decide
whether connectedness of sets of the form n¢ K¥ implies that they are homol-
ogy cells.

There are some theorems on common transversals for infinite families of
sets which seem to have no counterpart for finite families. The following
results from Hadwiger's proof {8] of a weaker statement;

5.9. For a family of compact convex sets in E™ whose union is unbounded
while the diameters of ils members have finite upper bound, 3.y, implies 3.

We turn finally to R* for which Vincensini’s problem has been more
thoroughly studied. Two approaches have led to interesting results. One
permits the individual convex sets to be quite general, but places stringent
restrictions on their relative positions in the plane, Generalizing earlier results
of Vincensini [5), Klee [3], and Griinbaum [1], Hadwiger [10] proved the
following (where a disjoint family of sets is one whose members are pairwise
disjoint):

5.10. A disjoint family S5 of compact convex sels in R® admils a l-trans-
versal if and only if &7 can be linearly ovdered in such a way that each 3-
membered subfamiily of 57 admils a 1-transversal intersecting ils members in
the specified order.

For j = 2, a family %" of sets in KE® will be said to have property ©;
provided each at most j-membered subfamily of .2 can be ordered in such
a way that, for each 7/ with 1 £7/<j— 1, the convex hull of the first
members is disjoint from that of the remaining j — ¢ members. The main
result of Kuiper [1] and Harrop-Rado [1] may be formulated as follows:

5.11. A family of compact convex sets in R* has property T if it has &, and
%, and also if it has ©; and %,

The result was given in this form by Harrop-Rado. Kuiper's version was
in the projective plane, which in a sense is the appropriate medium, Griinbaum
[11] employed Helly’s topological theorem to establish (in the projective plane)
a stronger form of the second half of 5.11.

Another approach permits more freedom in the relative positions of the
sets, but assumes that they are mutually disjoint and congruent. (The virtual
necessity of these assumptions is shown by various examples (Hadwiger-
Debrunner [1; 3]).)

5.12. For a disjuini familv of congruent circular discs in E*, T, implies T.
For such families with at least six members, T, implies T,

5.13. For a disjoint family of iranslgles of a parallelogram in R %,
implies T,

The first part of 5.12 is due to Danzer {1], solving a problem of Hadwiger-
Debrunner [1] and Hadwiger [6]; 5.13 and the second part of 5.12 are due to
Griinbaum [6]. For additional results on common transversals in the plane,
see Griinbaum [11] and especially Hadwiger-Debrunner [3].
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The following are conjectures of Griinbaum [6]). (1) &, implies ¥ for disjoint
families of congruent squares in E®, and for disjeint families of translates of
an arbitrary convex body in R%. (2) T, implies ¥ for disioint families of con-
gruent compact convex sets in E®. The second conjecture is unsettled even
for disjoint families of congruent segments.

We end the section by stating a result of Gallai type on common trans-
versals, due to Hadwiger-Debrunner [1; 3]:

5.14. For a family % of positive homothets of a compact convex sel in
R, %, implies that 2%~ can be split into 4 or fewer subfamilies, each having
property X,

6., Some covering problems. This section is included because Helly’s
theorem is a valuable tool in connection with some of the problems, and be-
cause certain covering theorems are used in § 7 to treat intersection properties
of special families. Discussing only the results most directly related to Helly’s
theorem would vield a distorted picture of an interesting and active area of
research, so we include additional material to round out the picture.

Qur starting point is the theorem of Jung [1], whose popularity may be
judged from its appearance in books by Bonnesen-Fenchel [1], Yaglom-Bolt-
vanskii [1], Hadwiger [15], Eggleston [3), and in many research papers. (To
those cited by Blumenthal-Wahlin [1] and Hadwiger [15], we add Straszewicz
(1], Lagrange [1], Verblunsky [1], Gustin [1], Ehrhart [1] and Melzak [1].)
Jung’s theorem, proved in 2.6 with the aid of Helly’s theorem, asserts
that each subset of E" of diameter =d lies in a spherical cell of radius
= [n)(2n + 2)]'°d, where of course the terms are defined with respect to the
Euclidean distance. An interesting problem arises when this is replaced by other
distance functions. It is discussed directly below, and other generalizations or
relatives of the problem treated by Jung are discussed later in the section.
Though the known results are rather scanty in each case, general formulations
will suggest avenues for further study.

* * ¥ * * * * * *

Suppose E is a set and ¢ is a function on E x E to [0, «o[. For each point
xeE and each ¢ > 0, let Vi(x,e): ={yeE:p{x,y)<¢}. For xeE and YCE,
the (o, x)-radius of Y is the number

ro Y i=sup{plx,:ye¥}=inf{ez20: Y c Vix, e},
and the pradius of Y 15 the number
rad, Yo =inf{e=0:3xeE with Yc Vix,e)} =inf{r,,A¥):xeE}.
The p-diameter of ¥ < E is the number
diam, ¥ = sup{p(3,5): 5,y € Y} = sup {rn,o(Y): ye ¥} .

Now for two (possibly different} functions p and p’ on E x E to [0, f, the
problem is to determine the function J(p, p’;d) defined as follows for each
dz0:
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Jo,p'sdy=sup{rad, Y: Y c E, diam, Y £ d} .

Existing literature treats only very special cases of the problem, and in
particular is restricted to the case p = o'. Accordingly, we define

Jp,d)= Jip, 0y d).

In this notation, Jung’s theorem asserts that if g, is the (Euclidean) distance
in E*, then Jip,, d) = [#f(2n + 2))'*d. Santalé [5] describes the function J(e, ¢}
where p is geodesic distance on the unit sphere S in E™'. (See also the
discussion of spherical convexity in 9.1.)

The above formulation subsumes various problems concerning covering by
positive homothets of a set in a linear space E. In particular, suppose C is
a convex body in E with 0€intC, and for x,ve E let

polx, ¥y =inf {1 20:y —xetC}.

Then p satisfies the triangle inequality and is symmetric when C = —C. (For
metric spaces with nonsymmetric distance, see Zaustinsky [1].) The function
Ffipe ., d} is positively homogeneous in d and hence is determined by the value
of J(ge, ). It is known that J{pe, 1) = n(# + 1™ when E is n-dimensional
and C = —C (see 6.4-6.5 below),

In the above setting, it is natural to discuss centers as well as radii of
sets, where a p-cemter of Y is a point x€ E for which »,AY)=rad, Y. For
distances g, such centers always exist in the finite-dimensional case, and
under the Euclidean metric the center is unique (for bounded Y} and lies in
the closed convex hull of ¥, The last condition is almost characteristic of
the Euclidean metric, for Klee [5) has proved the following:

6.1 For a normed linear space E, the following three assertions are equivalent:

a® E is an inner-product space or is two-dimensional;

b if a subset Y of E lies in a cell of radius <1, then Y lies in some cell
of unit radius centered al a point of conv Y,

c® if a subset Z of E lies in a cell of radius <1, then Z is intersected bv
every cell of unil rvadius cenlered at a point of conv 2.

Results refated to the equivalence a®=Db’ were also obtained by Kakutani
1], Griinbaum [7] and Comfort-Gordon [1], the first and last making use of
Helly's theorem.

* * * * * * * * *
A basic relationship between covering and intersection properties was

suggested by 2.1. In particular, the following simple coroflary of Helly's
theorem is very usefui:

6.2. If Xc R* and each n + 1 or fewer poinis of X can be covered by some
translate of the convex body K c R", then X lies in some franslate of K.

Closer inspection of the reasoning for 6.2 leads to the following lemma,
trivial but fundamental.
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6.3. Suppose & is a group (written additively but not assumed io be abelign),
W and Z are subsets of GG, and & and 2 are cardinal numbers. Then the follow-
ing fwo statements are equivalent:

a’' whenever Y < G with card Y < 2+ 1, and every set Xc ¥V with card X
< & + 1 lies in some member of {9 + Wi, g<c G}, then Y lies in some member
of {9+ Z:9¢G);

b® whenever U< G and the family {W + w:ue U} is such that each of its
subfamilies of cardinalily <« -+ 1 has nonemply inlersection, then each subfamily
of {Z+ u:uec U} of cardinality <i + 1 has nonempty intersection.

Proor. Suppose a’ holds and consider ¥/ as in b°. Let V< U with card
V<i+l, We wish to show that nue,, (Z + v) is nonempty, or, equivalently,
that — V lies in some translate of Z. But this follows from a°, for the hy-
pothesis of b® insures that every subset of — V of cardinality <x + 1 lies in
some translate of W. Thus a’® implies b°, and it follows similarly that b°
implies a’

It is also easy to prove a generalization of 6.3 which is related to 6.3 as
2.1 is to 6.2. From 6.3 it follows that with W and i fixed and Z= W, the
Helly-number ax({ W + ¢: ¢ € G}) (defined in §4) is exactly the smallest cardinal
& for which a® holds. If every a({W + ¢:¢eG}) points of a finite subset ¥
of & can be covered by some left-translate of W, then Y itself can be so
covered; under suitable compactness conditions, this applies to infinite sets Y
as well.

The following is easily verified:

6.4. For a convex body C in R* with Ocint C, let J§ [Jo) denote the smallest
number ¢ = 0 for which ¢C covers by translation every set Y such that y'ey + 2C
for all ¥, ¥ € Y |eack two pointed subset of Y lies tu some translate of C}. Then
always J3 = Jlpo,2), while J§ = Jo when C = —C.

The number J; is called the Jung constant of C, and each translate of the
set J:C is a Jung cell associated with C. Note that /; depends on the position
of C relative to the origin, while ) is translation-invariant; also, diam ,,Y =
diam o5, o, Y and hence J& < Jeni-o;. When C = —C, both the above con-
ditions on Y express the fact that diam ,,Y = 2. In general, however, the
two conditions are not equivalent and it is convenient to define a C-distance
which is invariant under translation of C. This is merely the distance generated
by the gauge functional of the Minkowski symmetrization C* of C, where
C*: = (C + (—=0O)2. Equivalently,

Iz —yllc: = inf {20 2 0: {x, ¥} lies in some translate of aC}, and diam, ¥ =
diam 5o Y = sup{ilx —ylle:x, v Y}

The following ts known:

65. If C is a convex body in R® with OeintC, then Jo<n and J§ =
2n( + 17 (whence Jo = 2nin + 1) when C = —O).

The inequality on /7 was proved by Bohnenblust (1], and later in simpler
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fashion by Leichtweiss (1] and Eggleston [2]. The same result (in the language
of analysis) is hidden in Volkov [1]. Leichtweiss also described the bodies for
which the maximum value of J¢ is attained. A body C < R" will here be
called a Leichtweiss body provided there is a simplex Tsuch that T+ (—=T) <
2C < (n + 1)—T) (which imples that the origin is the centroid of T). Leicht-
weiss [1] showed that for a convex body C < R", J¢ = 2nin + D' if and only
if Cis a Leichtweiss body; the convex hull of the corresponding Y is necessarily
(up to translation) such a T. With this result one proves easily that o = n
with equality exactly when C is a simplex: the corresponding set conv ¥V is a
translate of —C.

The above results were obtained also by Griinbaum [2; 8], who employed the
following definitions:

6.6. For a conwvex bodv C c R™ with Oeint C, the Jung constant Jo [expansion
constant Eg) is the smallest number o > 0 such thal whenever {x +C:x ¢ X}
[{x + a.C:xe X} is a family of pairwise inlersecting transiaies [(positive)
homothets] of C, then the expanded family {x + oC:.x€ X}[{x + 0a,C:x€ X}]
has nonemply inlersection.

From 6.3 it is clear that this definition of J; agrees with the earlier one,
In particular, jr is translation-invariant though E¢ is not. Clearly 1 = Jo £ E¢,
and from results of Nachbin [1], Sz.-Nagy [1] and Hanner [1], it follows that

- =1 or E- =1 exactly when C is a parallelotope (cf. 7.1). Griinbaum [8]
proved

6.7. For a convex body C in R* with C= —-C, 1 £ Je S E¢ = 2nln + 1.
Even in the plane, Jo and Eq need not be equal. However, they are equal when-
ever either is equal lo 1 or to 2nfin + 1), and alse when C is an ellipsoid (a
Euclidean cell).

For the close relationship between expansion constants and the extension of
linear transformations, see 7.2.

Now for a cardinal j = 2, let J§ and E¢ be defined as in 6.6 with respect
to families of cells having the property 9, rather than merely ®©,. Thus,
for example, J¢ = Jo and J¢ is defined by substituting “triply” for “pair-
wise” in 6.6. By Helly’s theorem J{ = E{ =1 for every convex body C < R*
and j =2 n + 1. The following is known:

6.8. If B* is the n-dimensionel Euclidean cell, then
Ein = Jin =Injln + (G — D7'°
Jor2g2i=n+1.

The second equality is due to Danzer (unpublished manuscript, see also a
comment in the proof of 2.6) and the first follows from reasoning empioyed
by Griinbaum {8)] for the case j = 2.

It is interesting to note that

max {J§: C = —C, C a convex body in R} =372,
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which is also the maximum of Ji. (If C= —C and J§ = 3/2, then of course
Ji=13/2 and C is a Leichtweiss body. On the other hand, every Leichtweiss
body Dc R® which is also a Hanner body (see 7.1 fi.) has J3 = 3/2, and the
regular octahedron is such a body.)

See 7.5-7.6 for the relationship between Gallai’s problem and the numbers j'.;’:.

Another generalization of Jung’s problem is the following: Given a class
% of subsets of a linear space E and a class G of transformations of E into
E, a set Uc E is called a G-universal cover of 2 provided for each Ye &
there exists g €& such that g/ > ¥. For a set C which is starshaped from
the origin in E, the problem is to evaluate the number

inf {¢ = 0:6C is a G-universal cover of &} .
In addition to the results on Jung constant, the following is known:

6.9. Suppose C is a centrally symmelvic convex body in R*, T is a simplex
containing C, and Y is a subset of R" such thal diame Y = 2 (i.e., each two-
pointed subsel of 'V lies in some translaie of C). Then Y can be covered by a
transiate of T or by a transilate of —T.

Proor. Let 7, be the smallest homothet (positive or negative) of T which
covers Y and let x + aC be the largest positive homothet of C which lies in
T.. We claim that Y is covered by the simplex T:: = (2 — a)a”'@x + (— T)).
If this be so, then of course a =1 {(for otherwise T is smaller than 7)) and
the proof is complete.

To see that T, > Y, note that T, is a negative homothet of T, such that
corresponding faces of dimension # — 1 lie in parallel hyperplanes at C-distance
2. Then use the facts that diame ¥ =2 and ¢l Y intersects every (u — 1)-
dimensional face of T,.

The following can he derived from 6.9 by standard continuity arguments.

6.10. Suppose G is the group of (orientation-preserving) molions in E°, S is
an n-simplex circumscribed to the Euclidean unit cell such that —5€GS, and
# is the class of all sets Y ¢ E™ of Euclidean diameter <2, Then SN —Sis
a G-universal cover of 2.

Another consequence of 6.9 is that if C is a centrally symmetric convex
body in R® and T is a simplex of least volume among those which will cover
(after suitable translation or point reflection) every set of C-diameter 2, then
T is a translate of a simplex of least volume among those which are circum-
scribed to C.

The special case of 6.10 where § is regular is due to Gale [2]. The above
proof of 6.9 is essentially due to Viet {1}, a student of Siiss. Using the same
idea, Siiss himself [1] gave an elegant proof of Gale’s theorem and tried to
employ thic for a short proof of Jung's theorem. Unfortunately, his calculation
to this end contained an irreparable error, for if § is regular and circumscribed
to B®, then for # = 3 the set SN —5 will not fit into the Jung cell (Jsn)B".

Theorem 6.9 remains true when the assumptions are replaced by: “Suppose
C is a convex body in R", S is a simplex containing (C+(—Cy2.--.” It
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would be interesting to find a similar result under the original assumption on
S but dropping the symmetry of C,

* * * * » * * * *

Instead of asking how large ¢ must be for ¢C to cover any set of C-diameter
2, one may ask, for fixed o, how many translates of ¢C are needed. In
particular, 8(C) will denote the smallest integer % such that every set of C-
diameter 2 can be convered by k translates of C.

Griinbaum [3] has proved

6.11. [If C is a centrally symmetrix convex body in R, the Jung cell JoC can
be covered by three translates of C; hence 8C) < 3.

For related results on the Euclidean plane, see Gale [2], Griinbaum [17], and
papers by H. Lenz listed by Griinbaum [17]. Griinbaum conjectures that
#(B")y =n + 1, even though for n = 3 it is clear that the Jung cell (fm»B*
cannot be covered by n + 1 transiates of B". The best known result in the
direction of this conjecture is the following, due to Danzer (unpublished
manuscript).

6.12. The Jung cell V'2n(n + 1)"'B"™ can be covered by

?3-5-2s -
‘/( 3 )(lf 2+ I.—/ 2) '
transiates Of B*s

Close numerical investigations starting from the universal cover of Griinbaum
[4] and Heppes [1] seem to verify that B% = 4. For the relationship between
8C) and Gallai’s problem, see 7.5.

Griinbaum’s conjecture and many other interesting questions are closely
related to the famous conjecture of Borsuk [1] that in E®, every set of diameter
1 can be split into # + 1 sets of smaller diameter {cf. Hadwiger [1;3}). For
the literature on Borsuk’s conjecture and related matters, see the exiensive
report by Griinbaum [17] in this volume.

Another problem closely related to Borsuk’s conjecture is due to Levi [3)
(discussed also in two forms by Hadwiger [14;16]): Given a convex body C
in R*, what is the smallest number «(C) of translates of int C to cover C.
Obviously /") =2" for an #n-dimensional parailelotope f*, and probably
s(C) = 2* for every convex body C < R*. On the other hand, considering the
spherical image of C obtained from parallel supporting hyperplanes, we see
from the result of Borsuk [1] that «C) =z » 31, with equality when C is
smooth since the (# — 1)-sphere can be covered by # 4+ 1 open hemispheres.
(This was the argument by which Hadwiger [1] proved Borsuk’s conjecture
for smooth bodies.) Levi [3] showed that «C) =4 in R° with equality
characterizing the parallelograms (Levi [4]). See also Gohberg-Markus [1],
and, for related problems, Boltyanskii [1] and Soltan f1].

¢ Perhaps this bound is already outdated by the method of Erdés-Rogers [1]. (Cf. the
footnote to 7.10.)

TR
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Replacing the word “translates” in the definition of «(C}, by “images under
affine transformations, each of determinant one,” leads to another constant
¢*(C). Though easily seen that ¢"(C) =2 in R* (as conjectured by Levi [3]),
it is unknown whether ¢*(C) assumes greater values in higher dimensions.

* * * * * * * * *

The covering theorems to be discussed next involve the group of isometries
{Euclidean motions) in £* and the group of affine transformations with
determinant 1. Since both destroy any metrical concepts except those for the
Euclidean distance, there is no longer any connection with Minkowskian
geometry. Further, there is no analogue to 6.3 replacing translates by more
general images, Nevertheless, the results 6.14-6.15 complete our knowledge
of facts discussed earlier, and 6.17-6.18 are Helly-type theorems in the sense
of §4.

Considering circular discs D inscribed in a plane continuum C, Robinson [1]
showed that if € itself is not a circular disc, there exists a positive ¢ such
that any three points of the set F= {1 + ¢)0) can be carried into C by a
Euclidean motion. (He assumed superfiuously that C was simply connected.)
This proved

6.13. In E® the circular discs are the only continua C with nonemply interior
whick have the following properiy:

Uy If Fc E*? and each triple of points of F can be covered by some iso-
metric tmage of C, then so can F iftself.

Soon afterwards, Santalé (3] proved the polar counterpart:

6.14. In E* the civeular discs are the only convex bodies C which have the
Jollowing property:

(B,) If Fisa convex body in E* and every iriangle containing F conlains
also an isometric image of C, then F ilself contains such an image.

That the circular discs have properties %; and B, is evident from Helly's
theorem (cf. 2.1). Blumenthal [1], Santalé [3], and Kelly [1] ask whether there
are analogous results for other classes of plane convex bodies. In particular,
what happens when the number fhree (of points in F for W, of sides of the
polygon containing & for B,) is replaced by some & > 3? Of course the circular
discs still have the corresponding properties ¥, and B,, but it is undecided
whether they are still characterised by these properties. For %, the convex
hull of a circular disc and a nearby point may be a counterexample; for B,,
intersect the disc with a halfplane.

Considering, for F, an insphere plus a thin “cap” of slightly larger radius
{instead of a slightly expanded insphere), Danzer recently generalized 6.13 to
E*, assuming C to be a convex body. The corresponding polar argument is
valid for 6.14. (Similar results have been reported by K. Béroczky in Buda-
pest.}

Theorem 6.13 was inspired by the notion of the congruence order of a metric
space, due to Menger [1] and studied extensively by Blumenthal [1;3} and
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others., A metric space M has congruence indices (n, k) with respect to a
class . of metric spaces provided each member S of & withcard S > n + £
can be isometrically embedded in M whenever such an embedding is possible
for every X c & with card X £ n. And M has congruence order n with respect
to &7 provided (i, 0) are congruence indices. (Note the close similarity of
these ideas to those associated with Helly’s theorem.) 1t is known that both
E" (in the Euclidean distance) and the Euclidean »#-dimensional sphere S {in
the geodesic distance) have congruence order # + 3 with respect to the class
of all metric spaces (see §§ 38-39 of Blumenthal [3)). Among the plane convex
bodies, the circular discs are characterized in 6.13 as having congruence order
3 with respect to the class %* of all plane sets. Kelly [1] notes that except
for the circular ones, no elliptical disc has finite congruence order. It would
be interesting to characterize the plane convex bodies of congruence order %
for & > 3.

A more algebraic problem is io determine the congruence indices of various
curves in E°. Though solved in a few cases (see Kelly [1], Blumenthal [3]),
the problem is not settled even for all conics in E® It is known that each
conic has congruence indices (6,0) and (5,1), but not whether it has (5, 0).
This asks the following: Suppose @ is a conic in E*, X is a set of six poinis
in E*, and for each x € X the set X ~ {x} can be moved isomeirically into Q.
Must Q coniain an isomelric image of X? (The problem is trivial when @ is
a parabola. For @ an ellipse, an affirmative solution was recently obtained
by J. J. Seidel and J. van Vollenhoven in Eindhoven.)

* * * * ® * * * *

The affine transformations of determinant 1 carry ellipsoids in £* onto other
ellipsoids of equal volume, A basic fact is

6.15. For each convex body C in R*® there is a unique circumscribed ellipsoid
of feast volume and a unique inscrided ellipsoid of greatest volume.

Existence of the ellipsoids is trivial, and uniqueness of the first became
well known since K, Lowner used it in his lectures; uniqueness of the second
was apparently discovered independently by Danzer and Zaguskin. See Danzer-
Laugwitz-Lenz {1] and Zaguskin {1] for proofs and applications.

Now let us say that a convex body C has property € if its Lowner-ellipsoid
has volume =1, property ¥, if conv X has property £ for each X< C with
card X < k, property 5 if its inellipsoid has volume 1, and property 3 if
each intersection of fewer than % halfspaces, each containing C, has property
¥. With these definitions, we have

6.16. If C is a convex body in R",C€Q e msarpe implies Cel,
6.17. If C is a convex body in R*,Ce 3 implies Ce 3,

For n# = 2 these results are due to Behrend {1;2], who also gave an exact
description of how 3,4, or 5 points on a circle [resp. tangents to a circle]
must be located in order for the disc to be the Léowner-ellipsoid [resp. the
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inellipsoid) of the polygon determined by these poinis [resp. by the tangents
through these points]. The general result 6.16 was found by John [1], whose
use of Lagrange’s parameters should also be applicable to extend 6.17 to
higher dimensions.

* * & * * * * ¥ *

We turn now to concepts and results which are in a sense polar to some
of the material treated earlier. This polarity, which appeared earlier between
results of Robinson (6.13) and Santald (6.14), involves a correspondence between
points on the one hand and hyperplanes or halfspaces on the other. Though
the correspondence is often called a dualily, we prefer the weaker term since
the relationship is much less strict than the true duality of, e.g., projective
geometry. There is no exact dualily principle but only a strong dualify feel-
ing. This leads to interesting new results and problems, but there are many
true statements whose polar statements are false, and often it is even unclear
how to “dualize” a given problem.

There seems to be no polar counterpart to 6.3, but the statement polar to
6.2 is the following consequence of 2.1;

6.18. If a family %" of closed halfspaces in R" has bounded tntersection,
and each inlersection of n + 1 members contains some translate of the convex
body C, then n..%" contains some translate of C.

Now consider a convex body C in B* and the associated C-distance || |le
as defined in 6.44+. The C-distance hetween two parallel hyperplanes i and
H'is inf{llx — x'{l¢: xe H, ' € H'}, or equivalently,

| H, H'|le: = sup {2a = 0: some translate of aC fits between H and H'} .
Further, the C-widih of a bounded set Fc E" is given hy
widthe F = inf {|| H, H'|lc: F lies between H and H'} .

Now recalling the definition 6.4 of the Jung constant and replacing ¢ by >, we
define the Blaschke comstant By of C by

Br: =sup {e > 0. every convex body Y of
C-width 2 contains some translate of «C} .

The polar counterpart of 6.5 is

6.19. If C is a convex body in R*, then B 2 2(n + 1)™" when C is centrally
symmelric, while Be = 1fn in any case.

Proor. By 6.18, the widest simplex T which can be circumscribed to C has
width 2/{Be. If C = —C, at least one of the hyperplanes bounding T will be
no farther from the origin than the centroid of T. Thus widtheT = n+1
and Bs = 2(n + 1)7'. For the second half of 6.19, we employ an argument
polar to one used by Griinbaum [8] for J.. Since (with C* = (C+ (—C2
I e =1 Hle, it follows from the inequality already established and from
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the delinition of Je. that each convex body of C-width 2 contains a translule
of 20 + 17 JR'C. Bat Jo = 2n(e + 17", and consequently Be = 1.

The first part of 6.19 was proved initially by Leichtweiss {1] and later
also by Eggleston [2], For the symmetric case’ Leichtweiss showed that
B = 2n + 177 if and only if there is a simplex T such that 2Cc T+ (= T
and (2 + 13T is circumscribed to 2C (implying that the origin is the centroid
ol 1T this T may serve as ¥ and vice-versa (up to translation). Hence for
veneral C, By = 1/i exactly when C is a simplex (with Y a translate of —C).

Recall that f. atfains its Jower bound 1 exactly when C is a parallelotope.
The polar situation is quite different, for Eggleston |2} proved

6.20. B, = 2/3 for every centrally symmeiric convex body C in E*,

When 1 = 3, Leichtweiss's conditions are easily verified for parallelotopes,
affinely reguiar octahedra, elliptic cylinders, and centraily symmetric double
cones with convex base.

For higher n, exact upper bounds are not known; so far as we know, they
may even be attained for C = B® (6.21). For this Euclidean case the Blaschke
constant is the width of the regular simplex circumscribed to B*, where the
parallel supporting hyperplanes realizing the width each contain about half
the vertices. This case was treated by Blaschke [1] for # =2 and in the
general case by Steinhagen (1], whose calculations were later simplified by
Gericke [1]. The result is as follows:

6.21. [f B" is the n-dimensional Euclidean cell, then

(VB +2in + 1) for even n ,
11;’1/? for odd n .

As Steinhagen remarked, for # = 3 there are many subsets of a regular
simplex 7 < E* having the same Euclidean width and the same insphere.
Nevertheless, it should be possible to conclude from his or Gericke’s caleu-
lations that every extremal set {for B.} lies in a regular simplex of the same
width and inradius.

In his paper devoted to Bs, Blaschke [1] also noted the following consequence
of Jung’'s theorem:

BBK =

6.22. Everyv set of constani width 2 in E" contains a sphere of radius
2~ V2aln + 1t

An apparently difficult problem is to determine the largest number », such
that every convex body of constant width 2 in £" contains a hemisphere of
radius #,. Clearly r, <1 for 2 =3, but it seems probable that ., =1. A
partial result in this direction is given by Besicovitch [2].

? In fact he does not assume symmetry. His “‘Minkowskische Dicke ¢ would be
“width eonrigu—i—cn’ In our notation. In similarity to the distinction bhetween J:,"
and Je in 6.4 and 6.5, his result could be stated as follows: B} = 2(r + 1}~ for every
convex body  with 0€int €. Since CuU(—C) is symmetric and contains C, the general
case of Leichtweiss's theorem is immediate from the symmetric one.
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Now we shall define the polar correspondents of the expansion constant E¢
(6.6} and the constant 8(C) (6.11). Let C be a convex body in E™ with C = —C.
For a set X c E®, let X~C: = {x:x+ C< X}. Then in analogy with 6.6, we
give another description of the Blaschke constant and simultaneously define
the coniraction consiant.

6.23, For a convex body Cc R" with C= —C, the Blaschke constant Bg
fcontraction constant S¢) is the largest number ¢ such that whenever S&° is a
Family of closed halfspaces in R" with =57 + @ and cach two members of
{H-C: He ZZ}{H*ag(C: He Z#°}] have a common point, then the contracted
family {H-oC : He F27} ({H-aaxC . He 247} has nonemply intersection.

We ask for lower bounds on S¢ and for the value of Sen.

Finally, we denote by &§(C) the smallest number % such that whenever Vis
a convex body of C-width 2, then C can be covered by k& translates of V. We
conjecture that 3(B* =3, consideration of a regular triangle showing that
8(B" > 2. (For other related questions, see the report of Griinbaum [17] on
Borsuk's problem.) Simple computation comparing the volume of B™ with
that of a regular simplex of width 2 in E® shows that 8B™ > n + 1 for all
large ».

7. Intersection theorems for special families. For a set X < R® and a group
G of transformations of R™ onto itself, GX will denote the family {¢X: g€ G}.
Of special interest are the group T of all translations in A® and the group
H™ of all positive homotheties; these will often be denoted simply by 7 and
H. The present section summarizes known results concerning the Hanner-
and Gallai-numbers (defined at the end of §4) of families TC and HC for
various convex bodies C.

Hanner [1] proved the following basic theorem:

7.1. If C is a convex body in R*, then

is tnfinile when C is a parallelotope;
=3 when C is not a parallelotope but is a centvally
B TC) = B.(HC) symmeltric polvhedron in which every two dis-
joint maximal faces are parallel;
=2 in all other cases.

Thus C is a parallelotope if and only if each family of pairwise intersecting
translates of C has nonempty intersection. Hanner also proves some facts
about the special polyhedra C for which 8:(TC) = 3 (called Hanner bodies in
6.84+) and describes a general construction for many of them. There are no
Hanner bodies in E* and the only Hanner bodies in E® are those which are
affinely equivalent to the regular octahedron.

That f.(T*C) is finite (and hence =n) for every non-parallelotope C was
proved previously by Sz.-Nagy [1]. For j > 2, the literature contains no
characterization of convex bodies € having B{7T"C) = W,.

The work of Hanner (1] and Sz.-Nagy [1] was inspired by a paper of Nachbin
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|1] concerning normed linear spaces E with the following cxtension properiy:
whenever Y is a linear subspace of a normed linear space Z and % is a
continuous linear transformation of ¥ into E, then » can be extended to a
continuous linear transformation ¢ of Z inte £ with |1 = {lnll. One of
Nachhin’s results was as fotlows:

7.2. For a normed linear space E with unit cell U, the following three as-
sertions are equivalent:

E has the extension property;

every family of pairwise intersecting cells in E has nonempty intersection (i.¢.,
BALHUY > card HU Y,

E is equivalent to the space of all continwous real functions over an extremallv
disconnected compact Hausdorff space.

Part of Nachbin’s proof assumed I/ to have an extreme peoint, but this as-
sumption was removed by Kelley [1}. Similar results were later obtained by
Aronszain-Panitchpakdi (1] for more general metric spaces. See also Griinbaum
[12], Nachbin [2}.

The fact that «f TC) = 2 (equivalent to f{TC) > card TC) if Cis a parallelotope
is generalized by the following, whose proof uses projections in an ohvious
way.

7.3. If X, and X, are nonemply sefs in two linear subspaces R" and R™
which span R™", then

al T (X, + X)) = max {a(T™X)), a( T2 X))}
< alH™ (X, + X)) = max {a(H™ X)), a(H"X,)}

(=1 + max {n,, #} when the X: are convex).

Nachbin |2] and others have asked whether a{ H"C) = n + 1 for every convex
body C in R" which is riot a cartesian sum. A counterexample (previously
unpublished) was found by Danzer. Let K be a convex body in B*™' and let
f be a real-valued function on [0, 1] which is non-negative, antitone, and upper
semicontinuous. Define

C: = Uae[o'” {ix,a);xefleyK}yc R+ R = R*;

then alH*C) = a{H*'K) + 1. In particular, «{H*P) =3 when P isa pyramid
in E® whose base is a square.

Among all convex bodies in R®, the parallelotopes are characterized by an
intersection property of their translates (7.1). The same is true of simplexes,
as was proved by Rogers and Shephard [1):

74. A convex body C in R" is a simplex if and onlv if the istersection of
each pair of transiates of C is empty, oncpointed, or a (positive) homothel of C.

An equivalent condition is that C, n C, ¢ HC whenever C, € HC, C, € HC, and
€, N C; includes more than one point. This was used by Choquet [1;2] to
define infinite-dimensional simplexes. (See Bauer (2] and Kendall [1] for
additional details.)
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Before discussing the problem of Gallai, we should mention once more the
problem of Hadwiger-Debrunner [2], described earlier in 4.4 ff. In addition
to the number J(r,s,n) defined there with respect to the family & of all
convex sets in R", one may consider J4(7,s,n) defined in the same way for
a subfamily % of «**. Hadwiger-Debrunner [2] observe that if 2" is the
family of all parallelotopes in B* with edges parallel to the coordinate axes, then
Janlr, s, m) é(” - fz + ”); further, jg,n(r, s, =r—s5+1 when ns = (n— Dr+n.
It would be interesting to study the numbers Jg{r,s,») for families & of
the form 7T°C or H"C,

* * ¥ * * * * * *

The oldest question of Gallai type is that of T. Gallai, apparently first
published in the book of Fejes To6th [8] (cf. Hadwiger [13]): What is the
smallest number of needles required to pierce all members of any family % : =
{B,: eI} of pairwise intersecting circular discs in E*? In our notation, this
asks for the value of r.{HB®. From Figure 7, P. Ungir and G. Szekeres

FIGURE 7

concluded that y.(HB® = 7. In fact, seven points are enough even when,
instead of F €D, only B.n B, = @ for all ¢¢ [ is assumed, where B, is a
smallest disc in .% . Under this weaker assumption, 7 is the best number.
Later A. Heppes proved r.(HB?) <6. It was reduced to 5 by L. Staché (L.
Szentmartony), and by Danzer to 4, thus settling the question as examples
show. All proofs are still unpublished; one example is given by Griinhaum
[9], a related remark by Schopp (1].

For guidance in generalizing the original Gallai problem, we review the
following facts:

fa) It seems natural to consider only families of convex sets, since other-
wise the Gallai-numbers may be infinite even for families of translates
{Danzer [3)).

(b) Clearly y#{.% )=1whenj = a(.% ), and in particular when % consists
of convex sets in R* and j 2 » + 1.

{c) If & is the family of all parallelotopes with edges parallel to the
coordinate axes in R, then 7i(&°*) = 1. The condition y{TC) = 1 character-
izes the parallelotopes among all convex bodies C in R, and r(HC) =1
characterizes the paralielotopes among compact sets C. (Probably 7.(TC)} =1
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characterizes the parallelotopes among connected compact sets.)

(d) For families of the form GC, where G is a group of linear transfor-
mations in R* with G > T*, it seems clear that finite Gallai numbers cannot
he expected unless G c H™ or C is very special.

In view of the above facts, we restrict our attention to the numbers ¢ {T"C)
and 7;(H"C) where C is a convex body in R* (but not a parallelotope) and
2 =j < n The families of translates will be treated first (7.5-7.8) and then
those of homothets. Some related questions on covering and on families of
sets adjacent to a given set are discussed at the end of the section.

For the application of 6.3 to Gallai’s problem, some special notation is
convenient. Suppose ¥ > 0, f is a natural number, ¥ is a bounded set in RB",
and C is a convex body in R*. Then we define

{¥Y/C): = min {k: ¥ can be covered by % translates of C},

called the covering number of Y with respect to

S R ,eachj+1pointsoncanbe}
diam? ¥: = inf {2a 20 covered by a translate of «C |’

called the jth C-digmeter of Y, and
§C, #): = max {{¥/C): Y < R" with diam$ Y < 27} .

We shall write 5(C) for #(C, 1), whence §'(C) = 8(C) as defined in §6. From
6.2 it follows that for all j = »,diam} ¥ = diam§ ¥, the circomdiameter of ¥
with respect to C. Althcugh diam$ ¥ = diam %¢ Y for all C and ¥ when j =1,
this is not true in general when 7 > 1; but of course diam$ ¥ = diamis (— Y)
and thus 8(C,») = #(—C, r) for all §,C and ».

In conjunction with 6.3, the above definitions lead at once to the following
results:

75. If Cis a convex body in R*, FC R*, and 3"" is the family of translates
{x 4+ C:xeF}, then F eD; if and only if diam?e' F = 2.

7.6. For a convex body C in R*, the jth Gallai-number of the family TC of
all translates of C is given by

1ATC) =&7(~0O) =0,

hence is not grealer than the number of ilranslates of C needed to cover a
transiate expanded by the jih Jung constant of C; ie.,

+{TC) £ [(JHCIC .

(The Jung constants J§ were defined in 6.7+.)

Thus the Gallai problem for translates is equivalent to a covering problem,
evaluation of the numbers 8 4C). For general j, there are significant results
only for the Euclidean case € = B", and these are derived from Danzer’s
results 6.8;
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1w : we o {n+2° /5 +17 7\ e
79, (B 5[(_H*_ﬂﬂ#) B B]s(—(!_,__f) ) ,
(8 n+D(7j-1 / - 3 7-1
(See 6.12 for the case j = 2; for the methods used and for values of j§ close
to n + 1, see 7.14 ff)
For more general C, the main results are due to Griinbaum and are restricted
to the case 7 = 1:

7.8. For a convex body C,

a(C) = 2 when C is an affinely regular hexagon in R*;
3C) £ 3 when C= ~Cc K%

F(Crzn+1 when C= —Cc R* and C is sirictly convex.

The second result is in Griinbaum [3], the others in Griinbaum [9] for » = 2.
Beyond this, almost nothing is known. On the one hand, we know of no #-
dimensional C for which §(C) > n + 1. On the other hand, for general C and
n we have only very rough upper bounds on the numbers y;(7T*C) and even
for large values of i no explicit numerical bounds on y47T"C) better than
those stated below for y.(H"C).

Very little is known about the relative magnitudes of #;(7C) and ri{TC"),
where C* is the Minkowski symmetrization of C {C*: = (C +{—=C))/2). Consider
a set F and the corresponding families of translates, % = {x + C:x¢ F} and
F *={x+ C*:xeF}. An elementary caiculation shows

' when § =2, F eD; if and only if F *eD;,

but for any higher 7 neither of these statements implies the other. Hence no
inequality between &~'(C) and & (C*) is trivial, although we do not know of
any C for which &7'(C*) > &'(C). Note that for a triangle S in R?, §'(8) =
3>2=3(S".

We turn now to Gallai’s problem for families of homothets, where even less
is known. The geometrical situation is so complicated that it seems impossible
1o find an eguivalent covering problem. However, two different approaches
by means of covering do lead to rough upper bounds,

One possibility is to generalize the approach of Ungar and Szekeres mentioned
earlier. For a convex body C in R*, let #(C) be the smallest number / which
is such that whenever Xc R, a. 21l and (x+ a.C)NC # @ for each re X,
and F = {C}VU {xr+ a.C:x€ X}, then % admits a j-partition (i.e., some
j-pointed set intersects all members of .5 ). Then clearly r.{HC) £ F(); and
rol H:C) 2 27C if H: is the group of all homotheties in B". Further, with 5
as described, z.€(a; + CO)N C and y,: = a:'(x — 2.} + 2z, it is easily verified
that y, + Ccx 4+ a,C and (. + C)NC = @. Thus F{C) may be defined alter-
natively in terms of families of framsigtes of C. From this it follows, by
reasoning analogous to that in 6.3, that 7(C) is equal to the covering number
[C 4+ {(—O)C]. Thus we state

7.9. 7:(HC) £ 7(C) = [C + (- O)NC].

8 Perhaps this bound is already outdated by the method of Erdis-Rogers [1). (Cf. the
footnote to 7.10.)
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The principal known results on the function ¥ may be stated as follows
(Danzer {3;4), Griinbaum [9]):

7.10. For a convex body C in R*, 7(C) £ 5" when C is contrally symmetric,
while 7(C) 2 @n + 1) in any case®

7.11. If C is a convex body in R®, then F(C)z 7 when C is strictly conver,
while 7(Cy £ 7 if an affinely regular hexagon A can be inscribed in C in such
a way that C admils parallel supporting lines al opposite vertices of A.

To show that #{C}) = 5" when C = —C, one obtains a covering of 2C by first
packing into 5C/2 as many translates of (/2 as possible, and then expanding
each of them by a factor 2. For general C, assume the centroid to be at the
origin and let K: = CnN(—C). Then C c 2K by the result of Minkowski [1]
and Radon [1]) (or use 2.7) and hence C + (—C)c ZnK. Covering 2nK by
translates of K leads to the inequality #(C) < (4w + 1)*. The first inequality
in 7.11 follows from the possibility of arranging six translates of € so that
they are all adjacent to C and are cyclicatly adjacent among themselves., For
detailed proofs of 7.10-7.11, as well as for relevant examples and values of
7 HC) for a few special C ¢ R®, see Danzer [2; 4]; for the case C = —C, see
also Griinbaum [9]. Danzer {4] gives conditions on a family .% in R® which
imply the existence of a 7-pointed set intersecting the inlerior of each member
of &% .

For a Euclidean cell &, the idea of studying y.{K) by means of #(X) was
extended by Danzer [3]) to y;{K}. With the aid of a general theorem on inter-
sections of metric cells {(stated in 9.9 below), he proved the following crucial
lemma:

712, Suppose 2= j=n+ 1 and .47 is a family of Euclidean cells in E™
with .V e®y;. Let C, be an intersection of § — 1 members of 257 which has
smallest (Enclidean) diameter among all such intersections, and suppose

™ KnCo# @ (for all Ke 557y .
Then E" contains @ flat F of dimension n + 2 — j such that
FnC, is a Euclidean cell;
diam C, = diam {(F 0 C,} £ diam (F N K} for all Ke 557,
(FOKYACe= @ for all Ke 247,
In other words, if .3 ¢®; and (*) holds, then intersection with a suitable

flat will reduce the dimension by § — 2 and vield again a family of Euclidean
cells in which each meets the smallest one. Consequently,

7.13. ri{HB") = F(B"),

9 As pointed out by C.A. Rogers in a letter to the authors, these bounds may be
replaced by 7(C) £ 3%, in the symmetric case and by F{C) g 3++12%n + 1)~ !5, in general,
where dn:=nlogn + nloglogn + 5n. Here 4, is the density always obtainable by
covering f£* by translates of a convex body (Rogers [1]}, while 3-2%n + 1)-' is an
estimate for the number vol ((1;3}C + (230 —C)ifvol {C}) obtained by consideration of the
{n + l¥-dimensional convex body associated with €' (Rogers-Shephard {2]).
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It would be interesting to know whether, for 1 £i<j—2 and for every
family .%%” of Euclidean cells in E* with 5" e D;, there exists a flat F of
deficiency { in £" such that the family of intersections ¥°; = {Fn K: Ke "}
has property ®;-¢ (or at least ®;_;_,) and some smallest member of &’ intersects
all members of %. In particular, what about the case i =7 — 3?

A second and simpler approach to the Gallai problem for families HC was
recently developed by Danzer (as yet unpublished). Consider a family .5 : =
{x + a.C:x€ X} of homothets of C with C¢ % and with always &, = 1, and
suppose ¢ > 0. For each %, .5 can be split into % subfamilies,

F ke ={r+a,CixeX, I+ " Ca. <1+ (AZish,

and a remainder 5 '(k, ¢) consisting of rather large cells. If 5 €®; then
each of the k families 7 (&, ¢) can be pierced by 6"4C, 1 + ¢ or fewer points,
while 5 '(k, &) can be pierced by a rather smail number ¢ of points. (If C
is smooth and (1 + ¢)* is large enough, # = n + 1.) It follows that

rHC) S o' MC,1 + &) + ¢ S R + UDCICY + 1.
For large » this should yield much better results than the inequalities mentioned
above, except when € = B and j is close to ». In particular, this method
leads to the inequality

+i(HB™) < k[(l + s}( /B ] 4 [+ (1 + BB,

(n + 1)(.? - 1))
where the best numerical results are obtained for (1 + en/njln + D7 — 1)~' =
141+

Of course all the upper bounds for y;(HB") which have been mentioned here
are very rough. We know of no exampie which contradicts y;{HB™) <
n+4—7 and also of no C for which ri{TC) > n + 3 —j. As to lower bounds
for y#{HC), nothing is known for j > 2.

* * * * * * * * *

In attempting to find values or upper bounds for the Gallai numbers y{T"C)
and y{H"C), we were led to various covering problems. For general C and
n, difficulty is caused by the fact that the bodies to be covered by translates
of C are themselves not much larger than C.

For the special case of B*, there is more hope of improvement, Recall from
7.6 that y(TC) = ¢ '(C) 2 [(JCIC], whence (7.T)

rATB )5[ I —1)) /B ]
And by 7.9, 7(HO) < #(C) = [C + (~C)/C], whence

7(HB") = [2B"/B™] .

Thus we are interested in finding “good” coverings of »B”* by translates of BT,
especially for 1 < » <1/ 2 and for » = 2. As Danzer observed, the task is
{(almost trivially) equivalent to a similar one on the sphere §*";
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7.14. If &.la) is the minimal number of spherical caps of (spherical) radius
o that will cover the unil sphere S°7 in E®, then

arper [ = Cala) for of2 > a =z ald,
[{cosec ))B™/B ]{ SCl) +1 for md > a2 6

For small » and specific values of a, one may use particular coverings to
get upper bounds. For example, Danzer {3] shows

7.15. EAnj6)=6, E(n/6) =20, and { (n/6)=70, whence F(B®) < 21 and 7(B*) = 71.

(See 7.9 — for definition of 7.)
For larger # and arbitrary « one may instead estimate packings of radius
«i2 by use of Blichfeldt’s method (see Rankin [1]). This yields (Danzer [3]):

706, For n=23 and 1 <r =2,

(rB"B" < %((u — 27t — D 4 3p) ( ?(2” — Lz

142
W) (r(r* — [V 4 st e

By a theorem of Rogers {2], the density of a packing of congruent cells in
E™ cannot exceed the density in a regular simplex with the vertices being
centers of cells. The same result for packings in $"' would lead to a slight
improvement of 7.16. (This result was proved by Fejes Té6th {2; 3] for # = 3,
but is unknown in general.}

Lower bounds for [»B"/B”] are especially interesting for r = 2, since we
know so little about y{HB"). Dividing the (# — l)-measure of S"' by that
of a spherical cap of radius =/6, Danzer [3] showed that for » z 3, {.(z/6) >
(3n=f2)'F 2" By Coxeter-Few-Rogers [1], the density of a covering of E* by
congruent cells cannot be less than the corresponding density in a reguiar
simplex. If the same were known for coverings of $™7', this inequality could
be improved by a factor of about #/2. (For # = 3 the result was proved by
Fejes Toth [1; 3], though it is uncertain in general. It follows in particular
that s(x/6) = 19.)

Hadwiger [11] asked how many translates C(c€ I) of a convex body Cin E™
can be arranged so that each intersects C but no two of them have common
interior points. (The similar problem with C, 0 Cx #= @ rather than C. 0 C + &
was treated by Danzer-Griinbaum {1].) From (,) in 7.8+ it follows that the
maximum number is the same for € as for C*, and then a simple argument
shows that the maximum is attained only if C itself is among the C,. Thus
Hadwiger’s number is equal to #{C} + 1, where 7(C) is the maximum number
of translates of C which can be adjacent to C while having no interior points
in common with each other. (Two sets are adjacent provided their closures
meet but not their interiors.) When C is smooth, F{() serves as a trivial
lower bound for 7(C).

The following is known:

18 Perhaps this bound is already outdated by the method of Erdés-Rogers [1]. (Cf, the
footnote to 7.10.}
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7.17. For every convexbody Cin R", w* + n = #(C) = #(C*) = 3* — 1. Further,
C is a parallelotope if and only if F(C)=3"—1.

The inequality #* + n £ 7(C) was proved by Griinbaum [15], who observed
that it is always possible to have »n + 1 translates x; + C pairwise adjacent to
each other, and then the #* + » sets a; —x; + C {{ = /) are in the desired
position with respect to C. (See also Swinnerton-Dyer [1].) The ineguality
FIC) =3 — 1, given by Hlawka [1], Hadwiger {11], and Groemer [1], follows
at once from the observation that

1+ FCy =1+ F(C*) £ (vol 3CH(vol CY) .

The characterization of parallelotopes is due to Griinbaum [15] for # = 2 and
to Groemer (1] for general #. (Groemer [2] corrects an erroneous remark of
Gritnbaum [15].) There seems to be no general characterization of those C for
which 7(C) = #° + n, though Griinbaum [15) shows that #C) =6 for every C
in R* which is not a parallelogram. Griinbaum {15} conjectures that #(C) is
always an even number.

It would be interesting to study the numbers 7(C) for sets C in R" assumed
merely to be homeomorphic with B". This is done for #» =2 by Halberg-
Levin-Straus [1], who show that even without the assumption of convexity,
FlC) = 6.

The problem of finding 7(B™) is famous and of long standing. For a dis-
cussion of it, see Fejes Téth [3] for # = 3, and the report of Coxeter [1] in
this volume for general #. At present the hest estimates for 7(B") are obtained
by the methods described above for #(B*). Substituting » = (4/3)"/* (correspond-
ing to af2 = #{6) in the inequality 7.16 to obtain an upper bound, and computing
a quotient of volumes for a lower bound, we obtain

7.18. 1/(2”—;1‘.1.-}-{:-(%):“_]”3 < ]-;(Bu) < n '4" 4 }/(2”2’_1)3 2!8—11;’2 .

8. Other intersection theorems, The material summarized in this section
makes little contact with Helly's theorem, but it does treat intersection
properties of convex sets in *. One group of results owes its initial stimulus
to coloring problems (see also 8.6-8.8), Two convex bodies in R" are called
neighbors if their intersection is. of dimension # — 1, and a family of convex
bodies is neighborly provided each two of its members are neighbors. For an
obvious reason, the neighborly families require special attention in connection
with coloring problems. A neighborly family of convex (or much more
general) bodies in £*® can have at most four members. On the other hand,
Tietze [1] answered a question of Stdckel by constructing in E? an infinite
neighborly family of convex polyhedra. (See Tietze [2] for a survey of this
and related questions.} M. Crum posed the problem independently about
forty years after its solution by Tietze, and a second construction was given
by Besicovitch [1]. A more detailed study of intersection properties of convex
polyhedra in K® was made by Rado {3} and Eggleston [1], who proved the

-
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following (the first statement in each case being that of Rado, the second
that of Eggleston).

8.1. When the integer m s <(u + 1)2, R" contains an infinite family 7
of convex polvhedra such that for all j with 1 £ § £ m, each § members of 7°
have an (0 — j + V-dimensional intersection. Whent m > (i + 12, such a family
does not exist in R,

8.2. R" confains a family of n + 2 convex polvhedra, cach j having (n — j + 1)-
dinensional interscction for all j with 1 £ j < n. Such a family in R cannof
have i + 3 members.

These results on neighborly families are closely connected with the neigh-
horly polyhedra of Gale {3; 5] (see also Carathéodory {2], Motzkin (3], and 3.9
above). For example, let P; be a convex polyhedron in ®' which has & vertices
such that each segment joining two vertices s an edge of P,. Then the dual
polyhedron & has & 3-faces, each two of which intersect in a 2-face of @,. Let
K be a 3-face of @,z a point exterior to K but very close to a (relatively)
mterior point of K, and from z as center, project all the other faces of @
into K. The resulting configuration consists of k1—1 3-dimensional polyhedra
whose union is the convex polvhedron K, and each two of these polyhedra
intersect in a common 2-face.

In the constructions of Tietze, Besicovitch, and Rado there was no restriction
on the numbers of vertices or faces of the polyhedra in question. However,
Bagemihl [1] asked for the maximum number & of fefrahedra in a neighborly
family in R* he proved that 8 = k £ 17 and conjectured that k# = 8. Baston
[1] has recently proved that & =9, but it remains undecided whether 8 or 9
is the actual value. More generally, the following problem is nearly un-
touched: For j = n + 1, determine the maximum number N{n,j) of convex
polyhedra having j vertices each which can appear in a neighborly family in
R". An extension of the reasoning of Bagemihl [1] shows that always
N{,j) < co. One might ask the same question with the restriction that the
polyhedra in question be affinely or combinatorially equivalent to a given one,
but even here the literature is silent except for the results of Bagemihl and
Baston. (For a related result involving translative equivalence of tetrahedra,
see Swierczkowski [1].)

* * * * * * * * *

Another group of results owes its basic notion to the theory of probability.
A family % of subsets of a set £ is said to be tndependent in E if for every
subfamily ¥ < %

2 NAE~G:Gel ~_ 4 = 3.
Let us define the rank of a family o* of sets as the least upper bound of
the cardinalities of independent subfamilies of =4 . Then the resuits of
Rényi-Rényi-Suranyi [1] may be stated as follows,

8.3. The family of all open paralielotopes in R*, with edges parailel to the
cobrdinate axes, 15 of rank 2n.
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84, The family of all (n — 1)-dimensional Euclidean spheres in E" is of
rank n + 1.

8.5. If r; is the vank of the family of all open convex polvgonal domains of
at most j sides in R, then lim_. riflog j = 1{log 2.

The proof of 8.3 is straightforward, while that of 8.4 depends on an estimate
of the maximum numbers of parts B into which E" can be divided by &
spheres. The exact value of B} is tabulated for 122 <10,1 <%k =10, and
several problems are suggested.

* * * * * ¥ * * *

For the problems of Gallai (§7) and of Hadwiger-Debrunner [2] (4.4 above),
one seekts conditions on a family % of convex sets in &™ which assure that
5 can be partitioned into m subfamilies, each with nonempty intersection,
On the other hand, Bielecki [1], Rado [4], and Asplund-Griinbaum (1] have
sought conditions under which & is m-colorable, this meaning that ¥ can
be partitioned into » families of pairwise disjoint sets. For a family & of
sets and for natural numbers p and g, let 7..,(.% } denote the smallest natural
number » which has the following property: if ¥ < . % and each #-membered
subfamily of ¥ is g-colorable, then <" is r-colorable (755 ). = o when
no such » exists). The result of Rado [4] and Bielecki [1] is

8.6. If _F is the family of all intervals in an ordered set, revo il 7 ) =k,
Asplund-Griinbaum [1] prove

8.7. If &2 is the family of all plane rectangles with edges parallel to the
codrdinale axes, 7y,.(%) = 6.

Further, a graph-coloring theorem of Griétzsch [1] implies

8.8. For each convex body K in R®, v, . (HK) = 3 (where HK is the family of
all (positive) homothets of K).

The paper of Asplund and Griinbaum contains other results on colorability
of various families, and raises some unsolved problems. The following
general problem seems worthy of mention: For what families & of convex
sets in R" and for what p and ¢ is the coloring number y,,{.F ) < ? How
does it depend on p, g and #? In particular, is 7,05 ) < oo when & is the
family of all convex bodies in R*, or when & is the family of all parallel-
epipeds in R® with sides parallel to the codrdinate axes? (Some partial answers
have recently been obtained by Danzer and Griinbaum.)

These “coloring problems” suggest the following extension of the Gallai-type
prohlem formulated near the end of §4:

Suppose X,P,x, 2, , and conditions on % are given. Determine the
smallest cardinal ¢ such that for every family ¥ which satisfies the given
conditions, and for which ¥ ¢ . % and card & < £+ 1 imply that £ can
be split into ¢ families each with property B, it is possible to split % into
¢ subfamilies each having property Pa.
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In the above terms, the result 8.7 asserts that if P is the property *the
members of the family are pairwise disjoint,” X = R®, &% = <P, ¢ =3, =2,
and 2= Y,, then ¢ = 6; and 8.6 asserts that if X is an ordered set, 5% =
A=+ 1, 0=k, and i = successor of card X, then ¢ = &.

An unsolved problem related to Gallai's original geometric problem arises
when X = R % = D (nonempty intersection), .% = TK for a convex body
KcR,K=2kp==Fk and 1=¥,. When K is strictly convex and centrally
symmetric, a result of Griinbaum {9] impiies that ¢ = 3u. [t is easy to verify
that ¢ = 8 when K is a circle and %2 =2; Griinbaum conjectures that ¢" =6
in this case.

* & & L3 * * * * ®

If ¢ is a transformation of a metric space (X, p) into a metric space (Y, o),
then ¢ is called Lipschitzian with constant i provided o(ex, ¢x') < iplx, ') for
all x, &' € X; and ¢ is a contraction provided always o{ex, ¢x) < plx, &), Several
authors have studied the probiem of extending (to all of X, with preservation
of constant) a Lipschitzian transformation which is initially defined only on
a subset of X, Two early papers on the subject were those of McShane [1]
and Kirszbraun [1]. The method of McShane (and, later, of Banach [1] and
Czipszer-Gehér [1}]) provided explicit formulae for the extension in certain
cases, while the “point-by-point” method of Kirszbraun, Valentine [1; 2; 3], and
Mickie [1] used an interesting intersection property. We shall discuss here
only contractions, for the general Lipschitzian extension problem can be re-
duced to that for contractions when Y is a normed linear space.

When % and =" are families of metric cells in (X, p) and (Y, ) respectively,
we shall write % > %7 if the families can be indexed simultaneously in such
a way that corresponding cells have equal radii and the distance between any
two centers from 5% is at feast that between the corresponding centers from
7. Thus with

S = {Vx, rdieell, = Voly,, rdeell,
F =B e—plx,x )2 ey, v forall ¢ el

Under these circumstances, it is natural to ask whether 7.4 # @ implies
=% # @, That is, if the cells in # have a common point, should they not
again have a common point if we displace their centers so as not to be farther
apart than they were before? In fact, the situation is as follows (Valentine
(3]

8.9. For melric spaces X and Y, the following two statements are equivalent:

whenever & and L are families of metric cells in X and Y respectively,
with 5 > %7, then % + @ implies % + &

whenever W c X, ecach contraction of W inte Y can be extended o a contrac-
tion of X inlo Y.

From 8.9 it is clear that results of all the authors mentioned above may be
interpreted as intersection theorems, though they were not always stated as
such. There seems to be no complete picture even of what pairs of Minkowski
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spaces X and Y are related as in 8.9, though Zorn observed that the conditions
may fail for large classes of such pairs (see Valentine [3]). In any case, the
fotlowing is known:

8.10. For each of the following cases, the conditions of 8.9 are salisfied:
a® X an arbitrary metric space, ¥ = E;

¥ X=Y=E%

¢ X =¥ = 8" (spherical space).

8.11. When X and Y ave the same two-dimensional Minkowski space with
unit sphere S, the condifions of 8.9 are satisfied if and only if S is an ellipse
or a parallelogram.

The result 8.11 is due to Griinbaum [7]. The proof of 8.10a is given by
McShane (1], Valentine [1], Banach [1], Mickle [1]}, and Czipszer-Gehér [1],
with various analytical generalizations (e.g., to functions satisfiving a Lipschitz-
Hilder condition). From 8.10a it follows that the conditions of 8.9 are also
satisfied for arbitrary X when Y is the space of all continuous real functions
on an extremally disconnected compact Hausdorff space, and thus in particular
when Y is a Minkowski space whose unit cell is a parallelotope {cf. 7.1 and
7.2). Case b® is discussed by Kirszbraun {1], Valentine [3], Mickle [1], Schoen-
berg (1], and Griinbaum {19], and (as noted by Valentine) extends easily to
the case X = ¥ = complete inner-product space. The case ¢’ is treated by
Valentine [3], who also {2} establishes the result for X = ¥ = n-dimensional
hyperbolic space. Helly's theorem is employed by Kirszbraun [1] and Valentine
[1; 2; 3]; in particular, it is clear that for 8.7b it suffices to consider families
consisting of # + 1 cells. All the proofs employ analytical notions (inner-
products, etc.) even for X = Y = E*, but it would seem worthwhile to seek a
more geometrical proof. The simplest proofs for 8.10b are those of Schoen-
berg [1] and of Griinbaum [19], who proves a generalization (8.12 below) which
includes (by suitable choice of x:,¥:,a and #) both Kirszbraun’s theorem and
a recent theorem of Minty [1].

812, Suppose {x,, -+, xd S E™, {3, -, ¥u} C E", the inner product {x; — x;,
Vi—¥) 20 for all i, ], and a and B are real numbers nol both zere. Then
there exists ze E™ such that (x; + az,y: + Bz2) 2 0 for all 1.

There are some other interesting vesults and problems which involve con-
tractions in E®. By considering the case of cells all of the same radius, we
conclude from Kirszbraun's theorem that if a set X ¢ E™ admits a contraction
onto a set Y, then the circumradius of Y is not greater than that of X, While
there exist X and Y in E” such that X can be contracted onto ¥ even though
¥ has greater width, this cannot happen when X and ¥ are both convex
bodies and the contraction is biunique {Gale [4]). Nothing seems to be known
ahout the behavior of nradii in this case.

There is an unsolved problem of Helly type concerning continuous contractions
in £*. For ordered k-tuples {(x,, -, x) and (¥, ---, ¥«) of points in a metric
space (M, p), a continuous contraction of the first onto the second is an ordered
k-tuple {(¢,, -+, ¢ of continuous mappings of [0, 1] mto M such that for ali
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¢ and 7,pd1) =, 0) = p:, and plpda), pila)) = pledB), vi(5)) whenever 0 =
a s =1 The problem is to evaluate the number ., , defined as the smallest
7 such that whenever (x;,---,x) and (¥, ---,») are k-tuples from E” for
which each j-tuple of the x;’s admits a continuous contraction onto the cor-
responding j-tuple of the ¥;'s, then (x,, - - -, 2} admits a continuous contraction
onto (¥, ---, w). (If no such s exists, m,: = .} It is easy to see that m, = 2,
A. H. Cayford has remarked that from consideration of the positive and
negative unit vectors along the n axes in £7, together with another point
far removed from this set, it follows that m, = 2n + 1 when z = 2.

A striking problem is that of Thue Poulsen [1} and M. Kneser [1}: When
% and ¥ are families of unit cells in E”, does % > %7 imply vol 2.% =
vol 2% (where 2 indicates union) and volr.% = volz%™? An affirmative
solution would be useful in connection with Minkowski’s theory of surface
area. Kirszbraun’s theorem gives a hit of information on the problem, and
Kneser shows that vol 2% < 3*vol 2% . (For other details see M. Kneser
1] and Hadwiger [9).) It seems clear that in non-Euclidean Minkowski spaces,
the answer to the above question is negative. In the two-dimensional case,
this follows from 8.11. '

For a Minkowski space X with unit cell C, it would be of interest to study
the number Eg defined as the smallest ¢ > 0 such that whenever % and %
are families of homothets of € with & > % and =% = @, then a com-
mon point is obtained upon expanding all the members of £ about their
centers by the factor ¢. The number J; is defined similarly for families of
translates of C. Clearly 1 £ J¢ = Je and 1 £ E; £ Er, where J; and E; are
the Jung constant and the expansion constant of §6. Is it possible to have
1 < E} = E; What is E¢ when € is a Leichtweiss body (cf. 65+4)?

9. Generalized comvexity. The applicability and the intuitive appeal of
convexity have led to a wide range of notions of “generalized convexity.”
For several of them, theorems related to Helly’s were either a motive or a
by-product of the investigation. For others, it seems probable that no attempt
has been made to find analogues of Helly’s theorem. In order to encourage
such attempts and to facilitate comparison of the various notions which have
been considered, our discussion will include several generalizations of convexity
which seem at present unrelated to Helly’s theorem.

The usual procedure in defining a generalized convexity is to select a
property of convex sets in R® or £" which is either characteristic of convexity
or essential in the proof of some important theorem about convex sets, and to
formulate that property or a suitable variant in other settings. Many prop-
erties of convex sets are useful for this purpose. We shall first describe in
.general terms the most important procedures which have been adopted, and
then review briefly some of the results obtained in specific cases.

The usual definition of convexity in R* can be generalized according to the
following scheme. In a set X, a family .5 of sets is given together with a
function % which assigns to each Fe % a family »(F) of subsets of X. A
set K< X is called y-convex provided K contains at least one member of (F)
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whenever Fc Kand Fe 5 . This is the most common form of generalization,
and appears in most of the cases discussed below. Usually & is the family
of all two-pointed subsets of X and Prenowitz [1), for example, studies convexity
in abstract geometries based on the notion of “join.” For other possibilities
see 9.7 below and Valentine [4], where one such variant is discussed and
references to others are given.

Another approach derives from the fact that every convex set in R® is an
intersection of semispaces (Motzkin 1], Hammer [1;2], Klee [4]}, and every
closed [resp. open} convex set is an intersection of closed [resp. open] half-
spaces, A family 577 of subsets of a set X is given, and a set K< X is
called % -comvex provided K is the intersection of a subfamily of 577
{Instances of this appear in 2.1, 9.3, and 9.9 below. See also Ghika [3]).) The
definitions of .%7-convexity can also be expressed in terms of “separation” a
set K ¢ X is .22 "-convex if and only if for every xr& X ~ K there exists He 5%
such that K< H and x¢ H. (For a generalization in this direction, see Ellis
[11.} The family .27" may be defined in terms of a family of functions, or
more directly we may be given a family @ of real-valued functions on X and
say that a set Kc X is @-convex provided for each xe X ~ K there exists
pe@ such that ¢(x) < inf pK. This procedure is followed by Fan [1] in his
generalization of the Krein-Milman theorem, and enters also in various notions
of “regular convexity” (see Berge [1] and his references).

Another approach is based on the fact that a subset of K" is convex if and
only if its intersection with each straight line is connected. Working in R®
and using in place of the lines a two-parameter family of curves, Drandell [1]
obtained interesting results under very weak assumptions. His paper also
gives references for previously known results in this direction. (See Skorn-
vakov [1] for a relevant result on curve families in R? and Valentine [3],
Kuhn [1], Fary [1], Kosifiski [1], and their references for some characteriza-
tions of convexity in terms of k-dimensional sections.)

Of course one may generalize, in various ways, the underlying algebraic
structure in terms of which convexity is formulated. Many of the combi-
natorial results of this paper are valid in a linear space over an arbitrary
ordered field, Monna [1] discusses convexity in spaces over nonarchimedean
ordered fields. Other algebraic formulations are those of Rado [2] and Ghika
[1; 2], the former being described briefly in 9.4 below.

One may ignore the surrounding linear space and seek a more intrinsic
notion of barycentric calcuius or convex space. This was done by Stone [1; 2],
H. Kneser [1}, and Nef [1]. Their theories turn out to be embeddable in
linear spaces, but might be of independent interest if reformulated to introduce
topological as well as algebraic structure.

For an open subset D of a metric space (M, p), let 3p and v, denote the
inner and outer distance functions of P. These functions are defined on D
and M respectively, with d,(x): = p{{x}, M~ D) and vo(x); = p(ix}, D). When
M= E" and p is the Euclidean distance, convexity of D is equivalent to that
of the function —log d, and also to that of the function vp. This suggests
that for a family @ of functions on subsets of a metric space (M, ), one could
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~ay that an open set K< M is @-convex provided -logd,e®, or perhaps
provided vy €®. The notion of convexity in spaces of several complex vari-
ibles may be approached in this way (see 9.11). However, a more useful
ilea suggested by these considerations is that one should try te generalize
the sort of “convex structure” which is formed by the convex subsets of R"
logether with the convex or concave functions defined over them. This leads
in one direction to the theory of complex convexity (9.11; and in another to
ihe abstract minimum principle of Bauer [1], generalizing the Krein-Milman
theorem.

Finally, we mention the fact that each new characterization of convexity
in £* may lead to new generalized convexities, and that, conversely, the
scarch for a suitable notion of convexity in a given setting may lead to dis-
covery of new and useful properties of sets which are convex in the classical
sense.  For an interesting example, see Radstrom’s work ([1: 2] and 9.10 below)
i topological groups.

We proceed now to discuss some specific “convexities,” commencing with
those which appear to he most closely related to Helly’s theorem.

9.1. Spherical convexity. Convexity on the n-dimensional sphere S§° has
been considered from various points of view, and is certainly the most sig-
nificant of the generalized convexities so far as Helly's theorem is concerned.
Several different definitions of spherical convexity have heen studied, though
not always with due regard to the litnitations which they impose. For the
sake of simplicity, we shall discuss only closed sets, though in most cases
this restriction can he avoided.

(5y A set K< 8" is strongly convex iff it does not contain antipodal points
and it contains, with each pair of its points, the small arc of the great circle
determined by them. Equivalently, K (being closed) is strongly convex if it
does not contain antipodal points and is an intersection of closed hemispheres.
Every strongly convex K is an intersection of open hemispheres, and vice
versa.,

(W) A set X< 5" is weaklv convex iff it contains, with each pair of its
points, the small arc or a semicircular arc of a great circle determined by
them. Equivalently, K is connected and is an intersection of closed hemi-
spheres,

(R} A set Kc S" is Robinson-convex iff it contains, with each of its non-
antipodal points, the small arc of the great circle determined by them.
Equivalently, K is an intersection of closed hemispheres.

tH) A set A< 8" is Horit-convex iff it contains, with each pair of its non-
antipodal points, at least one of the great circle ares determined by them.

Obviausly, every strongly convex set is weakly convex; weak convexity
implies Robinson-convexity, and that implies Horn-convexity, The strongly
convex sets and the Robinson-convex sets form intersectional families, All
strongly convex sets are contractible, as are all the Robinson- or weakly-convex
sets except for the great m-spheres $™ < §". According to purpose, one or
another definition of spherical convexity may be more appropriate. Horn-
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convexity was introduced by Horn [1] in proving his generalization of Helly's
theorem. Robinson-convexity was used by Robinson [2] in studying congruence-
indices of spherical caps {see also Blumenthal [2]}. Weakly convex sets were
considered by Santal6é [4] among others, though the definition at the beginning
of his paper is different and includes only a subclass of the strongly convex
sets.

An exhaustive bibliography of papers dealing with spherical convexity
would be very extensive., Almost every notion and result on convexity in K"
can be extended to S", and in many cases the extension has been at least
partly accomplished in connection with needs arising from other problems.
As an example, we mention a little-known paper of Vigodsky [1] which proves
an analogue of Carathéodory’s theorem for $% (Vigodsky’s main theorem was
proved earlier by Fenchel [2].) It seems that Carathéodory’s theorem and its
variants have not been generalized in full to the spherical case, though such
an extension is surely possible.

For certain types of problems, the treatment in 8™ is more satisfactory than
that in R, due to the possibility of dualization in S*. For example, the
analogues in 8" of Jung’'s theorem [1] on circumspheres and Steinhagen’s [1]
on inspheres are dual aspects of the same result (Santalé [5]). On the other
hand, some results in §* have no Euclidean analogue. An example of this
kind is furnished by the difference between the following two relatives of
Jung’s theorem, in which connectedness plays an essential role though it
is irrelevant in R If a compact subset of S$* has diameter less than
arc cos (m + 1)7', it lies in a closed hemisphere; a compact subset whose diameter
is equal to arc cos(# + 1)™' need not lie in any hemisphere {Molnar [4]). If
a compact connected subset of §° has diameter £ arccos»n ™, it lies in a closed
hemisphere (Griinbaum [14]).

Due to the close and obvious relationship between spherical convexity in
S™ and convex cones in R™', many results can be interpreted in both the
spherical and the Euclidean setting. This fact has been used repeatedly (e.g.,
Motzkin [1], Robinson (1}, Horn [1)).

For spherical analogues of Helly’s theorem, the simplest approach seems to
be through Helly’'s topological theorem. From this it follows that the family
of all homology cells in §* has Helly-order » + 2. Alternatively, the result
may be stated as follows: A family % of homology cells in $™ has non-
empty intersection provided each union of »# + 2 members of % is different
from S™ and each intersection of # + 1 or fewer members of % is a ho-
mology cell. This applies, in particular, to the case of strongly convex sets
considered by Molnar [4]. Similar corollaries may be derived for the other
types of spherical convexity, but their formulation is somewhat more compli-
cated due to the absence of intersectionality, or contractibility, or both (see
Horn [1}, Karlin-Shapley (1], Griinbaum [14]).

Other results of Helly-type for S™ may easily be derived from results on
convex sets in R*. For example, the case j =1 of Theorem 4.1 (essentially
contained in Steinitz’s result 3.2) may be reformulated as the following fact,
first stated by Robinson [2]: If & is a family of at least 2n + 2 Robinson-
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convex sels in S° and each 2n + 2 members of F have a common point, then
% =+ @. This and related results were employed by Blumenthal [2] in con-
nection with linear inequalities. For some intersection and covering theorems
involving hemispheres, see Hadwiger [4] and Blumenthal [2;4]; a question
raised by Hadwiger is answered by Griinbaum {9].

Horn-convex sets have been studied by Horn (1] and Vincensini [3;4; 5].
Horn shows that if 1 £ k= #n+ 1 and % is a family of at least £ Horn-
convex sets in S™ such that each # members of 5 have a common point,
then every great (# — k)-sphere in §" lies in a great (# — & + 1)-sphere which
intersects each member of 5% (cf. 4.3). For k= n+ 1, this asserts the
existence of a point z such that every member of F includes z or its antipode.

9.2. Projective convexity. A set K in the n-dimensional (real) projective
space P" is called convex provided it contains, with each pair of its points,
exactly one of the two segments determined by these points. Such sets have
been considered repeatedly since their introduction by Steinitz [1] and Veblen-
Young [1], though most authors have discussed only the equivalence of various
definitions. (See de Groot-de Vries [1] and other papers listed by them.) The
projectively convex sets are contractible but do not form an intersectional
family. The intersection of & + 1 convex sets in P* may have up to Zi., (f
components, each of which is projectively convex (Motzkin [1]). On the other
hand, if each two of the sets have convex intersection, then so has the entire
family. Thus the following is an immediate consequence of Helly’s topological
theorem: If a family F of at least n + 1 closed convex sels in P™ is such
that each two members of ¥ have convex inlfersection and each n -+ 1 members
have nonemply intersection, then =% =+ @ (Griinbaum [11]).

For k= 1, let % (n, k) denote the class of all subsets of P® which are the
union of & or fewer pairwise disjoint closed convex sets. It seems probable
that 2 (n, k) is of finite Helly-order, but apparently this has not been es-
tablished and surely the exact value even of a%(# (n,2)) is unknown (cf. 4.11).

For other results related to projective convexity, including some on common
transversals, see Fenchel {8], Kuiper [1], de Groot-de Vries [1], Schweppe (1],
Gaddum [1}, Marchaud [1], Griinbaum [11] and Hare-Gaddum (1].

9.3. Levi's convexity. Like that of Rado discussed in 9.4, this notion was
motivated primarily by Helly’s theorem. Levi [1] considers a family & of
subsets of a set X, and assumes:

() =¥ e€ forall ¥ c%.

For each set Y lying in some member of %7, the & -hull is defined as the
intersection of all members of ¥ which contain ¥, The second axiom is

(IL) Every (n + 2)-pointed subset of a member of ‘& contains lwo disjoint
sets whose & -hulls have a common point.

Generalizing Radon’s proof {2]), Levi deduces from the above axioms that if
S# is a finite family of at least # + 1 members of %°, and each #n + 1
members of % have a common point, then =.% = @. As corollaries he
obtains Helly's theorem on convex sets in R", its extension to m-dimensional
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geometries satisfying Hilbert's axioms of incidence and order (Hilbert [1]),
and an intersection theorem in free abelian groups with » generators. (In
the last case, %~ is the family of all subgroups, the neutral element being
omitted from each.)

It would be of interest to study, in a system assumed to satisfy (I) and
perhaps other simple “axioms of convexity,” the inter-relationships of Radon’s
property as expressed by (Il.}), Helly's property as stated above, and Cara-
théodory’s property expressed as follows: (II1,) Whenever a point p lies in
the ‘& -hull of a set 'Y, then p is in the & -hull of some at-most-(n + 1)-pointed
subset of Y.

9.4. Rado's convexity, Rado [2] considers an abelian group A under the
action of a commutative ring & of operators, and sets forth conditions
on A and S# which assure the validity of Helly’s theorem (with a proper
interpretation of “convex set”). His reasoning yields not only Helly’s theorem
on convex sets in R”, but also a generalization of a theorem of Stieltjes {1]
on arithimetic progressions. With respect to a given codrdinatization of R",
a lattice is the set of all points of the form x, + 7=, a;x;, where the x,’s are
n + 1 given points with integral coordinates and the a;'s are-arbitrary integers.
Rado proves that if % is a finite family of at least » + 1 lattices in R such
that each » + 1 of them have a common point, then 1. % = .

9.5. Hyperconvexity, If K is a compact convex set in R", a set Ac R™is
K-convex (or hyperconvex with respect to K) provided A contains, with each
pair of its points, the intersection of all translates of K which contain those
points. K-convex sets form an intersectional family and the connected K-
convex sets are intersections of translates of K. K-convex sets need not be
connected, but attention is usually restricted to their connected components.
The study of hyperconvexity was initiated by Mayer (1], and a complete set
of references can be found through Pasqualini [1], Blanc [1], and Santal6 [6].
Maost of the papers treat only the planar case, and under restrictions on K.
They deal with support properties, equivalent definitions, hyperconvex hulls,
extremal problems, etc.

9.6. Quasiconvexity. Let 4 be a subset of [0,1]. A set Kc R* is A-con-
vex (ot quasiconvex with respect to A) provided ix 4+ (1 — i)y € K whenever 1¢ 4
and x,v€ K. This notion was studied by Green and Gustin [1]), who give
references for the previously considered special cases (such as 4= {1/2). A
detailed study of even more general concepts is the paper of Motzkin [4].

9.7. Three-point convexity. A set K in K" is 3-point convex if it contains,
with each three of its points, at least one of the three segments determined
by these points. Valentine [4;5] has made an interesting study of this
property, and a more general notion has been formulated by Allen [1]. Hare
and Gaddum [1] discovered a connection between 3-point convexity and pro-
jective convexity. It seems likely that the family of all 3-point convex sub-
sets of R* is of finite Helly-order, but this has not been determined. (See
also Valentine [6; 7].)
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9.8. Order-convexity., A set K in a partially ordered space is order-convex
provided v¢€ X whenever x,ze K with 2 < y <z For results on extreme
points and convex hulls with respect to order-convexity, see Franklin [1].
Apparently the literature contains no results of Helly-type about order-convexity
in general partially ordered linear spaces, though in any linearly ordered
space the family of all order-convex sets is intersectional and has Helly-
number 2,

9.9. Metric convexity. The usual definition of metric convexity is due to
Menger [1); A set K in a metric space (M, p) is metrically convex if for each
pair of distinct points x, z € K there exists a point y € K, different from x and
z, such that p(x, z) = p(x, ¥} + p(v,2). When K is not only convex but also
metrically complete, then the points x and # of K must lie in a subset of K
which is isometric with a linear interval of length p(x,z). A closed subset
of E™ (or of any strictly convex Banach space) is metrically convex if and
only if it is convex in the usual sense. For geodesic distance on the sphere
5™, a closed set is metrically convex if and only if it is weakly convex in
the sense of 9.1,

For various geometric developments involving Menger's and other closely
related notions of metric convexity, see Blumenthal [3], Busemann (2], Pauc
{1], Aronszajn-Panitchpakdi [1], and references listed by these authors, A
theorem of Whitehead [1] asserts that for any point p of a Riemannian mani-
fold with positive definite metric, all sufficiently small “spherical” neighbor-
hoods of p are metrically convex in a rather strong sense. This result was
sharpened by Nijenhuis {1].

Several authors have studied the relationship between the topological
structure of a metrizable space and the existence of a convex metric com-
patible with the given topology. Menger [1] asked whether every continuous
curve admits a convex metric, and after several partial results the problem
was finally settled affirmatively by Bing [1]. See Bing [1; 2; 8], Plunkett [1),
and Lelek-Nitka [1] for this and related results and references.

In order to extend some of his selection theorems, Michael [I] formulated
the notion of a comvex structure on a metric space, describing a situation in
which, as in a Riemannian manifold, it is meaningful to form “convex combi-
nations” of certain (but not necessarily all) k-tuples of points in the space.
For another metric notion related to convexity, see Michael [2],

Danzer [2; 3; 4] formulates and applies yet another concept of convexity in
metric spaces. For each pair xr and 2 of distinct points of M, let H{x, 2) =
{yeM:p(x,¥) < p{¥,2)}. Such a set is called a hailfspace, and a set is called
convex provided it is an intersection of halfspaces. This is closely related to
Leibniz’s idea {see Busemann [1]} of defining a plane as the set of all points
equidistant from two given points. From results of Busemann [1} it follows
that when (M, p) is a normed linear space with metric generated by the norm,
then the closed Danzer-convex sets in M are all metricaily convex (in the
sense of Menger) only when (M, p) is an inner-product space. Sets of the
form {ve M: p{x, ¥) = p{¥, 2)} are studied also by Kalisch and Straus [I].
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Defining the convex hull of a set as the intersection of all halfspaces contain-
ing it, Danzer [5] proves that in a metric space, any family of spherical cells
having nonemply inlersection covers the convex hull of the set of ifs cenlers.
This was the principal tool in his proof of 7.12 above.

9.10. Convexity in topological groups. Though another approach to convexity
in topological groups has been formuiated by Ghika {4;5], we consider here
only the approach of Radstrém [1;2]. Let G be a topological group and 2°
the class of all nonempty subsets of G. A one-parameter semigroup of subsels
of G is defined by Radstrom [2] to be a biunique mapping A of 10, co[ into
2% such that A(s, + 6. = A@B) + A5, for all 4;€]0, o[, where the right-hand
“+7 indicates the usual addition of sets. Radstrém [2] proves the following,
suggested by the observation that in E", “high powers of small sets are in
some sense almost convex™ In a locally convex Hausdorfl linear space, the
one-paremeler semigroups of compact sefs are exactly those of the form A(@F) =
F(®) + oK, where f is a one-parameter semugroup of points and K is a compact
convex sef.

In Radstrom’s earlier paper [1], a slightly different definition of one-param-
eter semigroup leads to the conclusion that in R™, the one-parameter semi-
groups of sets are exactly those of the form A(§) = éK for compact convex
K. This suggests that in an arbitrary topological group G, one might define
convex sets in terms of the one-parameter semigroups, or at least that these
semigroups may play a role similar to that played by convex sets in R
Radstrém [1] shows that if G is a Lie group, then every one-parameter semi-
group of subsets of G has, in a sense, an infinitesimal generator which is a
convex set,

9.11. Complex convexity, We turn finally to the generalized convexity
which plays such an important role in the theory of functions of several
complex variables. This generalizes simultaneously the notions of convex set
and convex function, with striking parallelism between the real and complex
theories. (Of course they differ in details of proof, the complex theory being
much more difficult in some respects.) See Bremermann [1;2; 3] for an ex-
cellent description of this parallelism and for references to other work in the
field. In particular, Bremermann [1] supplies a “real-complex dictionary” with
the following translation of terms:

Real
linear function of one real variable
convex function of one real variable
convex function of » real variables
convex region in R

Complex
harmonic function of one complex variable
subharmonic function of one complex variable
plurisubharmonic function of # complex variables
region of holomerphy in C* (the space of # complex variables).
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A real-valued function V on a region D c C" i1s plurisubharmionic provided

vo £ V < oo, ¥V is upper semicontinuous on I, and for every analytic plane
Piz,a)={z+ ia:1€C'") (where z,a€C™) it s a subharmonic function of 1 on
the set DN Plz, g). A complex-valued function on a region Dc C" is helo-
muorphic if it is single-valued and is hoiomorphic in each of the # complex
variables separately. The region D is a region of holemorphy if there exists
i function holomorphic in D and not extendable to a function holomorphic in
a larger region. Bremermann [1] justifies the above translations by an
impressive list of parallel definitions and theorems, of which the following
are samples:

a convex [plurisubharmonic] function assumes its maximum only at the
boundary of a domain unless it is constant in the domain;

a domain Dc R* [D < C"] is convex [a region of holomorphy] if and only
il —log éy is a convex [plurisubharmonic] function in 2. (Here &, is the inner
distance function of I, so that 4,FP is the radius of the largest Euclidean
sphere which is centered at p and contained in D.)

As might be guessed from the above parallelism, the plurisubharmonic
functions and the regions of holomorphy are also called pseudoconvex functions
and pseudoconvex regions. {The pseudoconvex regions were originally defined in
a different way which turned out to be equivalent to regions of holomorphy.)
It would be most interesting to describe axiomatically a structure consisting
of certain sets and of functions defined over them in such a way that the
theories of real and complex convexity are subsumed under a common gener-
alization. For ideas which may be useful in this connection, see Bauer [1; 2; 3]
and some of his references.
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INDEX OF NOTATION

The general notation is described on pages 105-106. Much of the special notation
Important exceptions are listed below,
with numbers indicating where the definitions appear.

is used only on the page where it is defined.

a{ F) Helly-number 124
oW F) Helly-order 124
ax(%) Heily-numbers 128
B2y Hanner-numbers 128
r(¥£) Gallai-numbers 128
&, @ property of having nonempty
intersection 128
T, Z; transversal properties 130
Je. J4 Jung constant 134-135

INDEX OF TERMS

adjacent sets 147, 149-151
algebraic
topology 109, 125-126, 129
varieties 124
approximation theory 110-115
axioms of convexity 109, 155-160
Blaschke constant Be 140-142
Borsuk's conjecture 137
Carathéodory's theorem
160
applications 110, 112-113, 115-1186
cell 105-106, 162
Fuclidean _______ B» 112-113, 130-133,
135-139, 141-142, 144-150, 154-155
characterization 133, 138-139
homolegy 125-126, 131, 158
Jung 112, 132, 134-137, 140, 145
center
g — 133
of symmetry 123, 130, 134-137, 140-142,
147, 153
chord 113
circle, circular disc (see cell)
cireumradius 132, 154
circumscribed (see Jung)
cell 112, 134, 137
ellipsoid 139-140
simplex 136, 140
colorable 153
combinatorial topology

103, 115-117, 138,

109, 125-126, 129

il e C-distance 134
E¢ expansion constant 135
B¢ Blaschke constant 140, 142
[Y/C] covering aumber 145
diamf,Y Jth C-diameter 145
a(C}, 5C) 137, 145
FHOY 146
FC) 149
complex convexity 157, 162-163
cone 107, 129, 158
congruence indices and order 139
congruent

families of sets 123, 131-132,

138-13%

conics 139

connected sets
constant width 141
constants

Blaschke 140-142

contraction 142

expansion 135, 155
Jung 112, 133-136
contraction constant 142
contractions 153-155
Convex

body 105

combinations 103, 115-11%

cone 107, 129, 158

connectedness 117

function 123

hull 103, 115-119, 159-160, 162

independence 119

space 156

structure 157, 161
convexity

axioms of 109, 155-160

complex 157, 162-163

generalized 155-163

117, 125, 138, 157-158



HELT.Y'S THEOREM AND I'T'S RELATIVES 1

ey feont,)

[REDRT 157-15%

L 160

Lewi’s  HE 159-160

e 161-162

cnler 161

prepective 159

[!\l‘lldfl' 162—].53

quasi- 160

Wada's 109, 160

ltabinson-  157-159

~pherical  157-159

drict 105, 123, 146-147

trong 157-158

three-point 160

topological group 162

weak  157-158
covering

nomber [Y/C] 145-149

by congruent sets 138-139

by Euclidean cells 112, 133, 135-138,

150

by halfspaces 111, 113, 140

by homothets 132-136

by translates 133-134, 136-137, 145-147
deficiency

of a flat (=codimension) 119-121, 147-148
dinmeter

jth C- diami ¥ 145-146

# e diamp Y 132-133
disjoint families of sets 124-125, 130, 132,

152-153

distance

¢ |lz—ylle 134-135
duality 108, 140, 158
Dvoretzky's theorem 109-110
cliipse, ellipsoid

characterization 133, 154

circumscribed and inscribed  139-140
Fuler characteristic 109, 124, 126
expansion constants Ey, Ef, E}, 135, 155
extension

of contractions 153-155

property of normed linear spaces 143
families of sets

congruent 131-132, 138-13%

disjornt  124-125, 130, 132, 152-153

homothets 132-136, 146-149, 155

independent 151-152

intersectional 124-125

neighborly 150-152

partibionahde 122100

rank of 161 152

separated 130

simple 130

translates 131 147, 144150, 154155
finite intersection property 106
flat  J0h, 118-121, 124, 147-148
Gallai

-numbers 1 (£} 128, 144-149

-type problems 128, 152-153

original Gallai problem 144
generalizations

of convexity 155-163

of Helly's theorem 119-123
genetics 127
graphs 118, 127, 152
Grassmannian manifold 12%
halfspace 111, 113, 140-142, 156, 161-162
Hanner

-numbers A} 128, 142

body 136, 142
Helly

Eduard 101-102

-number a{&) 124

-numbers ~, (¥} 128

-order a® &) 124-125

-type problems 127-128
Helly's theorem 101-104, 106-108

applications 110-115

converse 109-110

generalizations 119-128

topological generalization 125-126, 130,

158

hemispheres 137, 141, 157-159
hereditary property 127-128
homology cell 125-126, 131, 158
homothets 105-106

families of 132-136, 146-14%
homothety 105-106, 146
hyperconvexity 160
incidence array 126-127
independent families 151-152
inscribed ellipsoid 139-140
inner-product space 133, 154-155
interior 105

o int; Z 118

of convex hufl 116
intersection 106

j-dimensional 120-121

pattern 126-127

property 104, 106, 150
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intersectional families 124-125
isometries (Euclidecan motions) 138-139
Jung
cell 112, 132, 134-137, 140, 145,
constants J., J5, JL J. 112, 133-136,
155
theorem 112-113, 131-133
jattice 160
Leichtweiss body 135 136
Lipschitzian transformations (see contrac-
tions}
Lowner ellipsoid  139-140
mass-distribution 113-115
measure of nonconvexity 124
metric
convexity 161-162
spaces 132-133, 139, 153-154
Minkowski
measure of surface area 155
measure of symmetry 113, 115
spaces 133-137, 153-155
neighborly
families of sets 150-151
polvhedra 118, 151
nerve of a complex 126-127
nonconvexity, measure of 124
order convexity 161
packings 147, 149-150
parallelograms, parallelotopes
characterizations 137, 142-145, 150, 154
intersection properties 127, 129-131, 142-
144, 150-152, 154
partition
j . of a family of sets 122-123
tsee also Gallai)
polarity 108, 140-142, 158
polygons, polvhedra 106, J18-119, 128, 150-
152
projective convexity 159
Radon's theorem 103, 107-109, 117-118,
159

radius
n o 141, 1584
circum 132, 184
o radp Y 132-133
rank of a family of sets 151-152
semispaces 156
separated families 130
separation by hyperplanes 106-107, 109,
111, 130
simple families 130
simplex 112-113, 123, 136-138, 140-141,
143, 151
characterization 135, 141, 143
regular 136
smgoth 105, 149
sphere 105, 152
spherical
caps 14%-150
convexity 157-159
spaces 133, 139, 149-150, 154, 157-159
starshaped sets 111
Steinitz’s theorem 1i15-116
strict convexity 105, 123, 146-147
supporting hyperplanes 109, 116, 136
symmetry
center of 123, 130, 134-137, 140-142, 147
measure of 113, 11%
topological groups, convexity in 162
translates, families of 131-137, 144-150,
154-155
transversals 110-111, 114, 121, 120-132
triangie, tetrahedron (see simplex)
universal cover 136
varieties, algebraic 124
vertices 118-119, 151
visible points 111
width 154
constant 14l
¢ 140



