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Abstract

Some twenty years ago Ludwig Danzer provided the example of a (354) geometric configuration for
which no visually attractive presentation was found despite its great combinatorial symmetry. For a long
time no other (354) configurations was known. This changed recently, and the newly found symmetric
configurations, and missteps in finding them, are presented in some detail.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Some twenty years ago, John Rigby and I were preparing our paper [9] for publication.
This paper contained the first graphic depiction of several configurations (n4), among them
the configurations (214) and (244). The former (reproduced here as Fig. 1) had been studied
extensively, starting with F. Klein in 1875; see Coxeter [4] for details of the history. It had
been the subject of many representations, but none by points and lines in the real Euclidean
plane. Our representation of these and some other (n4) configurations led us to consider whether
every configuration of this kind that is realizable in the Euclidean plane has n divisible by 3. A
counterexample to this possibility was communicated to us by L. Danzer. It is a configuration
(354), obtained by choosing seven 3-spaces in general position in the 4-dimensional space; they
meet by fours and by threes in 35 points and 35 lines, which form the configuration (354) in
4-space. A projection yields the desired configuration in the plane.

Combinatorially, Danzer’s configuration can be interpreted as defined by all 3-sets and all 4-
sets that can be formed by the elements of a 7-element set; each “point” is represented by one of
the 3-sets, and it is incident with those lines (represented by 4-sets) that contain the 3-set.
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Fig. 1.

Following the publication of [9], the study of geometric configurations (n4) gradually took
off, with reasonably nice geometric representations found for many values of n. Details can be
found in [7] and [8], where references to other publications may be found as well. However, the
case n = 35 resisted any such representation till very recently. The following pages will present
such representations, after detailing some unsuccessful — but educationally valuable — attempts. It
seems that any representation of Danzer’s configuration is of necessity so cluttered and unhelpful
for visualization that no attempt to present it has ever been made.

2. The first approach

Generalizing the constructions in [9], Boben and Pisanski [2] developed the theory of
polycyclic configurations. As a thumbnail sketch of part of their idea we may say that such
a configuration (n4) with n = k - m, consists of k concentric sets of m points each, where
each set is formed by the vertices of a regular m-gon, the sizes and positions of the various
sets being such that quadruplets lie on lines with which they form a configuration (n4). (See
below, in Remark (iii) additional explanations of the concepts involved here.) A notation for
these polycyclic configurations (n4), introduced in [2] and slightly modified in [7], is of the
form m(sy, t1, s2, t2, ..., Sk, tx), where the integers s; and t; describe the configuration in a
specific way, and are subject to various constraints that do not need to occupy us here. Details
are available in [2] and [7]. As an example, the (214) configuration in Fig. 1 has description
7(3,2,1,3,2,1).

It is easy to guess that since 35 = 5 - 7, a polycyclic configuration with five sets of vertices of
regular heptagons would yield an easily representable configuration (354). In fact, Fig. 2 shows
the configuration 7(2,1,2,1,3,2,1,2,1,3), as drawn with a program in Mathematica®. At first
glance it seems to fulfill the wish to have a simple and graphically understandable interpretation
of a (354) configuration. However, the attentive reader may notice a difference in the way
configurations are presented in Figs. 1 and 2. The latter is drawn according to the tradition started
with the earliest drawings of any configurations, and prevailing with many writers to this day. In
this tradition the lines of the configurations are presented as the shortest segments that connect
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all the points that are supposed to be incident with each line. But this representation is sometimes
misleading. Fig. 3 shows the same points and lines as are present in Fig. 2, but with lines extended
beyond all relevant points of the configuration. As is visible from Fig. 3, these points and lines do
not form a configuration since some lines pass through six of the points, and some points are on
six of the lines. This situation is a consequence of Lemma 31 of [2]. It is possible that a lessening
of symmetry in Fig. 3 may lead to a proper configuration, but this has not been achieved so far. It
may be noted that there are two other polycyclic symbols for (354) that may be considered, but
both lead to the same type of non-configuration as shown in Fig. 3.
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3. New construction methods

Following the failure of finding reasonable presentations of any polycyclic configuration
(354) (in the sense of Section 2) it seemed doubtful that any such presentation could be found.
This changed early in 2006, when Jiirgen Bokowski found a new method for constructing
a configuration (254), with 5-fold symmetry but not falling within the scope of polycyclic
configurations as defined above; this configuration is shown in Fig. 4. It was then very easy
to modify his construction to obtain a (354) configuration, shown in Fig. 5.

This construction method turned out to be modifiable in a variety of ways. Some of the other
configurations (354) obtained by such modifications are shown in Figs. 6-8. All these have 7-fold
symmetry, and given the method of construction, their existence can be inferred by continuity.
In Fig. 9 we show another variant of the construction, yielding a configuration (354) with 5-fold
symmetry.

In contrast to the case of polycyclic configurations, for the configurations considered in this
section no comprehensive theory or notation has been devised so far.

Thus the quest for a graphic representation of a (354) configuration has finally been achieved,
severalfold. But it is of some interest to note additional aspects.

4. Remarks

(i) None of the geometric configurations (354) described above is isomorphic (combinatorially
equivalent) to the (354) configuration described by Danzer. That configuration has a group of
automorphisms that is transitive on the flags (incident point—line pairs) of the configuration. It is
easy to show, in one of several ways, that this is not the case for our configurations. We found
it convenient to compare the deleted neighborhoods of points in the configurations considered.
By “deleted neighborhood” of a point V in a configuration C we mean the set of points on lines
through V, together with the set of configuration lines not through V that are determined by
two or more of these points. It is easy to verify that for the Danzer configuration the deleted
neighborhood of every point consists of four disjoint “triangles” (or, in a more appropriate
terminology, trilaterals). This implies, in particular, that every point of the deleted neighborhood
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is incident with two lines of that neighborhood. In contrast, for each of the configurations in
Figs. 5 to 9, the deleted neighborhood of the topmost point contains points that are incident with
a single line of the neighborhood. Like many other aspects of the configurations obtainable by
the construction described in Section 3, their automorphism groups have not been investigated
so far.

(i1) Concerning the “failed configuration” in Fig. 3, it may be noted that a slight change
may lead to a visually acceptable presentation of the configuration. The change consists in
substituting “pseudolines” (curved lines) for (straight) lines, as shown in Fig. 10. We shall not
dwell here on the topic of pseudolines; information may be found in [6], [5] or [3]. Even so,
it may be noted that the study of pseudoline configurations contributed in at least two definite
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ways to the investigation of configurations of points and lines. As Bokowski informed me in a
personal message, he found his configuration (254) (Fig. 4 above) while working on pseudoline
configurations. The second instance came when I tried to construct a (204) configuration. What I
first managed to do was to construct a (204) configuration of pseudolines, by merging two (103)
configurations. Looking at the result, I wondered whether one could straighten the pseudolines.
As it turned out, this is possible, resulting in the configuration shown in Fig. 11; the two
(103) configurations are clearly visible in the diagram. This configuration contradicts the long-
standing conjecture [9, p. 343] that the (214) configuration of Fig. 1 is the (n4) geometric
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configuration with the smallest n. The construction of the (204) configurations can be extended
to configurations (n4) foralln = 4 k.

(i11) There is some confusion about the term “polycyclic configuration”, caused by the present
author’s selective and defective reading and understanding of the definition in [2]. It has become
apparent — with my attention drawn to the facts by Berman and by Pisanski — that the definition
given in [2] is more general than the interpretation I gave it in [7] and other papers, as well
as in Section 2. Their definition does not involve the full symmetry group of the geometric
configuration, but depends only on the existence of some non-trivial symmetry under which
all orbits (of points and lines) have the same size. My definition of polycyclic configurations
(given above, as well as in [7] and other publications) coincides with what Berman [1] has called
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“celestial” configurations; it is the only kind presented in the examples of [2]. The configurations
presented in Figs. 4-9 and 11 are polycyclic (in the sense of [2], since under a rotational
symmetry they have orbits of the same sizes), but not celestial (since under the full symmetry
group the orbits have different sizes).

(iv) The method of representing configurations by the shortest segments that connect all points
incident with the carrier line (which we utilized in Fig. 2) may possibly be the source of the error
committed by Steinitz in [11]. The main result of that thesis asserts that if one disregards one
arbitrarily chosen flag in any connected configuration (n3), there is a collection of points and
straight lines that realizes all the other incidences and only the required incidences. As noticed
(to my knowledge) first by Pisanski [10], this is not correct since there may be uncalled-for
incidences in every realization (with one flag omitted) of certain configurations. As observed by
Pisanski, if one uses representations by segments (instead of whole lines), superfluous incidences
can be avoided in all cases studied so far.

(v) Despite all the advantages that the representation of configurations by sufficiently extended
lines has over representations using shortest segments, the latter kind is at times to be preferred.
The reason is that the extended lines tend to clutter up the presentation even in moderately
sized diagrams. For example, the structure of the configurations in Figs. 7 and 8 would be more
readily discerned if only the necessary segments were present. Thus, it should depend on the
particular situation, the presentation of which is chosen, with the writer aware of the advantages
and shortcomings of each method.

(vi) Danzer did not claim that the configuration he communicated to us is his invention.
Analogous constructions go far back in history to the various works of Cayley, Schlifli,
Cremona and others. However, I am not aware of any previous explicit occurrence of the (354)
configuration, and in my mind I still call it “Danzer’s configuration”.
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